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Abstract: The structure and interactions of oxygenated aromatic molecules are of atmospheric
interest due to their toxicity and as precursors of aerosols. Here, we present the analysis of 4-methyl-2-
nitrophenol (4MNP) using chirped pulse and Fabry-Pérot Fourier transform microwave spectroscopy
in combination with quantum chemical calculations. The rotational, centrifugal distortion, and 14N
nuclear quadrupole coupling constants of the lowest-energy conformer of 4MNP were determined as
well as the barrier to methyl internal rotation. The latter has a value of 106.4456(8) cm !, significantly
larger than those from related molecules with only one hydroxyl or nitro substituent in the same para
or meta positions, respectively, as 4MNP. Our results serve as a basis to understand the interactions
of 4MNP with atmospheric molecules and the influence of the electronic environment on methyl
internal rotation barrier heights.

Keywords: rotational spectroscopy; ab initio and density functional theory calculations; internal
rotation; nuclear quadrupole coupling; large-amplitude motion

1. Introduction

A major class of pollutants and aerosol precursors are oxygenated aromatic com-
pounds, including functional groups such as -OH, -CO, and -NO; [1-4]. They are primary
products of combustion and have higher toxicity than their parent, non-oxygenated com-
pounds [5]. Among the oxygenated aromatic molecules, phenols and nitrophenols have
attracted much attention due to their toxicity [6]. These constitute a large portion of the
volatile organic compounds (VOCs) in urban areas, and their subsequent reactions are
pivotal in determining atmospheric chemistry because they increase the proportion of oxi-
dants, such as OH radicals, and the formation of secondary organic aerosol [7,8]. p-Cresol is
one of the main atmospheric phenols, directly released to the atmosphere as a byproduct of
diesel combustion and wood burning, as well as produced from photochemical reactions of
other aromatic molecules. Its oxidation with NO; radicals produces 4-methyl-2-nitrophenol
(4MNP, see Figure 1), whose photolysis was recently discovered to be a potential source
of the OH radical in polluted suburban environments [7]. 4MNP is also an important
component of “brown carbon” from biomass burning [9,10] and is released into the atmo-
sphere by combustion [11,12]. Despite their relevance to the Earth’s atmosphere, there
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are fundamental gaps in our knowledge of the competing reaction pathways for these
pollutants, their evolution from the first aggregation stages and cluster growth to aerosol
formation, and their interactions with water [13,14].

Figure 1. Molecular structures of the two conformers of 4-methyl-2-nitrophenol, 4MNP-1 (left) and
4MNP-2 (right). The carbon atoms are gray, hydrogen atoms white, oxygen atoms red, and the
nitrogen atom is blue. The principal inertial axes a, b are indicated. The c-axis is perpendicular to the
ab plane.

To advance our understanding of the interactions of oxygenated aromatic compounds
with other molecules in the atmosphere, it is necessary to characterize their structures and
relative configurations. This can be achieved by applying high-resolution spectroscopic
techniques in combination with high-level quantum chemistry calculations. Rotational
spectroscopy [15,16] is a powerful technique for characterizing structures and large am-
plitude motions, such as methyl internal rotation, in the gas phase [17-19]. It can identify
without ambiguity different conformers and isomers present in the sample because small
differences in their structures will result in them showing different rotational spectra. Ro-
tational spectroscopy has been successfully applied to investigate many atmospherically
important molecules including amines, oxygenated organic compounds, terpenes, and
their complexes [20-26]. Moreover, the results obtained from this experimental technique
can be used to benchmark the performance of different theoretical methods.

In this study, we report the investigation of 4MNP, an aerosol precursor and pollu-
tant [27-32], via a combination of rotational spectroscopy and quantum chemical calcu-
lations. 4MNP has a methyl group in para and meta with respect to the hydroxyl and
nitro groups, respectively. The methyl torsion is expected to experience a V3 barrier, with
each rotational transition split into two components, labeled A and E according to their
symmetry. Only a few studies of methyl internal rotation barriers of doubly substituted
toluene derivatives have been reported [17]. From the analysis of the rotational spectrum
of 4MNP, we have determined its barrier to methyl internal rotation as well as its rotational
and N nuclear quadrupole coupling constants.

2. Results
2.1. Computational

Geometry optimizations of 4MNP were initially performed with the Gaussian09 and
Gaussianl16 suites of programs [33,34] using density functional theory (DFT) [35,36] as well
as ab initio second-order Moller-Plesset perturbation theory (MP2) [37] in combination
with Pople’s 6-311G++(d,p) basis set [38,39]. The DFT calculations were carried out using
the dispersion-corrected B3LYP-D3BJ functional, including Becke-Johnson damping [40,41]
and the B3PW91 [36,42] functional, with tight optimization convergence criteria and an
ultrafine grid. They yielded the computed rotational constants, dipole moment components,
N nuclear quadrupole coupling constants (NQCCs), and energy differences between
the conformers to guide the analysis of the experimental spectrum (see Table 1). Two
conformers were obtained and are illustrated in Figure 1 with atomic numbering. Their
atomic coordinates are available in Table S1 in the Supplementary Materials.
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Table 1. Theoretical spectroscopic parameters of the two conformers of 4MNP calculated using the
B3LYP-D3BJ, B3PW91, and MP2 methods with the 6-311++G(d,p) basis set.

Parameter 4MNP-1 4MNP-2
B3LYP- B3LYP-
D3BJ B3PW91 MP2 D3] B3PW91 MP2
A2 (MHz) 1840.5 1855.7 1820.1 1804.8 1808.7 1816.2
B (MHz) 933.8 935.6 930.5 925.0 929.1 902.3
C (MHz) 621.9 624.4 618.1 629.4 631.5 641.8
AbwA?) —-3.16 -3.12 —-3.16 —23.42 —23.08 —51.03
#a © (D) 43 43 3.8 55 5.4 49
ty (D) —0.7 —0.8 —03 —32 —32 —27
tic (D) 0.0 0.0 0.0 —0.2 —0.2 —0.2
Xaa ¢ (MHz) —0.76 —0.72 —0.34 —0.76 —0.73 —0.39
xpp (MHz) 0.02 0.01 —0.16 0.12 0.10 —0.01
Xec (MHz) 0.74 0.71 0.50 0.65 0.62 0.38
V3¢ (em™) 119.6 114.7 89.4 31.3 28.8 28.0
AEf (kK] mol™1) 0.0 0.0 0.0 44.0 455 27.1
AEq 8 (k] mol™1) 0.0 0.0 0.0 43.1 443 31.2

a A, B, and C are the rotational constants; P Inertial defect calculated using A =1 — I; — Iy; € pa, pp, and pec
are the dipole moment components; d Xaar Xob, and X are the nuclear quadrupole coupling constants; € V3 is
the barrier to methyl internal rotation; f AE is the relative energy; 8 AEj is the relative energy including the
zero-point corrections.

Because it has been reported that MP2 does not properly model the *N nuclear
quadrupole coupling of the -NO, group [43,44], we also used two different DFT functionals
to describe it. We chose B3LYP-D3B], as it usually provides a good description of structural
parameters [21,45-50], and B3PW91, because it has been reported to be the best-performing
method for describing nuclear quadrupole coupling [42]. Furthermore, we used Bailey’s
method to compute the NQCCs by performing electric field gradient calculations at the
B3PW91/6-311+G(d,p) level of theory on the molecular geometry optimized at the MP2/6-
311++G(d,p) level [42]. The obtained values were corrected with the calibration factor
eQ/h = —4.599 MHz a.u~! recommended for molecules containing 7-conjugation [51],
yielding xa; = —0.7053 MHz, x;;, = 0.0379 MHz, x. = 0.6674 MHz, and yx,;, = 0.7078 MHz.

The methyl internal rotation barriers were calculated by rotating the methyl group in
steps of 10° by varying the dihedral angle « = Z(C3C4C9H14) and allowing the rest of the
molecule to relax at each point. The height of the barrier is consistently larger for 4MNP-1
at all levels of theory. The obtained energy points were parameterized using a Fourier
expansion with the coefficients collected in Table S2. Using these coefficients, the potential
energy curves are drawn as contour plots in Figure S1. Calculations using the B3LYP-D3B]
and B3PW91 methods resulted in a potential curve with perfect threefold symmetry, which
is typical for methyl internal rotation. At the MP2 level, we obtained a strange shape of
the potential curve, where the minima are not located at 0°, 120°, and 240°, but are shifted
by 10°.

Furthermore, we carried out a two-dimensional contour plot using the B3PW91
method with the Q2DTor program [52] (see Figure 2). It shows the change in poten-
tial energy when the methyl and hydroxyl groups are rotated in steps of 10° while allowing
the rest of the molecule to relax at each point. The resulting points were fitted to the Fourier
series of Equation S1, which was employed to solve the 2D Schrodinger equation leading
to the energy levels of Table S3 (see ref. [53] for details). There are three indistinguishable
absolute minima corresponding to 4MNP-1 with Cs symmetry. The hydrogen atom of the
—-OH group points toward the -NO,, creating a strong hydrogen bond. This hydrogen bond
in the 4MNP-1 structure avoids any internal rotation of the -OH group, and the molecule
behaves as a system with a single methyl internal rotor. Notice that the comparison of
the first 18th vibrational energy levels obtained from the diagonalization of the 1D and
2D potentials shows that these levels correspond exclusively to the vibrational excitation
of the methyl group (see Table S3). 4MNP-2 lacks the hydrogen bond of 4MNP-1, and
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the repulsion between the oxygens of the -OH and -NO, groups leads to a nonplanar
structure with a very high energy above the global minimum. Therefore, the rotation of the
hydroxyl group displaces the nitro group out of the phenylic plane, with angles of 31.1°
(B3LYP-D3B]), 31.0° (B3PW91), and 52.1° (MP2). Additionally, it affects the methyl group
rotation, which presents a barrier of ca. 30 cm~ L,
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Figure 2. (Top left): Contour plot showing the variation of potential energy (in cm~!) with the

internal rotation of the methyl (¢;) and hydroxyl (¢,) groups of 4MNP (bottom left). A zoom of the

contour plot enhancing the region of the absolute minima is depicted in the (top right) position. A

one-dimensional cut (white line in the zoomed contour plot) that passes through the equilibrium

structures shows the fit of the V3 potential to the B3PW91 points (bottom right).

The effect of the -NO, group is thus substantial. Comparing 4MNP with the related
4-methylphenol (p-cresol) shows that whereas 4MNP-2 is very high-energy, the analogous
structure of p-cresol is the absolute minimum, and the analogous structure of 4MNP-1 is
a transition state that is 17 cm~! above the minimum. Therefore, due to the symmetry in
p-cresol, there is only one minimum, with the two eclipsed hydrogen atoms of the rotating
tops in anti configuration but with the torsion about the methyl group close to a free rotation
(see Figure 3).

¢

2
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b

Figure 3. Contour plot showing the variation of potential energy (in cm™!) with the internal
rotation of the methyl (¢;) and hydroxyl (¢,) groups of p-cresol, generated at the BSPWB91/6-
311++G(d,p) level.
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2.2. Rotational Spectrum

There are two possible conformers of 4MNP, depending on the orientation of the
hydroxyl group (see Figure 1 and Table 1). The global minimum 4MNP-1 exhibits an
intramolecular O-H---O hydrogen bond between the hydrogen of the hydroxyl group and
one of the oxygens of the nitro group. This stabilizing interaction is missing in conformer
4MNP-2, leading to a much higher relative energy. 4MNP-2 is thus not expected to be
populated in our supersonic expansion.

4MNP-1 is predicted to be a planar molecule with only y, and yu; dipole moment
components. Because y, is predicted to be much larger than y;, we initially looked for
R-branch a-type transitions. A series of intense lines separated by approximately B + C and
following the expected pattern for ®R transitions was observed in the broadband rotational
spectrum. They all showed nuclear quadrupole coupling splittings arising from the 4N
nucleus. Each rotational transition was also split into A and E components (see Figure 4)
arising from the interaction between the methyl internal rotation and the overall rotation
of the molecule. The hydrogen bond between the hydroxyl and nitro groups in 4MNP-1
impedes the rotation of the -OH group, hence there is no splitting due to this motion.
From initial fits of the A torsional components of a-type transitions using Pickett’s spfit
program [54] and Watson’s S-reduced Hamiltonian [55], preliminary rotational constants
were determined and further a-type and b-type transitions were assigned. Many of the
most intense quadrupole hyperfine components were blended in the broadband rotational
spectrum. Therefore, further measurements were performed, taking advantage of the
higher resolution of the Fabry-Pérot Fourier transform microwave (FTMW) spectrometer
(Figure 5). A total of 327 a- and b-type lines combining A and E transitions with fully
resolved nuclear quadrupole coupling splittings were measured, with an estimated mea-
surement accuracy of 4 kHz.
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Figure 4. (a) The chirped pulse FTMW spectrum of 4MNP-1 recorded from 2 to 8 GHz. (b) Sections
of the spectrum showing assigned transitions and torsional species.
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Figure 5. A typical resonator-based FTMW spectrum of the a-type transition 3; 3 < 21 » showing its
14N nuclear quadrupole hyperfine structure. Each transition is split into two components due to the
Doppler effect. The line was polarized at 4157.313 MHz, and 241 free induction decays were co-added.

Internal rotation splittings can be treated only using appropriate theoretical models.
We performed two fits using two different spectral fitting programs, the XIAM [56] and
BELGI-Cs-hyperfine [57] codes, which allowed us to treat the rotational spectrum of internal
rotation combined with a *N quadrupole hyperfine structure. BELGI-Cs-hyperfine uses the
rho axis method (RAM), which is discussed in detail in refs. [58,59]. The rotational constants
and the NQCCs obtained from the fit in the RAM system were subsequently transformed
into the principal axis system (PAM) with the rotation matrix of Oran angle around the
z-axis, using the equations described in ref. [58]. The XIAM code uses the combined axis
method, wherein the rotor is first set up in the PAM system and then transformed into
the RAM system to eliminate the Coriolis coupling terms. In the RAM system, XIAM
calculates the eigenvalues in the product basis of the symmetric top functions for the
overall rotation and the planar rotor functions for the methyl internal rotation, and then
transforms the eigenvalue matrix back to the PAM system. One difference between the
two methods is that the XIAM code fits mainly low-order terms of the Hamiltonian, while
BELGI-Cs-hyperfine has more higher-order terms coupling the internal and global rotation.
Furthermore, XIAM can fit each torsional state (v; = 0) by itself only and does not include
interaction terms between different torsional states. BELGI-Cs-hyperfine considers a whole
set of torsional states (truncated at v = 8) in the Hamiltonian matrix, allowing it to obtain
better root-mean-square (rms) deviation, especially for the E species of internal rotors
with low torsional barriers. XIAM is faster and is convenient for spectral assignment,
but the better rms deviation and predictive power has made BELGI-C;-hyperfine a good
complement to XIAM [19].

For 4MNP-1, using the XIAM code to determine a linear combination of the rotational
constants A, B, and C, the quartic centrifugal distortion constants D; and Dy, the 4N
NQCCs x4z and Xpp — Xcc, the barrier to internal rotation V3, the angle Z(i,a) between the a
principal inertial axis and the internal rotor axis, and three higher-order terms Dplg ;D p2K
and D »_ enabled us to reproduce the experimental spectra to an rms deviation of 7.8 kHz

for 327 lines (Table 2). The internal rotation constant Fj is correlated to V3 and was fixed to
the calculated value. The reduced constant F = /> /2rl, and the rotation-torsion coupling
constant p were derived parameters.
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Table 2. Molecular parameters of 4MNP-1 in the PAM system obtained from fits with XIAM and

BELGI-Cs-hyperfine.

Parameter Unit XIAM BELGI @ Calc.
A MHz 1841.7616 (26) P 1841.8415961 (43) 1837.267 ¢
B MHz 932.06085 (19) 932.3075 (47) 925.714
C MHz 621.56246 (20) 621.53031 (89) 618.216 ¢
Dy kHz 0.0076 (11) - 0.05921 ¢
Dix kHz 0.0153 (58) - —0.06727 ¢
Fy GHz 160.336 4 160.34966 (44) 160.336 ©
F GHz 161.9023 161.9023 8 -
V3 em~! 106.4456 (8) 105.995 (14) 117.8
0 unitless 0.0100 f 0.0099412 (28) -
D2y kHz —20.331 (88) - -
D, MHz 0.1158 (36) - -
Dy kHz -17.9(2) - -
Xaa MHz —0.8150 (43) —0.811 (27) —0.7053 1
Xbb MHz —0.0702 (70) * —0.075 (50) 0.0379 h
Xee MHz 0.885 (17) 1 0.89 (12) 0.6674 1
Z(ia) ° 34.4141 (12) 34.37469 (49) 34.40
Z(i,b) ° 55.5859 (12) 55.62532 (49) 55.61
(i) ° 90.07 90.07 89.00
rms ¥ kHz 7.8 3.9 -
N/Ng/Nys! 168/159/327 168/159/327 -

2 Obtained by the RAM to PAM transformation. P Statistical uncertainties are given as one standard uncertainty
in units of the last digit. ¢ Ground state rotational constants and centrifugal distortion constants from anhar-
monic frequency calculations at the B3LYP-D3BJ/6-311++G(d,p) level of theory. ¢ Fixed to the calculated value.
€ From geometry optimization. f Derived parameter. 8 Fixed to the value of the XIAM fit. h Calculated at the
B3PW91/6-311+G(d,p)/ /MP2/6-311++G(d,p) levels of theory, see text. ' Derived from xp, — Xcc = —0.9554(97)
MHz. ] Fixed due to symmetry. ¥ Root-mean-square deviation of the fit. | Number of A and E species transitions
as well as number of the nuclear quadrupole hyperfine components.

For the BELGI-Cs-hyperfine fit, presented in Table 3 in the RAM system, the same
dataset of 327 hyperfine components were fitted with an rms of 3.9 kHz, floating A, B, and
C, Ak, Ajk, the N NQCCs x40 and xpp (Xce = —Xaa —Xpb, following Laplace condition), V3,
and p. The use of the non-principal axis system in the BELGI-Cs-hyperfine fit requires an
additional parameter to be fitted, D,;, which is directly related to the Oranm angle between
the RAM and PAM systems. Two higher-order terms were used, c; and A,,, which multiply
the operators (1 — cos 3x) (P,f — PCZ) and {Pa,Ph}Paz, respectively. The rms deviation is
within the measurement accuracy of 4 kHz. For comparison with the XIAM results, some
parameters were converted to the PAM system and are also presented in Table 2. The XIAM
and BELGI-Cs-hyperfine parameters agree very well with each other. The frequency list and
residuals of both fits are available in Table S5 of the Supplementary Materials.
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Table 3. Spectroscopic constants of 4MNP-1 in the RAM system obtained using the program BELGI-

Cs-hyperfine.

Parameter Unit Value Operator ?
A MHz 1744.2236 (35) P2
B MHz 1029.6800 (40) p?
C MHz 621.53031 (89) P?
Dap MHz 281.1730 (48) {Ps, Py}
A kHz 0.0 —pt
Ax kHz —0.576 (33) —p?
Ak kHz 0.211 (11) —p2p?
5y kHz 0.0 —2P?(P? — P?)
Ok kHz 0.0 —{p2,(P? - P?)}
Xaa MHz —0.630 (46) -
Xvb MHz —1.140 (46) -
Xab MHz ~1.515 (57) -
V3 cm ™! 105.995 (14) (1/2)(1 — cos 3x)
0 unitless 0.0099412 (28) Pipa
F GHz 161.9023 (pa — pP2)?
€ MHz —0.0842 (25) (1— cos 3a)(P2 — P?)
Ay MHz 0.15048 (56) {P,,P,}P?
rms © kHz 3.9 -
Na/NE/Nys 168/159/327 -

2 All parameters refer to the rho axis system and cannot be directly compared to those referring to the principal
axis system. P,, P,, and P, are the components of the overall rotation angular momentum; p, is the angular
momentum conjugate to the internal rotation angle c. {u,v} is the anti-commutator uv + vu. The product of
the parameter and operator from a given row yields the term actually used in the vibration-rotation-torsion
Hamiltonian, except for F, p, and A, which occur in the Hamiltonian in the form F(p, — pPa)2 + APHZ, where
F = 1?/2r1,. Statistical uncertainties are shown as one standard uncertainty in units of the last digit. The NQCCs
are defined in BELGI-Cs-hyperfine by a factor of two greater compared with their definitions in the XIAM program.
b Fixed to the value obtained from XIAM fit. ¢ Root-mean-square deviation of the fit. ¢ Number of A and E species
transitions as well as the nuclear quadrupole hyperfine components.

3. Discussion and Conclusions

The most stable conformer of 4AMNP was assigned, and global fits consisting of 168 A
species and 159 E species transitions, including hyperfine components, were performed
using two computer codes, XIAM and BELGI-C;-hyperfine. The XIAM fit has a standard
deviation of 7.8 kHz, which is reduced to 3.9 kHz, consistent with measurement accuracy,
using BELGI-Cs-hyperfine. We can see from Table 2 that the XIAM and BELGI-Cs-hyperfine
parameters are in good agreement with each other.

Ab initio and DFT calculations were carried out to guide the analysis of the rotational
spectrum of 4MNP. All levels of theory predict equilibrium rotational constants close to the
experimental ground state ones, probably because of the rigidity of the aromatic ring. This
was confirmed by running additional calculations with a series of different methods and
basis sets for benchmarking purposes, including MP2 [37], coupled cluster methods with
a double excitation model (CCSD) [60], and the functionals M06-2X [61], wB97X-D [62],
MNI15 [63], and PBE [64] (see Table S6). The NQCCs obtained from Bailey’s method or
from B3LYP-D3B]J and B3PW91 calculations are in good agreement with the experimental
ones, but those from MP2 have an average deviation of 44.6%, showing that this method is
not reliable for predicting the electronic density around the *N nucleus of an -NO, group.

The NQCCs of 4MNP-1, and specifically x., can be compared with those from re-
lated molecules. The c principal inertial axis is perpendicular to the aromatic ring, as is
the z quadrupole axis of the 14N atom. Therefore, Xce coincides with x,, and provides
information on the electric field gradient along an axis perpendicular to the molecular
plane. Our value of x. = 0.885(17) MHz is effectively the same as those determined for
nitrobenzene (). = 0.8394(36) MHz) [65] and ortho-nitrophenol (). = 0.886(3) MHz) [65].
The introduction of a hydroxyl group going from nitrobenzene to ortho-nitrophenol causes
a very small change in the N electronic environment. No changes are observed going
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from ortho-nitrophenol to 4MNP-1, showing that the methyl group has no influence on the
electronic environment of the N of the nitro group. Considering the definition of x,, and
its relation to the unbalanced electrons in a p, orbital, its positive value indicates that there
is an excess of electron density along the z axis of the 1*N nucleus [66,67].

The inertial defect of 4MNP-1 is calculated to be —3.53815(48) uA? from the XIAM
fit. This value is consistent with a planar molecule in which only the hydrogen atoms
of the methyl group are out of plane. The planar moment perpendicular to the ab plane,
P, has a value of 1.76908(24) uAZ2. This is similar to the expected value of 1.625 uA? for
two hydrogens out of plane with C-H distances of 1.1 A and ZHCH of 109.28° [66] and is
comparable to the P, of other molecules wherein the only contribution to P arises from
out-of-plane methyl hydrogens [68].

The V33 torsional barriers obtained by XIAM and BELGI-Cs-hyperfine are 106.4456(8) cm ™!
and 105.995(14) cm !, respectively. The agreement between the values of V3 from XIAM
and BELGI-Cs-hyperfine is extremely good, given the differences existing between the two
methods. The barrier height for methyl internal rotation depends on steric interactions
and electronic effects [17]. The methyl group in 4MNP is sufficiently far away from the
—-OH and —-NO, groups that steric interactions are unlikely, and this is reflected in the low
barrier height. However, although the barrier is relatively low, it is higher than those
of 18.39(3) cm™! for the related 4-methylphenol (p-cresol) [69] and 6.7659(24) cm ™! for
meta-nitrotoluene [44], which have their methyl groups in the same relative position, with
respect to the -OH and -NO, groups, as 4MNP-1. Other six-membered aromatic molecules
where the methyl group is in para or meta with respect to a single substituent also have
lower barriers than 4MNP-1 [17]. In 4MNP-1, the -NO, group has negative inductive and
mesomeric effects, removing electron density from the aromatic ring, while the -OH group
has a positive mesomeric effect and donates electron density to the ring. Clearly the methyl
group is “sensing” the presence of two other substituents in the ring, and changes in the
electronic distribution induced by them (and the hydrogen bond connecting them) are very
likely the cause of the higher barrier to methyl internal rotation. Further studies of toluene
derivatives with two ring substituents will help get more insight into the chemical features
that control the height of the barrier.

The results of this study can be used to compare the impact of the electronic environ-
ment on the methyl internal rotation barrier with other isomers of methylnitrophenol, such
as 5-methyl-2-nitrophenol. The structural determination of 4MNP lays a basis to undertake
future studies of the chemical reactions and atmospheric aggregation processes of 4MNP;
for example, with multiple water molecules.

4. Materials and Methods

The rotational spectrum of 4MNP was recorded using broadband and Fabry—Pérot
FTMW spectrometers. We employed first a chirped pulse FTMW spectrometer in the
2-8 GHz frequency range at King’s College London, UK [70,71]. 4MNP was purchased
from Sigma-Aldrich (99% purity) and used without further purification. As 4MNP is
a solid at room temperature (m.p. 305-308 K), it was heated to 369 K using a bespoke
heating receptacle attached to the solenoid valve and then supersonically expanded into the
vacuum chamber using neon as a carrier gas at a backing pressure of 5 bar. The vaporized
molecules were excited by microwave chirped pulses of 4 us, amplified by a travelling wave
tube amplifier of 200 W, and broadcasted into the vacuum chamber using a broadband
horn antenna. Once the microwave radiation stopped, the emission signal was collected in
the form of a free induction decay (FID) in the time domain and converted to the frequency
domain via a fast Fourier transform. The final rotational spectrum collected had 1.2 MFIDs
and is shown in Figure 4.

A Fabry—Pérot FTMW spectrometer covering the 2-26.5 GHz frequency range [72]
was used to determine the frequencies at higher resolutions and to expand the data set to
measure transitions with higher | and K values. Solid 4MNP was put on a small piece of
pipe cleaner placed in a metal tube upstream of the nozzle. The tube was also heated to
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about 369 K. Helium was used as the carrier gas at a backing pressure of 2 bar, flown over
the 4MNP sample, and then the 4MNP-helium mixture was expanded into the cavity. A
typical spectrum of the 3; 3 <— 2; » transition is illustrated in Figure 5.

Supplementary Materials: The following supporting information can be downloaded at:
https:/ /www.mdpi.com/article/10.3390 / molecules28052153 /s1, Figure S1: Potential energy curve
of 4MNP-1 by varying the dihedral angle a« = Z(C3C4C9H14), corresponding to a rotation of
the methyl group about the C4-C9 bond; Table S1: Nuclear coordinates of conformer 4MNP-1;
Tables S2-54: Fourier coefficients; Table S5: Frequency list and residuals obtained with the XIAM and
BELGI-Cs-hyperfine programs; Table S6: Rotational constants of 4MNP-1 calculated at different levels
of theory.
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