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Abstract: Chalcones are synthetic and naturally occurring compounds that have been widely in-
vestigated as anticancer agents. In this work, the effect of chalcones 1–18 against the metabolic
viability of cervical (HeLa) and prostate (PC-3 and LNCaP) tumor cell lines was tested, to compare
the activity against solid and liquid tumor cells. Their effect was also evaluated on the Jurkat cell
line. Chalcone 16 showed the highest inhibitory effect on the metabolic viability of the tested tumor
cells and was selected for further studies. Recent antitumor therapies include compounds with the
ability to influence immune cells on the tumor microenvironment, with immunotherapy being one
actual goal in cancer treatment. Therefore, the effect of chalcone 16 on the expression of mTOR,
HIF-1α, IL-1β, TNF-α, IL-10, and TGF-β, after THP-1 macrophage stimulation (none, LPS or IL-4),
was evaluated. Chalcone 16 significantly increased the expression of mTORC1, IL-1β, TNF-α, and
IL-10 of IL-4 stimulated macrophages (that induces an M2 phenotype). HIF-1α and TGF-β were not
significantly affected. Chalcone 16 also decreased nitric oxide production by the RAW 264.7 murine
macrophage cell line, this effect probably being due to an inhibition of iNOS expression. These
results suggest that chalcone 16 may influence macrophage polarization, inducing the pro-tumoral
M2 macrophages (IL-4 stimulated) to adopt a profile closer to the antitumor M1 profile.

Keywords: chalcones; cancer; immunotherapy; tumor associated macrophages

1. Introduction

Cancer continues to be a leading cause of death worldwide, although cancer treatments
have improved over recent decades. Most chemotherapeutic drugs act as antiproliferative
agents; however, the tumor surrounding microenvironment has an essential effect on the
cancer cells’ capabilities [1]. Therefore, searching for new compounds with broad antitumor
activity remains an extraordinary challenge. Macrophages are important cells in the tumor
microenvironment, designated as tumor-associated macrophages (TAMs) [1,2]. The amount
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and phenotype of TAMs can influence tumor initiation, progression, angiogenesis, and
metastization, promoting disease prognosis [3–6]. The M1 phenotype, also mentioned as
classically activated, is considered pro-inflammatory, and the M2 phenotype, also referred
to as alternatively activated, exerts pro-tumoral effects [2]. M1 macrophages produce
reactive oxygen (ROS), nitrogen species (RNS), and pro-inflammatory cytokines such as
TNF-α, IL-1β, and IL-6 [5,7]. M2 macrophages mainly produce IL-10 and TGF-β [5,7].
Nowadays, reprogramming TAMs into an antitumor phenotype is recognized as one of the
antitumor immunomodulation strategies developed in the fight against cancer [2–4].

Recent studies revealed that the hypoxic microenvironment of tumors promotes
macrophage infiltration [8]. As such, macrophages located at hypoxic regions of the tumor
express Hypoxia Inducible Factor (HIF-1), and are able to promote angiogenesis [9] and
increasing tumor hypoxia. TAMs’ interference with tumor cells’ metabolism also increases
aerobic glycolysis, which is one of the mechanisms responsible for tumor resistance to
anticancer immunotherapy [10].

Chalcones are a class of flavonoids recognized for their extensive range of biological
activities, including antitumor and anti-inflammatory [11–13]. The antitumor effect of
chalcones is not limited to apoptosis induction in tumor cells, which makes them promising
compounds for cancer therapy [14]. In fact, some chalcones were shown to affect the
tumor microenvironment through the modulation of immune mediators released by tumor
cells and, therefore, have cancer chemoprevention effects. For instance, some methoxy
derivatives of 2′-hydroxychalcone significantly reduced ICAM-1 and IL-8 released by
SW480 colon tumor cells [14].

Over recent decades, our research group has identified several chalcones with notable
growth inhibitory activity in human tumor cell lines [15–19]. Chalcone derivatives 1–18
(Figure 1), in particular, revealed promising antiproliferative activity against A375-C5
(melanoma), MCF-7 (breast adenocarcinoma), and NCI-H460 (non-small cell lung cancer)
cell lines, this effect being associated with an antimitotic effect [20]. Aiming to pursue our
research on anticancer immunotherapy, namely on their activity on macrophages [21–24],
these chalcones were tested against liquid- and solid tumor-derived cell lines (Jurkat,
LNCaP, PC-3, and HeLa). The chalcone that showed the highest antiproliferative effect (16)
was selected to explore its effect on some human macrophage functions, as the expression
of mTORC1, HIF-1α, cytokine characteristics of an M1 (IL-1β and TNF-α) and M2 (IL-10
and TGF-β) profile. The inhibitory effect of the chalcone on NO production by RAW264.7
murine macrophages was also tested.
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Figure 1. Small library of chalcone derivatives 1–18 investigated in this study.

2. Results
2.1. Effect of Chalcones on the Metabolic Activity of Tumor Cell Lines

All chalcones were able to affect the metabolic activity of solid- and liquid-derived
tumors cell lines, including the cervix HPV-positive tumor cell HeLa, androgen-dependent
(LNCaP) and -independent (PC-3) prostate cell lines, and the human lymphocyte cell line
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Jurkat. All the compounds were able to affect the metabolic viability of the four cell lines
tested (Table 1). Doxorubicin was used as a positive control, and the values obtained
corresponded to those in the literature [25,26].

Table 1. Effect of chalcones 1–18 on the metabolic viability of tumor cell lines expressed as percentage
of cellular inhibition (%) compared to control.

Compound Concentration (µM)
Inhibition of Metabolic Viability (% of Control)

HeLa LNCaP PC-3 Jurkat

1
5 39.1 ± 0.1 16.0 ± 5.4 23.5 ± 7.2 58.6 ± 13.6
10 33.5 ± 5.6 33.5 ± 6.9 33.6 ± 10.7 90.8 ± 4.2
20 43.6 ± 5.7 39.1 ± 1.1 47.6 ± 10.5 T.I.

2
5 24.0 ± 12.5 24.3 ± 1.9 31.2 ± 4.3 6.8 ± 3.9
10 22.4 ± 7.5 39.2 ± 5.3 41.9 ± 4.0 20.8 ± 1.6
20 29.5 ± 4.2 45.3 ± 4.1 45.4 ± 8.7 81.8 ± 7.3

3
5 29.4 ± 10.4 23.1 ± 8.5 33.4 ± 5.8 55.3 ± 15.8
10 20.3 ± 5.7 40.9 ± 5.9 32.0 ± 5.0 87.8 ± 5.6
20 61.1 ± 10.1 74.4 ± 0.8 84.6 ± 2.7 T.I.

4
5 21.9 ± 3.8 30.1 ± 4.9 33.3 ± 4.7 29.1 ± 11.5
10 29.3 ± 9.7 40.5 ± 2.7 27.0 ± 2.8 66.1 ± 10.9
20 26.8 ± 4.9 56.3 ± 2.4 52.3 ± 3.9 91.6 ± 5.9

5
5 31.3 ± 4.7 31.2 ± 2.1 28.4 ± 9.2 60.2 ± 9.5
10 33.7 ± 3.4 49.1 ± 2.4 50.5 ± 4.0 57.1 ± 2.4
20 45.8 ± 8.6 58.5 ± 3.7 63.6 ± 3.7 88.9 ± 4.0

6
5 25.0 ± 7.7 30.4 ± 8.5 26.6 ± 5.4 35.6 ± 1.1
10 52.0 ± 7.8 37.0 ± 8.3 32.2 ± 3.1 30.7 ± 7.6
20 74.8 ± 7.5 63.4 ± 7.1 78.7 ± 2.3 79.2 ± 3.7

7
5 25.7 ± 4.0 23.6 ± 0.8 19.6 ± 5.1 47.0 ± 8.0
10 45.8 ± 5.9 34.4 ± 5.0 38.5 ± 5.7 89.0 ± 7.4
20 60.2 ± 14.5 78.4 ± 2.6 62.2 ± 7.5 T.I.

8
5 11.4 ± 3.5 24.4 ± 1.5 18.3 ± 0.6 28.0 ± 8.2
10 35.7 ± 7.1 28.4 ± 8.2 33.6 ± 9.1 45.7 ± 8.4
20 51.6 ± 6.0 47.8 ± 5.1 45.5 ± 6.3 91.6 ± 6.9

9
5 26.4 ± 7.1 23.5 ± 4.8 32.0 ± 1.0 32.2 ± 9.8
10 34.4 ± 3.0 36.9 ± 2.1 33.4 ± 10.7 70.6 ± 13.2
20 55.8 ± 7.1 51.5 ± 7.5 56.3 ± 11.2 T.I.

10
5 14.0 ± 5.5 29.4 ± 6.0 47.0 ± 5.5 45.1 ± 10.0
10 56.4 ± 8.6 41.4 ± 1.4 33.9 ± 11.6 93.6 ± 6.4
20 70.2 ± 7.9 60.0 ± 5.9 84.7 ± 2.9 T.I.

11
5 29.2 ± 8.9 28.6 ± 5.0 18.4 ± 1.9 18.1 ± 2.2
10 31.9 ± 8.9 31.5 ± 5.0 30.0 ± 2.2 40.5 ± 2.5
20 51.5 ± 3.3 49.9 ± 2.1 60.4 ± 3.4 99.0 ± 1.6

12
5 35.8 ± 4.4 27.4 ± 6.0 15.4 ± 3.8 10.8 ± 2.0
10 42.6 ± 8.3 39.2 ± 4.8 30.0 ± 2.7 47.4 ± 11.7
20 85.8 ± 3.7 69.1 ± 7.9 80.9 ± 5.1 T.I.

13
5 46.8 ± 3.7 37.9 ± 12.2 22.1 ± 6.6 48.9 ± 9.2
10 40.5 ± 13.5 58.9 ± 11.2 44.5 ± 2.5 77.7 ± 10.9
20 68.0 ± 10.6 75.1 ± 6.2 73.1 ± 2.8 T.I.

14
5 29.7 ± 11.6 18.6 ± 2.2 16.1 ± 1.1 57.0 ± 11.1
10 63.7 ± 8.6 43.4 ± 9.1 37.9 ± 11.8 97.0 ± 6.7
20 74.5 ± 9.1 69.5 ± 5.3 57.4 ± 15.4 T.I.
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Table 1. Cont.

Compound Concentration (µM)
Inhibition of Metabolic Viability (% of Control)

HeLa LNCaP PC-3 Jurkat

15
5 33.3 ± 6.2 24.3 ± 6.4 17.2 ± 4.4 14.6 ± 6.5
10 24.5 ± 11.2 44.0 ± 7.1 37.7 ± 2.4 13.0 ± 2.3
20 33.6 ± 2.4 39.8 ± 10.1 37.0 ± 2.3 77.3 ± 6.3

16
5 37.3 ± 12.8 30.6 ± 4.4 40.8 ± 4.8 69.4 ± 13.7
10 57.8 ± 8.9 52.4 ± 6.9 64.7 ± 1.8 81.6 ± 15.1
20 78.3 ± 3.0 76.9 ± 4.6 87.6 ± 3.7 T.I.

17
5 19.5 ± 6.8 21.3 ± 6.7 19.6 ± 3.0 32.1 ± 10.2
10 30.3 ± 5.2 29.3 ± 3.0 28.0 ± 1.4 44.2 ± 8.6
20 47.0 ± 8.8 37.0 ± 3.9 38.9 ± 3.6 T.I.

18
5 9.8 ± 3.2 23.0 ± 9.3 28.7 ± 1.5 34.6 ± 11.3
10 21.5 ± 14.8 33.0 ± 1.2 43.1 ± 2.9 84.1 ± 13.2
20 26.8 ± 3.9 45.1 ± 15.3 59.9 ± 7.2 T.I.

Doxorubicin 5 82.8 ± 2.5 62.5 ± 1.8 73.2 ± 2.8 111.4 ± 2.8
Results are expressed as mean ± SEM (n ≥ 3). TI—total inhibition. Doxorubicin was used as a positive control.

For the HeLa cell line, compounds revealed low to moderate inhibition of metabolic
activity when tested at 5 µM (9.8–46.8%) and 10 µM (20.3–57.8%), while displaying moder-
ate to high inhibition (26.8–85.8%) at 20 µM. Chalcone 12 with a 3,4,5-trimethoxyphenyl B
ring demonstrated the highest capacity for decreasing HeLa cell line metabolic viability
(85.8%) at 20 µM. Contrarily, the less active compound was chalcone 18, possessing chlorine
substituents in the B ring (26.8 % inhibition at 20 µM).

Considering LNCaP, the inhibition of the metabolic activity ranged 16.0–37.9% for
compounds tested at 5 µM, 28.4–58.9% for compounds tested at 10 µM, and 37.0–78.4%
at 20 µM. The highest inhibitory activity (78.4%) was observed for chalcone 7 with a 3,5-
dimethoxyphenyl B ring, while polymethoxylated chalcone 17 showed the lowest inhibition
(37.0%) at 20 µM.

Against the PC-3 cell line, the metabolic activity inhibition was also depended on
the concentration of the compounds tested: 15.4–47.0% for 5 µM; 27.0–64.7% for 10 µM;
and 37.0% to 87.6% for 20 µM. Compounds 3, 10, and 16, all with a methoxylated B ring,
were the chalcone derivatives that strongly inhibited the metabolic activity of the PC-3 cell
(84.6%, 84.7%, and 87.6%, respectively), while chalcone 15 with methoxy groups on both
rings showed the weakest inhibition (37.0%).

The metabolic inhibitory effect of chalcones against the non-adherent Jurkat cell line
was 6.8–69.4% for compounds tested at 5 µM, 13.0–97.0% when compounds were tested at
10 µM and ranged from 77.3% to total inhibition for compounds tested at 20 µM.

Doxorubicin was used as positive control, and the values obtained were like those
reported in the literature [25,26].

Compound 16 with two methoxy groups in both aromatic rings stands out for strongly
reducing the metabolic activity of all the cell lines at 20 µM, not demonstrating any se-
lectivity towards any of the adherent cell lines for all tested concentrations (p > 0.05).
Nevertheless, chalcone 16 at 20 µM is more active in Jurkat than in all the adherent cell
lines (p < 0.05 for all comparisons).

At 5 µM, chlorinated chalcone 8 resulted in significantly higher inhibition values in
LNCaP in comparison to PC-3′s (p < 0.05). Chlorinated chalcone 4 was significantly more
cytotoxic against LNCaP, while 18 also possessing two chlorine substituents at the B ring
demonstrated its highest activity against PC-3 (p < 0.05), both at 10 µM. PC-3 revealed a
higher sensitivity in comparison to LNCaP for some of the derivatives with methoxylated
B rings such as 3, 10, and 11 at 20 µM (p < 0.05). Chalcones 2 and 4 strongly inhibited the
metabolic activity of the HeLa cell line when compared to LNCaP (p < 0.05), while 4 and 18
had a weaker effect on the cervix cell line when compared to PC-3 (p < 0.05).
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In general, when comparing the metabolic inhibitory effect of chalcones possessing
the same A ring, those with a 3,5-dimethoxyphenyl B ring showed the most pronounced
inhibitory effect, independently of the A ring. Interestingly, most of chalcones with chlorine
at B ring displayed a lower activity than those with methoxy groups at the B ring, except
for compound 15.

As compound 16 showed to be the most potent inhibitor of the metabolic activity of all
tested tumor cell lines, this chalcone was selected for the study of its effect on macrophage
activity modulation and its anticancer potential.

2.2. Effect of Chalcone 16 on Macrophage Functions
2.2.1. Effect of Chalcone 16 on THP-1 Macrophage HIF-1α, mTORC1 and Cytokine
Expression

As seen in Figure 2A, for unstimulated macrophages, compound 16 treatment signifi-
cantly increases the expression of mTORC1 (fold-change = 4.0), HIF-1α (fold-change = 4.1),
and the pro-inflammatory cytokine IL-1β (fold-change = 5.1), but no effect is observed on
the expression of the other cytokines tested. When macrophages were stimulated with IL-4
(Figure 2B), representing M2 macrophages, chalcone 16 treatment increases the expression
of mTORC1 (fold-change = 3.5), but HIF-1α expression, an effector of the hypoxia condi-
tions of tumors, is not influenced. M1 characteristic pro-inflammatory cytokines’ (IL-1β
and TNF-α, fold change = 4.5 and 5.7, respectively) expression increased, as well as IL-10
(fold-change = 2.4).
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macrophages. (−∆Cq) of mTOR, HIF-1α, IL-1β, TNF-α, TGF-β1, and IL-10 by THP-1 macrophages.
Values represent mean ± SEM (n = 3). * p < 0.05, ** p < 0.001.

For LPS-stimulated macrophages (Figure 2C) representing the M1 phenotype, an
increase was observed for all the parameters tested (mTORC1 fold-change = 7.9; HIF-1α
fold-change = 3.4; TGF-β1 fold-change = 2.5; IL-1β fold-change = 4.7 and TNF-α fold-
change = 4.4), except for IL-10 expression, which was not affected.

Independent of the stimulation, the treatment of macrophages with chalcone 16 signif-
icantly increases the expression of mTORC1.

2.2.2. Effect of Chalcone 16 on NO Production by RAW264.7 Macrophages

The treatment of RAW 264.7 macrophages with 1.3 and 2.5 µM of compound 16 re-
vealed no cytotoxic effect on RAW 264.7 cells (viability of 95.5 ± 3.2% and 98.2 ± 1.3% for
2.5 and 1.3 µM, respectively) (Table 2). The NO inhibition showed a significant decrease
(p < 0.05) when comparing the activity of chalcone 16 when added at different incubation
times after LPS stimulation. Dexamethasone, a known inhibitor of iNOS enzyme produc-
tion, revealed the same profile. These results suggest that the chalcone 16 mechanism of
action is similar to dexamethasone, inhibiting iNOS enzyme production.
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Table 2. Effect of chalcone 16 on nitric oxide production by RAW 264.7, expressed as a percentage of
inhibition of NO production.

Compound Concentration (µM)
Time

0 h 6 h 14 h

Chalcone 16
1.3 52.4 ± 10.1 19.0 ± 0.7 * 11.0 ± 1.1 *
2.5 66.4 ± 3.6 24.8 ± 4.0 * 12.3 ± 2.0 *

Dexamethasone 5 58.1 ± 7.8 31.6 ± 1.8 * 5.9 ± 3.2 *
Results are expressed as mean ± SEM; n ≥ 3. Dexamethasone was used as a positive control. * p < 0.05.

3. Discussion

In a tumor, along with the cancer cells, immune cells (as macrophages or T-cells) are
also present in the tumor microenvironment (TME) [1,27]. The interplay of all the factors
of the TME results in the development of the tumor. Macrophages are the majority of
immune cells in the TME, and the amount and phenotype of tumor-associated macrophages
(TAMs) are determinants for tumor development and progression [2,28]. Briefly, and
excluding a variety of subpopulations, macrophages can adopt two opposite phenotypes:
M1, or classically activated, with pro-inflammatory activity (producing TNF-α, IL-1β); and
M2, or activated, with pro-tumoral characteristics (producing IL-10 and TGF-β) [2,28,29].
TAMs adopt an M2-similar phenotype [2,29]. Docetaxel and tasquinimod are drugs used
in cancer chemoimmunotherapy that redirect macrophages to an antitumorigenic M1
profile [1,30,31].

mTORC1 plays an important role in macrophage polarization, mediated by its action
at the level of metabolic and inflammatory signaling pathways [32,33]. The effect of
mTORC1 on macrophages translates into macrophage polarization to M1, an increase in
pro-inflammatory cytokine production by LPS-stimulated macrophages, and suppression
of IL-4-induced polarization to M2 [32,33]. In the present study, chalcone 16 treatment
induced an increased expression of mTOC1 in either unstimulated, IL-4-stimulated, and
LPS-stimulated macrophages.

Usually, the core of the tumor is hypoxic due to anomalous vascularization that
implies a deficient oxygen supply [27]. As a response, HIF-1α is activated and acts as a
pro-angiogenic factor [28]. HIF influences immune cells, including those associated with
tumors [27,28]. Considering TAMS, HIF-1α plays a determining role in the maturation and
infiltration of macrophages, as well as in their polarization to an M2 phenotype [27,28].
Chalcone 16 significantly increased the expression of HIF-1α in unstimulated and LPS-
stimulated macrophages. However, in IL-4-stimulated macrophages, chalcone 16 did not
significantly change HIF-1α expression.

TNF-α and IL1-β are pro-inflammatory cytokines that increase macrophages’ cyto-
toxicity against tumor cells. They are also characteristic of an M1 macrophage profile [2].
Chalcone 16 significantly increased the expression of IL-1β, independently of macrophage
stimulation.

TNF-α expression was only significantly increased for IL-4 and LPS-stimulated macrophages.
These results suggest an augmentation in the pro-inflammatory profile of the macrophages,
justified by an increase in M1-specific pro-inflammatory cytokines.

With respect to M2-characteristic cytokines, chalcone 16 only exhibited a change in
the expression of IL-10 in IL-4-stimulated macrophages. IL-10 is an immunosuppressor
cytokine that inhibits the antigen-presenting process and unviable T-cells to recognize and
eliminate tumor cells [2,28]. IL-10 levels correlate directly with tumor development [2].
However, chalcone 16 treatment did not cause significant changes in its expression on
IL-4 stimulated and unstimulated macrophages when analyzing TGF-β1, another M2-
characteristic cytokine that promotes angiogenesis [28]. Only LPS-stimulated macrophages
had a significant increase in TGF-β1 expression after chalcone 16 treatment.

NO has dual and controversial effects on cancer, which depend on the type of cancer,
concentration, and/or time exposed. In cancers such as prostate, cervical, or melanoma,
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increased iNOS expression is correlated with a poorer prognosis, while for ovarian and
non-small cell lung cancer, increased iNOS expression is considered a positive prognostic
marker [34]. M1 macrophages produce high levels of iNOS [1,34]. However, NO production
by human macrophages is hard to detect in vitro.

In this study, the RAW 264.7 murine macrophage cell line was used to evaluate the
chalcone 16 effect on NO production. The results highlighted the ability of chalcone 16 to
inhibit NO production and, by the inhibition profile, a probable inhibitory effect on iNOS
expression [23]. These results can reinforce the most likely beneficial effect of compound 16
on macrophage immunomodulation.

Giving special focus to macrophages stimulated with IL-4, which leads to an M2-like
macrophage phenotype, treatment with chalcone 16 increased the expression of mTORC1,
which induces macrophages polarization to M1, and IL-1β and TNF-α (characteristic
of M1). The expression of HIF-1α and TGF-β1, a fulcrum factor for angiogenesis and
tumor progression, was not affected by chalcone 16 treatment. However, IL-10 expression
increased significantly compared to control cells. Since TAMs are M2-like macrophages,
and based on all the results obtained, it was possible to hypothesize that chalcone 16 can
influence TAMs, redirecting them to macrophage a phenotype more M1-related. The effect
of 16 is also relevant since the M1/M2 ratio in tumors is predictive of disease prognosis [1].
Thus, a higher amount of M2 macrophages is associated with a worse prognosis, while
a higher percentage of M1 is associated with a better disease prognosis [1]. Chalcone 16
treatment of IL-4 stimulated macrophages also provoked a significant augmentation in the
M1-specific pro-inflammatory cytokines IL1-β and TNF-α. These results suggest a potential
chalcone 16 effect on macrophage polarization to an antitumor M1 profile.

4. Materials and Methods
4.1. Reagents

The acquisition of the reagents and media were as follows: Roswell Park Memorial
Institute-1640 (RPMI-1640) medium with Ultraglutamine from Lonza (Verviers, Belgium);
fetal bovine serum (FBS) from GE Health Care Life Sciences (GE Health Care, UT, USA),
2-mercaptoethanol from VWR International (Leuven, Belgium); Dulbecco’s Modified Ea-
gle Medium/F-12 Nutrient Mixture (Ham) (DMEM/F-12; 1:1) from Gibco (Paisley, UK);
phosphate-buffered saline (PBS) from Fisher Reagent (Geel, Belgium); dimethyl sulfoxide
(DMSO) and phosphoric acid from Merk (Darmstadt, Germany); dimethylformamide
(DMF) from Romil (Cambridge, UK), TripleXtractor and RNA Kit—Blood & Cultured Cells
from GRiSP (Porto, Portugal), recombinant human IL-4 from R&D Systems (Minneapolis,
USA). High-Capacity RNA-to-cDNA Kit and Master Mix from Applied Biosystems (Foster
City, CA, USA) were used. When not specified, the reagents were from Sigma-Aldrich (ST.
Louis, MO, USA).

4.2. Chalcone Derivatives 1–18

Chalcone derivatives 1–18 were synthesized and characterized by the Laboratory
of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of
Pharmacy/CIIMAR research group as previously described [20]. The powered compound
was dissolved in dimethyl sulfoxide (Acros Organics) and stored at −20 ◦C and diluted,
before each assay, at the desired concentration, in the appropriate culture media.

4.3. Cell Lines and Cell Culture

PC-3 cell lines were obtained from the European Collection of Cell Cultures (ECCAC)
and LNCaP from the American Type Cell Culture (ATCC). The other cell lines were kindly
provided by Maria José Oliveira (THP-1 and HeLa), Institute for Investigation and Inno-
vation in Health (i3S), Portugal; Henrique Almeida (Jurkat), i3S, Portugal; Maria São José
Nascimento (RAW 264.7), Faculty of Pharmacy, University of Porto, Portugal. The complete
culture medium for tumor cell lines was composed of RPMI-1640 supplemented with 10%
of FBS and 1 µg/mL of gentamicin. In the THP-1 cell line, we supplemented all the culture
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media described with 2-mercaptoethanol (0.05 mM). RAW 264.7 cell line was cultured in
DMEM/F-12 supplemented with FBS and gentamicin. All cell lines were incubated in a
humidified atmosphere containing 5% CO2, at 37 ◦C.

4.4. Cytotoxic Assay (MTT) for Adherent Tumor Cell Lines

The MTT colorimetric assay was conducted based on the original procedure proposed
by Mosmann [35], with modifications [24]. Cell lines (HeLa, PC-3, or LNCaP) were seeded
at a concentration of 1.5 × 104 cells/well (96-flat-bottom well culture plate) and incubated
for cell adherence (24 h) [36]. After removing the supernatants, the cells were treated with
chalcone derivatives, at the desired concentrations, for 48 h [36]. Additionally, included
non-treated and doxorubicin-treated cells in the assays as controls [26].

Once the incubation period was over, we washed the cells, and MTT (0.2 mg/mL)
was placed in contact with the cells for 4 h at 37 ◦C in a CO2 incubator [21]. The MTT
formazan product was solubilized with DMSO while shaking for 10 min, and absorbance
was measured 545/630 nm (STAT FAX 3200) [24]. The formula used to calculate the
cytotoxicity was as follows:

cellular metabolic viability inhibition (% of control) = 100 − (abs sample/abs control × 100).

4.5. Cytotoxic Assay (MTT) for Non-Adherent Tumor Cell Lines

Jurkat cells (50 µL; 1.5 × 104 cells/well) were placed in 96-well plates, and after a
24 h incubation [36], the desired test concentrations of the compounds (50 µL) were added.
Several controls were included in the experiments consisting of untreated cells, doxorubicin-
treated cells, compound blank, and medium blank. A new 48 h period of incubation was
carried out [36], after which an MTT solution 0.2 mg/mL per well was added [21] and left
for 4 h in a CO2 incubator at 37 ◦C. After MTT reduction by viable cells, 50 µL of an SDS
solution (20% SDS in DMF/H2O (1:1)) was added to the wells to dissolve formazan [21].
After reading absorbance, as already stated, cytotoxicity was calculated as follows:

Inhibition of metabolic viability (% of control) = 100 − [(abs sample-abs blank)/(abs control − abs negative control) × 100]

4.6. THP-1 Macrophage-Phenotype Differentiation

The human leukemic monocyte cell line THP-1 (1 × 106 cell/mL) was differenti-
ated into macrophages by phorbol 12-myristate 13-acetate (PMA, 0.1 µg/mL) treatment for
72 h [37]. After washing and an additional incubation in the culture medium for 24 h [37,38],
an M0 phenotype was obtained. The effect of chalcone 16 on the various macrophage pheno-
types was achieved by their treatment for 24 h [39], in three different stimulation conditions:
unstimulated, LPS-stimulated (1 µg/mL) [39], and IL-4 stimulated (20 ng/mL) [37]. LPS or
IL-4 stimulation was performed simultaneously to chalcone 16 treatment. The control used
were non-treated macrophages.

4.7. Assay for Quantification of mRNA Expression

For mRNA cytokines expression quantification, THP-1 derived macrophages (M0)
were obtained as stated in Section 4.6. The influence of chalcone 16 with cytokine mRNA
expression was studied exposing the macrophages to different concentrations of compound
16 for 6 h [37] in three different conditions described above: un-stimulated, LPS-stimulated
and IL-4 stimulated. Non-treated macrophages, exposed or not to LPS or IL-4 stimulation,
were also used. After incubation, the media were removed and cells were washed. TripleX-
tractor reagent (GRISP) was used for mRNA isolation, stored at −80 ◦C until use. The RNA
fraction was separated, samples were purified (GRS Total RNA Kit—Blood & Cultured
Cells commercial kit) and RNA concentration and purity were assessed using a NanoDrop
Lite spectrophotometer (Thermo Scientific®, Waltham, MA, USA). For cDNA synthesis,
mRNA samples were used (High-Capacity RNA-to-cDNA Kit; Thermo Fisher Scientific).
Reactions were carried out in the StepOneTM Plus PCR Real-Time PCR instrument, with 1x
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Master Mix, 1x probes (TaqMan® Gene Expression assays mTOR, Hs00234508_m1; HIF1α,
Hs00153153_m1; TGF-β1, Hs00998133_m1; IL-1β, Hs01555410_m1; IL-10, Hs00961622_m1,
and TNF-α, Hs02621508_s1; Applied Biosystems, Foster City, CA, USA). The housekeeping
gene used was B2M (TaqMan® Hs99999907_m1; Applied Biosystems, Foster City, CA,
USA), which served as an endogenous control to normalize the results. The analysis of
the results was conducted utilizing the StepOneTM Software v2.2 (Applied Biosystems,
Foster City, CA, USA) with the same baseline and threshold set for each plate, to generate
quantification cycle values (Cts) for all the mRNA targets in each sample.

4.8. Nitric Oxide Production Assay

RAW 264.7 cells were placed in a 96-well culture plate (1 × 106 cell/mL; 200 µL) and
incubated for 2 h to allow the cells’ adhesion [22]. The culture media was then discarded,
and an LPS (1.5 µg/mL) and chalcone solution were added at equal volume and added
together (0 h). Chalcone treatment was also started 6 or 14 h after stimulation with LPS to
evaluate the effect of compound 16 on iNOS expression/activity. Cells were incubated for a
total of 24 h after stimulation, and after that period, 100 µL of the culture media were placed
into a new 96 flat-bottom well plate, and 100 µL of Griess Reagent (1:1 solution of 1% w/v
sulphanilamide solution in phosphoric acid (5% v/v) and naphtylethylenediamide (0.1%)
in deionized water) were added to every well. The reaction occurred for 10 min protected
from light and at room temperature [22]. The optical density was measured (545/630 nm;
STAT FAX 3200), and the effect on nitrite production was calculated as follows:

Inhibition of NO production (% of control) = 100 − [(abs sample-abs blank)/(abs control − abs negative control) × 100]

4.9. Statistical Analysis

IBM SPSS Statistics 26.0 for Windows was used. The results were displayed as mean
± SEM. To obtain meaningful results, media ± 2SD was used to perform the statistical
evaluation of the effect of chalcone derivatives against the metabolic viability of tumor
cell lines. The normality of the distribution of the results was confirmed by the Shapiro–
Wilk test of normality, and the homogeneity of variance assumption was checked using
Levene’s test. One-way Anova was conducted for the experimental cytotoxicity analysis
with Bonferroni’s correction post hoc test. The differences in cytokine mRNA expression
were analyzed using the Student’s t-test. Statistical significance was considered for p < 0.05.
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