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Abstract: Myocardial remodelling is a molecular, cellular, and interstitial adaptation of the heart in
response to altered environmental demands. The heart undergoes reversible physiological remod-
elling in response to changes in mechanical loading or irreversible pathological remodelling induced
by neurohumoral factors and chronic stress, leading to heart failure. Adenosine triphosphate (ATP)
is one of the potent mediators in cardiovascular signalling that act on the ligand-gated (P2X) and
G-protein-coupled (P2Y) purinoceptors via the autocrine or paracrine manners. These activations
mediate numerous intracellular communications by modulating the production of other messengers,
including calcium, growth factors, cytokines, and nitric oxide. ATP is known to play a pleiotropic role
in cardiovascular pathophysiology, making it a reliable biomarker for cardiac protection. This review
outlines the sources of ATP released under physiological and pathological stress and its cell-specific
mechanism of action. We further highlight a series of cardiovascular cell-to-cell communications
of extracellular ATP signalling cascades in cardiac remodelling, which can be seen in hypertension,
ischemia/reperfusion injury, fibrosis, hypertrophy, and atrophy. Finally, we summarize current
pharmacological intervention using the ATP network as a target for cardiac protection. A better
understanding of ATP communication in myocardial remodelling could be worthwhile for future
drug development and repurposing and the management of cardiovascular diseases.

Keywords: extracellular ATP; purinergic receptor; purinergic signalling; myocardial remodelling;
mechanism of action; drug repurposing; current pharmacological intervention in cardiovascular
system

1. Introduction

Cardiac plasticity enables the heart to adapt in response to external or internal stimuli
by changing in size. Myocardial remodelling occurs in response to various stimuli that
can induce the heart’s morphological, metabolic, and molecular changes. This includes
the cavity diameter and mass (to grow (hypertrophy) or to shrink (atrophy)), heart wall
thickness, area of scar after injury, fibrosis, and inflammation. Adaptive remodelling, for
instance, hypertrophic growth promoted during exercise, pregnancy, and postnatal growth,
is due to the enlargement of myocardial size in response to an increase in protein synthesis
and sarcomeres to compensate for increased demand [1]. However, these factors do not
lead to heart failure because the increase in myocardial size is associated with increased
contractility rather than a decrease in contractile function and energy metabolic production.
In contrast, pathological hypertrophic remodelling occurs in response to hypertension,
ischemia, myocardial injury, and fibrosis that can lead to cardiac dysfunction [2]. The hall-
mark of pathological myocardial remodelling is neurohormonal activation associated with
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progressive cardiomyocyte death, decreased energy metabolism and contractility, increased
oxidative stress and inflammatory cytokines, fibrosis, hypertrophy, and vasoconstriction [3].

Extracellular nucleotides are messenger molecules that regulate numerous physio-
logical and pathological processes in the cardiovascular system. Adenosine triphosphate
(ATP) is an organic chemical that regulates numerous physiological mechanisms by acting
on purinergic receptors [4,5]. In 1972, purinergic signalling was first proposed, where
ATP plays roles as an extracellular signalling molecule and co-transmitter in sympathetic
nerves [6]. Later in 1978, two distinct families of purinergic receptors, also known as
purinoceptors, were identified based on their extracellular agonists [7]. Thereby, purinergic
signalling was defined as the actions of extracellular purine nucleotides and nucleosides
such as adenosine and ATP that mediate the activation of membrane-bound purinergic
receptors. The roles of purinergic signalling have been widely reported in the regulation of
cardiac function and the development of heart failure (Figure 1).
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Purinergic receptors are ubiquitously expressed in the cardiovascular system. ATP
and other nucleotides, including ADP, UTP, and UDP, are released into the interstitial space
in the event of the molecular adaptation of the heart to environmental changes, such as
during mechanical stretch, chemical stress, and cell death [8]. Interestingly, the magnitude
of ATP released from the stressed cells and its heterogeneities in the cardiovascular system
may evoke a different physiological or pathological response depending on its sources, the
purinergic receptors involved, and the downstream signalling. This review will discuss
the mechanisms mediating ATP released from major cells constituting the cardiovascular
system, followed by the paracrine signalling of ATP to the neighboring cells involved
in pathological-remodelling-linked diseases. Finally, the therapeutic prospect of ATP to
reduce or prevent pathological cardiac remodelling will be highlighted.

2. Extracellular ATP Sources and Signalling

The cardiovascular system is composed of cardiomyocytes and non-myocytes, in-
cluding fibroblasts, vascular smooth muscle cells (VSMCs), endothelial cells (ECs), and
circulating red blood cells (RBCs). Each of these cells communicates uniquely by releasing
an autocrine/paracrine messenger known as ATP in response to different stimuli. Generally,
in the cardiovascular system, ATP is released via the exocytotic mechanism and/or con-
ductive channels. ATP-containing vesicles can be released by exocytosis through vesicular
nucleotide transporter (VNUT) or lysosomal vesicles [9]. The exocytosis of these cytosolic
vesicles is regulated by intracellular calcium (Ca2+) levels [10]. On the other hand, the
conductive release of ATP is through ion channels, including the connexin hemichannels-
formed gap junction, pannexin, volume-regulated anion channels, maxi-anion channels,
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ATP-binding cassette (ABC) transporter, and cystic fibrosis transmembrane conductance
regulator (CFTR) [11]. The mechanism of ATP release from these channels depends on
various effectors, such as the opening of connexin hemichannels, and is regulated by in-
tracellular Ca2+, reactive oxygen species (ROS), and nitric oxide (NO) levels. In contrast,
pannexin can be activated by mechanical stress and P2X7 receptor activation.

Locally released ATP may act directly on the purinergic type 2 (P2) receptors expressed
abundantly in fetal and adult human hearts to influence cardiac contractility [8]. Stimulation
of ATP exerts inotropic and metabotropic effects via the stimulation of the P2X and P2Y
receptors, respectively [12]. The ATP-sensitive P2X receptor family contains seven isoforms
(P2X1-7) known as extracellular ATP-gated cation channels, whose activation regulates
increased intracellular Ca2+ levels and contractility in rat hearts [13]. On the other hand,
the P2Y receptor family contains eight isoforms (P2Y1, 2, 4, 6, 11–14) which are G-protein-
coupled receptors (GPCRs) that form a specific isoform with either Gq, Gs, or Gi [14].
In the context of ATP-activated purinergic receptors on myocytes and non-myocytes in
the cardiovascular system, some of these receptor-coupled G proteins share the same
intracellular signalling cascade that is greatly involved in the physiological and pathological
responses. In this section, we will highlight the source of ATP from myocytes and non-
myocytes and its autocrine-mediated purinergic signalling in the heart.

2.1. Cardiomyocytes

Extracellular ATP act as a co-transmitter in vagal cardiovascular reflexes. Mechanical
stimulation promotes the opening of pannexin and connexin hemichannels to release ATP
from the cardiomyocytes [15,16]. Gap junction channels composed of connexin provide
a means of communication between adjacent cardiomyocytes for contraction coordina-
tion [17]. Among the connexin isoforms, the connexin-43 hemichannel is predominantly
distributed in the heart, being the most prominent in the ventricles [18]. Under phys-
iological conditions, the connexin-43 hemichannel localized in the sarcolemma of car-
diomyocytes and remained closed. The gating of hemichannels is positively regulated by
mitogen-activated protein kinase (MAPK) [19], protein kinase A (PKA) [20], and protein
kinase C (PKC) [21], and protein phosphatase indirectly blunted the opening via dephos-
phorylation of the connexin-43 single channel [22]. Unlike connexin-43, the pannexin-1
channel does not involve gap junction formation but instead forms a protective functional
pannexin-1/P2X7 complex, mediating the release of adenosine and ATP in a brief period of
ischemic/reperfusion (I/R) [23]. Additionally, pannexin 2 is predominantly involved in
ATP release in atrial myocytes in response to macrophage infiltration [24]. Several condi-
tions and mediators promote pannexin-1 channel opening, including mechanical stress [25],
ATP [26], cytoplasmic Ca2+ [27], and extracellular potassium [28]. In comparison, the
channel closing is regulated by the negative feedback of ATP [29] and several channel
blockers, namely carbenoxolone and probenecid [30].

In cardiomyocytes, the selectivity of ATP towards P2X receptors was determined by
the effective concentration (EC50) value, which shows that P2X2, P2X4, P2X5, and P2X6
exert higher ATP selectivity than P2X7, but lower as compared to P2X1 and P2X2 [31,32].
Notably, P2X4 has been identified by several studies to be highly expressed in cardiac ven-
tricular, hence its critical role in contractile performance [32,33]. A study by Musa’s group
described the variation of cardiac P2X receptor distribution in different regions of different
species [34]. The group recognized P2X4 and P2X7 as highly expressed receptors in the
human right atrial and sinoatrial node using quantitative polymerase chain reaction and in
situ hybridization. In contrast, a high abundance of P2X5 receptors was detected in the rat
hearts’ left ventricle, right atrial, and sinoatrial node [34]. The physiological significance of
ATP-mediated P2X receptor activation has been highlighted in an overexpression study of
the P2X4 receptor in human ventricular myocytes. The stimulation of agonists ATP and
2-methylthioadenosine-5′-o-triphosphate (2-MeSATP) on the highly expressed P2X4 recep-
tors augments basal cardiac contractility without provoking a hypertrophic-induced heart
failure [32,35,36]. This beneficial cellular response was later supported by the pharmaco-
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logical treatment of MRS2339, a hydrolysis-resistant adenosine monophosphate derivative
that improves the cardiac output of in vitro and in vivo working heart models [37].

On the other hand, ATP is a natural selective agonist for four subtypes of P2Y recep-
tors, including P2Y1, P2Y2, P2Y4, P2Y6, and P2Y11. These receptors are GPCRs that form
a specific isoform with either Gq, Gs, and G12/13 alpha subunit [38,39]. The coupling of
these receptors with Gq protein initiates the phospholipase C (PLC)/phosphatidylinositol-4,
5-bisphosphate (PIP2)/inositol triphosphate (IP3)-dependent Ca2+ mobilization and the
activation of monomeric G proteins, Ras homolog family member A (RhoA), and Rac in car-
diac muscle [40,41]. Additionally, ATP-induced P2Y11-Gs coupling yielded an increase in
adenylate-cyclase-regulated cAMP production (Table 1). Interestingly, ATP-activated P2X6-
G12/13 coupling in cardiomyocytes is revealed to be turned on right after the development
of myocardial hypertrophy via the Gq-mediated pathway activated by the same receptor
and agonist [42]. The G12/13 coupling mediates excessive production of fibrogenic factors,
including transforming growth factor (TGF)-β, connective tissue growth factor (CTGF), and
periostin in a Rho-dependent manner. This leads to the excessive deposition of extracellular
matrix (ECM) proteins and, consequently, cardiac-fibrosis-induced heart failure.

Table 1. The underlying autocrine and paracrine signalling of extracellular ATP released from
myocytes and non-myocytes in the cardiovascular system.

ATP Sources ATP-Released Channels Autocrine/Paracrine Signalling of Extracellular ATP

Cardiomyocytes

Connexin-43
Pannexin 1
Pannexin 2

Pannexin-1/P2X7 complex

P2X4 –basal cardiac contractility
P2Y/Gq—PLC—↑ Ca2+—contraction

P2Y11/Gs—cAMP—↑ Ca2+—contraction and relaxation

CF Connexin-43
Connexin-45

P2Y2—α-SMA/TGF-β/PAI-1—sufficient scar formation
and inflammatory response

VSCM
Connexin-43
Pannexin-1

ABC transporters
P2X1—basal vascular contractility

EC
Cav-1
VRAC

Connexin hemichannels

P2X4—↑ Ca2+—NO—vasodilation
P2Y/Gq—PLC—↑ Ca2+—NO—vasodilation

RBC

CR-1
CTFR

Pannexin-1
VDAC

P2Y1—↑ osmolyte permeability—absorption of sufficient
nutrient

P2X1 and P2X7—PS exposure—hemolysis

2.2. Cardiac Fibroblasts

Cardiac fibroblasts (CFs) are a predominant non-myocyte cell type in the heart that
orchestrates structural organization and corrects cardiac contraction by maintaining ex-
tracellular matrix (ECM) homeostasis. Interstitial fibrosis occurs at the earlier stage of
cardiac remodelling in response to the changes in microenvironment dynamics by various
stimuli [43]. At this stage, the deposition of ECM proteins, primarily collagens (type I and
III), is reversible and necessary for sufficient scar formation associated with inflammatory
reaction. CFs release several other pro-fibrotic activators to increase ECM synthesis, includ-
ing angiotensin II (AngII), α-smooth muscle actin (α-SMA), cytokine transforming growth
factor (TGF)-β, and plasminogen activator inhibitor (PAI)-1.

An early study by Braun et al. (2010) characterized high activation of purinoceptor sub-
types P2Y2 by ATP and UDP stimulation, increased collagen synthesis, and the expression
of α-SMA, TGF-β, and PAI-1 in CFs [44]. The same group later revealed that connexin-43
and -45 hemichannel opening contributed to the release of ATP from CFs in response to
hypotonic stimulation (Table 1). This substantially activates P2Y2-mediated pro-fibrotic
marker production, including α-SMA, PAI-1, and monocyte chemotactic protein-1 (MCP-1),
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in an extracellular signal-regulated kinase (ERK)-dependent manner [45]. The group then
discovered the counterbalancing effect of ATP release in adult rat CFs. The hydrolysis of
extracellular ATP released endogenously from CFs produces adenosine, which provides an
anti-fibrotic response dependent on adenosine subtype 2B (A2B) receptors and activation of
the cyclic adenosine monophosphate (cAMP)-PKA pathway [46]. Overexpression of A2B
receptors accompanied by an increased level of cAMP is critically involved in the inhibition
of CF proliferation [47,48]. Additionally, another group reported that stimulation of A2B
receptors yielded a significant reduction in endothelin-1 (ET-1)-induced a-SMA expression
dependent on cAMP/Epac/PI3K/Akt signalling pathways in CFs [49]. Disturbance of col-
lagen turnover implicates the balance between synthesis and degradation of ECM proteins,
leading to irreversible replacement fibrosis, as can be seen in extensive ventricular remod-
elling associated with heart failure. The role of ATP in pathological-remodelling-induced
cardiac fibrosis will be discussed later in this review.

2.3. Vascular Smooth Muscle Cells

Vascular smooth muscle cell (VSMC) proliferation is detrimental to vascular remodelling,
growth, and the development of atherosclerotic cardiovascular disease [50]. The extracellular
ATP acts as a potent stimulator for P2 receptors in the vascular smooth muscle cells (VSMCs),
regulating blood vessel contraction and mitogenic effect. Pannexin-1 and connexin-43 are
contributors to ATP release channels on VSMCs. Pannexin-1-released ATP regulates vasocon-
striction intensity, triggered by the binding of phenylephrine on α1-adrenoreceptor [51,52].
ATP and other nucleotides are also released from the necrotic VSMCs due to the loss of mem-
brane integrity [51,53]. In VSMCs, high ATP is released to act as a danger signal that alerts
the circulating neutrophil to promote a wound-healing response. A study by Domenick’s
group suggested that autocrine signalling of ATP contributed by the opening of connexin and
pannexin hemichannels in response to mechanical stress in VSMCs. Treatment of non-selective
hemichannel inhibitor carbenoxolone significantly attenuated the accumulation of ATP and
its hydrolysis by-product inorganic pyrophosphate (PPi) [54]. Additionally, a class of integral
membrane proteins known as ATP-binding cassette (ABC) transporters has been reported to
play a functional role in releasing ATP [55,56]. Interestingly, these transporters are involved in
regulating vascular tone in a cAMP/PKA-dependent vasorelaxation in VSMCs [57]. These
findings provide a potential conduit for extracellular ATP accumulation targeting the VSMC
purinergic receptors.

Uniquely, ATP possesses a dual phenotype-dependent effect on VSMCs [58,59]. ATP
causes VSMCs to shift from a contractile into a proliferative phenotype in a concentration-
dependent manner. A low concentration of ATP stimulates serum response factor (SRF),
which enhances the expression of contractile specific proteins, smooth muscle 22 (SM22),
and α-smooth muscle actin (αSMA). On the contrary, higher extracellular ATP concentra-
tion inhibits SRF activity and the specific contractile proteins, leading to the conversion
of VSMCs into a synthetic phenotype [60]. Moreover, this phenotype shift is accompa-
nied by the downregulation of the P2X1 receptor and the upregulation of mitogenic P2Y1,
P2Y2, and P2Y6 receptors [61–64]. Continual release of ATP in response to high shear
stress rapidly desensitized the P2X1 receptor, blunted its expression, and substantially
promoted vascular wall relaxation prior to vascular remodelling via activation of mitogenic
Gq-protein-coupled P2Y receptors [65,66] (Table 1). Hogarth et al. later proposed the
downstream mechanism where ATP-induced P2Y receptors provoke a transient activation
of the cAMP-PKA pathway, yielding an inhibitory effect on SRF activity [67].

2.4. Vascular Endothelial Cells

The inner cellular lining of arteries, veins, and capillaries comprises a monolayer of
endothelial cells (ECs). The vascular endothelium directly interacts with the circulating
blood and is considered a barrier between the blood and the vessel wall. In such an
arrangement, ECs are exposed to the mechanical force generated by flowing blood (shear
stress), which can exert significant autocrine, paracrine, and endocrine actions influencing
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VSMCs, platelets, peripheral leucocytes, and circulating RBCs [68]. The dynamic role of ECs
in the vascular system is depicted by the involvement in the synthesis of vasodilator factors
(NO and prostacyclin) [69,70], vasoconstricting factors (angiotensin-converting enzyme
(ACE), endothelin (ET), and free radicals) [71], inflammatory mediators (interleukins (ILs)
and major histocompatibility complex (MHC)) [72], and growth factors (insulin-like growth
factor (IGF) and transforming growth factor (TGF)) [73]. In addition to these mediators,
EC-released ATP under shear stress is mediated by the influx of extracellular Ca2+ via P2X4
receptors [74,75].

Purinergic receptors are widely distributed in the vascular system, and endothelial
cells express multiple receptor subtypes, indicating their physiological and pathophys-
iological importance. There are several mechanisms involving ATP release channels in
ECs, including caveolin-1 (Cav-1) [76], volume-regulated anion channels (VRAC) [77], and
connexin hemichannels [78]. Interestingly, shear stress evoked an increase in intracellular
Ca2+ where the release of ATP is localized. Yamamoto’s group revealed that the ATP
release from ECs always preceded the Ca2+ increase [76]. This is supported by the action of
ATP-activated purinergic receptors, which contribute to elevated intercellular Ca2+ levels
via P2X4 and P2Y1, 2, 4, 6-coupled Gq-PLC pathways [74,79,80]. In this cellular context, the
cytosolic pool of Ca2+ under shear stress leads to endothelial nitric oxide synthase (eNOS)-
NO-mediated vasodilation (Table 1). Although NO production depends on Ca2+ level, an
additional mechanism of eNOS phosphorylation by PKA, protein kinase B (PKB), and cyclic
guanosine monophosphate (cGMP)-dependent protein kinase II (cGKII) may compensate
for NO production in the event of intercellular Ca2+ reduction [81,82]. Disruptions of the
regulation of these channels contributed to vasoconstriction.

2.5. Circulating Red Blood Cells

The release of cytosolic ATP from circulating red blood cells (RBCs) is reflected in the
microenvironment, such as under the hypoxic condition [83], mechanical deformation [84],
shear stress [85], and upon immune adherence clearance mediated by ligation of com-
plement receptor 1 (CR1) on RBCs [86]. Throughout the decades, the mechanism of ATP
release in RBCs has been revealed via several channels. A membrane-bound nucleoside
transporter of RBCs is the earliest channel reported to export ATP under hypercapnic
conditions [87]. Subsequent studies by Sprague’s group revealed the involvement of
cystic fibrosis transmembrane conductance regulator (CFTR)-dependent adenylyl cyclase-
cAMP pathway [88,89]. The same group further demonstrated that activation of CFTR
and pannexin-1 hemichannel contributed to ATP release [90,91], which was supported by
other works following RBCs’ deformation [92,93]. Independently, activation of the cAMP-
PKA pathway promotes oligomerization of voltage-dependent anion channel (VDAC)
with the translocase protein TSPO2 and nucleotide transporter that transiently accumulate
extracellular ATP up to 1-2 µM within a few minutes [94].

Like other cells in the cardiovascular system, purinergic receptors, particularly P2
receptors involved in ATP-mediated signalling, are abundantly distributed in the RBCs [95].
Quantitative PCR of human RBCs by Wang et al. revealed the expression level of P2
receptors in ascending order as follows: P2Y1/P2Y4/P2Y6/P2Y11/P2Y12 < P2X1/P2X4,
P2X7/P2Y2 < P2Y13 [96]. From a teleological perspective, the non-physiological release of
ATP may contribute to adaptive or maladaptive responses. For instance, bacterial toxin
mediates autocrine signalling of ATP to act on P2X1 and P2X7, promoting phosphatidylser-
ine (PS) exposure on RBCs that leads to cell shrinkage [97]. Furthermore, activation of the
complement system in the innate immune response exacerbates the ATP-P2X-mediated
hemolysis, for which the downstream mechanism remains to be elucidated [98]. Regardless,
the ramification of ATP roles on P2X activation poses a high risk of blood-related diseases,
including anemia, leukemia, or autoimmunity. On the other hand, the functional role
of ATP on purinergic signalling has been revealed by several studies on P2Y receptors.
Several studies demonstrated the involvement of P2Y1 receptors in malarial parasite devel-
opment. Autocrine activation of P2Y1 by ATP induces an osmolyte permeability pathway
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in human and murine RBCs, providing sufficient nutrients for the erythrocytic cycle of the
parasites [99,100] (Table 1).

Interestingly, higher expression of P2Y13 in human RBCs was revealed to negatively
regulate ATP release from these cells. Wang and group depicted that the metabolism of
ATP to ADP, which act on P2Y13 receptors, impairs the release of ATP via the inhibition
of cAMP [96]. As mentioned earlier, this inhibition may blunt the opening of CFTR and
VDAC, which are cAMP-dependent ATP release channels. Moreover, paracrine signalling
of ATP release from RBCs stimulates the P2 receptor on the vascular endothelium, which
can promote endothelium-dependent and smooth-muscle-dependent vasodilation via the
generation of vasodilators and anti-inflammatory factors such as nitric oxide (NO) and
prostacyclin (PGI2) [101]. Additionally, NO also inhibits hypoxia-induced ATP release from
RBCs [102].

3. ATP in Cardiovascular Remodelling

ATP is part of the damage-associated molecular patterns (DAMPs) metabolites re-
leased during cellular stress and from dead or dying cells. ATP acts as a major signalling
molecule in purinergic signalling, where it can directly activate P2X and P2Y receptors.
Moreover, rapid degradation of extracellular ATP to ADP, AMP, and adenosine stimulates
the activation of various P1 and P2Y receptors, which initiates intracellular signalling
pathways in the pathological remodelling of the heart. Cell-to-cell communication be-
comes a crucial checkpoint of remodelling in the highly complex cardiovascular system.
Cell communication is divided into paracrine/autocrine signalling, direct cell-to-cell in-
teraction, and extracellular matrix interactions. ATP may act as a communication signal
between resident cells in the cardiovascular system, for instance, VSMCs-ECs partners in
hypertension and atherosclerosis, RBC-ECs-VSMCs-cardiomyocytes–cardiac fibroblast in
ischemic/reperfusion, and fibroblast–cardiomyocyte crosstalk in myocardial fibrosis and
cardiac hypertrophy. Numerous pieces of evidence that connect direct and indirect contact
of these cells via ATP signalling will be further discussed in the context of pathological
cardiovascular remodelling.

3.1. Hypertension and Atherosclerosis

Hypertension is a major risk factor for developing congestive heart failure, promot-
ing myocardial inflammation, hypertrophic vascular remodelling, and atherosclerosis. In
the wake of the COVID-19 pandemic, hypertension contributes to the complication and
mortality of this viral infection. The multi-interaction of several systems, including the sym-
pathetic nervous system, the renin–angiotensin–aldosterone system, the endothelium, and
the immune system in hypertension, demonstrated the intricate signalling networks in this
vascular pathology. The development of hypertension begins at the abnormalities of vascu-
lar volume regulation that further enhance the vasoconstriction and subsequently cause
arterial remodelling by decreasing lumen diameter and increasing resistance [103]. Low-
grade chronic inflammation is a vital point in hypertension. Of importance, endothelial
dysfunction and hypertrophic VSMC remodelling critically emanate vascular complications
via impairment of vascular tone regulation, oxidative stress, and inflammation due to the
close proximity of these two vascular residents [104,105].

Accumulating evidence highlighted the importance of P2X7 activation, specifically
stimulation by ATP, as a significant modulator in the sterile inflammatory response of
hypertension. In the event of hypertension, local accumulation of ATP surges from the
vesicle in peripheral sympathetic nerves [106], ECs [76], VSCMs [52], and RBCs [85]. Shen
et al. reported that after the onset of hypertension, extracellular ATP reached up to 3 µM in
mice [107]. Clinical data also supported a substantial increase in plasma ATP in untreated
hypertensive patients compared to treated and normotensive control patients [107,108]. In
other studies, ATP exacerbates myocardial inflammation during hypertension via stimula-
tion of P2X7 receptors in VSCMs and ECs. This activation mediates nucleotide-binding do-
main (NOD)-like protein 3 (NLRP3) inflammasome to release pro-inflammatory cytokines,
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including interleukin-1 beta (IL-1β) and interleukin-18 (IL-18) [109–111]. Furthermore, in
cardiomyocytes, ATP-mediated P2X7 activation contributes to pyroptosis by the action of
caspase-1-mediated pore-forming protein Gasdermin-D cleavage, which also facilitates
the release of IL-1β and ATP from the dying myocytes [112]. Additionally, a long-term
increase in ATP acts as DAMP metabolites to recruit immune cells in autoimmune features.
This action directly evokes antigen-presenting cells (APCs)-mediated overactivity of T cells,
elevating the blood pressure, which is the earliest mark of hypertension [108]. It is worth
noting that P2X7 exerts a regulatory effect on blood pressure, which was shown with the
improvement of systolic and diastolic pressure of hypertensive P2X7 receptor knockout
mice. Therefore, these findings indicate that P2X7 is a promising target for the treatment
of hypertension.

In a spontaneously hypertensive rat model, elevated sympathetic-driven vasoconstric-
tion is dependent on ATP activation of purinergic receptors [113]. This is supported by the
clinical data showing the association of hypertension with enhanced sympathetic nerve
activation, promoting vasoconstriction due to hypertrophic VSMC remodelling [114,115].
In regulating vascular remodelling during hypertension, ATP signalling on the P2 receptor
subtypes is reported to be tissue/cell- and period-dependent. For instance, the immedi-
ate reaction of ATP would act as a neurotransmitter to activate P2X4 and P2YRs (P2Y2
receptor as a major subtype other than P2Y1) on ECs. This contributes to the production
of vasodilators such as NO and prostacyclin, leading to vasodilation and a decrease in
blood pressure [79,80,116]. Notably, previous studies demonstrated that knockout of the
P2X4 receptor induces hypertension in mice by attenuating ATP-induced Ca2+ influx, im-
pairing endothelial production of NO and vasodilation [75,117]. Although ATP action
on endothelial P2Y2 receptors is physiologically important in promoting vasodilation
and relaxation [118,119], a study by Chen’s group emphasizes the pathophysiological
importance of long-term activation of this receptor in atherosclerosis [116]. EC-specific
deletion of P2Y2 reduces p38- and Rho kinase-dependent expression of vascular cell ad-
hesion molecule-1 (VCAM-1) and increases VSCM migration through the inhibition of
eNOS production [116,120]. These findings depicted the pro-inflammatory role of ATP-
induced endothelial P2Y2 receptor in plaque formation and macrophage infiltration in the
manifestation of atherosclerosis.

On the other hand, long-term accumulation of ATP promotes P2X1, P2Y2, and P2Y6
activation on VSMCs, which mediates vasoconstriction via ROS or thromboxane A2 (TxA2)
production [121,122]. Stimulation of P2X1 mediates Ca2+-influx-dependent vasoconstric-
tion [123], while P2Y2 and P2Y6 promote vasoconstriction via the release of intracellular
Ca2+ storage [124]. The tightly regulated minute-to-minute vasoconstriction event is po-
tentiated during thrombocyte aggregation at sites of severe atherosclerosis in response
to ATP action on P2X receptors located on VSCMs. This activation is unchallenged by
P2-mediated vasodilation on ECs due to endothelial damage [125]. A subsequent study
by Harhun’s group identified that sustained ATP stimulation evokes vasoconstriction by
rapidly desensitizing homomeric P2X1 receptors and heteromeric P2X1/P2X4 receptors in
rat VSMCs [126]. Additionally, ATP acts as a growth factor on P2Y2 and P2Y6 receptors
mediating VSMC proliferation and growth, a key event in the development of hypertrophic
vascular remodelling, hypertension, and atherosclerosis [65,127]. Moreover, increased
P2Y6 abundance forms a functional coupling with angiotensin AT1 receptors contributing
to age-dependent hypertension in adult VSMC mice, as reported by Nishimura and col-
leagues [128]. The group suggested the underlying mechanism via G-protein-dependent
ERK and Akt activation to promote hypertrophic growth. Similar to ECs, ATP action on
VSMC P2Y2 receptors also facilitates early migration of VSMCs to the intima by releasing
metalloproteinase-2, which induces matrix degradation [129]. Furthermore, activation
of VSMC P2Y2 receptors promotes its proliferation via ERK1/2- and PI3K-dependent
mechanisms during hyperplasia associated with hypertension [130].

Apart from potently modulating P2 receptors on the cardiovascular resident cells dur-
ing hypertension, the compensatory action of ATP stimulating other purinergic receptors is
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also reported in the role of cardiovascular protection. For instance, ECs released massive
amounts of ATP in response to high blood pressure, activating P2X4 on neighbouring ECs to
rapidly generate NO, a potent vasodilator [14]. Furthermore, several studies have reported
the activation of adenosine receptors, which modulates the adaptive response to decrease
blood pressure and hypertension. Activating the A2A receptor mediates vasodilation in
ECs and VSMCs by increasing production of NO and cAMP, respectively, increasing blood
flow [131,132] (Table 2). In this cellular context, increasing the rate of ATP metabolism to
adenosine may seem to be a favorable therapeutic strategy. However, further understand-
ing of the coordination and communication between RBCs, ECs, and VSCMs via purinergic
signalling of ATP is critical in understanding the complex mechanism during hypertension.

Table 2. Involvement of ATP-purinergic signalling in protective and pathological response of cardio-
vascular remodelling.

Pathological Condition Protective Signalling Pathological Signalling

Hypertension and Atherosclerosis
ATP-P2X4-NO-Vasodilation
ATP→Adenosine-A2A-NO-

Vasodilation

ATP-P2X7-NLRP3-Pro-inflammatory cytokines
ATP-P2X1-Vasocontriction

ATP-P2X1/P2X4-Vasocontriction
ATP-P2Y2-VSMC

migration/proliferation/hypertrophic
vascular remodelling

Ischemic/
Reperfusion Injury

ATP/P2Y2-AKT, ERK-Cardiomyocyte
survival

ATP-Pannexin1/P2X7-
Cardioprotectant (SP1, adenosine)

ATP→Adenosine-A2B-HIF1α-
protection against

hypoxia

ATP-P2X7-NLRP3-Pro-inflammatory
cytokines/fibroblast differentiation
ATP-P2Y6-Vascular inflammation

Angiogenesis

ATP/P2Y2-AKT, ERK,
mTOR-VEGF-Angiogenesis

ATP/VEGF165-Angiogenesis
ATP/P2Y2-miR-22-ICAM-1

downregulation-tumourgenesis
suppression

ATP/P2Y2-CTGF, VEGF, VCAM-1-TNBC
progression and metastasis

ATP/P2X7-VEGF-Angiogenesis

Myocardial fibrosis ATP/P2Y1-reduce ERK-Impaired
production of pro-fibrotic factors

ATP-P2X7-NLRP3-Pro-inflammatory
cytokines/fibroblast differentiation

ATP-P2Y2-TRPC3-replacement fibrosis
ATP-P2Y2-MAPK-pro-fibrotic factors

Myocardial hypertrophy
and atrophy

ATP/P2Y2-TRPC5/eNOS-inhibit
cardiomyocyte hypertrophy

ATP-P2X4-eNOS-inhibit
cardiomyocyte hypertrophy

ATP-P2Y2-TRPC3/Nox2-cardiomyocyte atrophy

3.2. Ischemic Reperfusion (I/R) Injury

Acute myocardial infarction occurs in the event of coronary artery obstruction. Reduc-
tion in blood flow or ischemia blunted the nutrient and oxygen transportation to the heart,
leading to hypoxic conditions and, consequently, cardiomyocyte death. Re-establishing
the blood flow may be preferable to avoid further cellular damage. Paradoxically, this
method resulted in massive drawback, as a sudden increase in oxygen supply mediates
the release of reactive oxygen species (ROS), ultimately leading to cardiac damage known
as reperfusion. Extracellular ATP is detrimental to promoting tissue inflammation dur-
ing I/R. Under ischemic and hypoxic conditions, ATP is released from swelling cells via
cardiac maxi-anion channels [133], apoptotic cardiomyocytes, ECs, and circulating RBCs
via pannexin-1 hemichannels [134–136], and activated neutrophil and EC via connexin-43
hemichannels [137]. In addition, ischemia induces the opening of pannexin-1 and the
release of ATP from cardiac fibroblasts, causing them to transform into myofibroblasts [138].
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Accumulating extracellular ATP pathologically activates P2X7-dependent NLRP3 inflam-
masome in macrophage and fibroblast [138,139] and P2Y6-induced vascular inflammation
in EC [140,141]. Although it was suggested that blocking ATP release might be a therapeu-
tic strategy to prevent tissue injury, several studies have reported that the protective role of
ATP may compensate for these deleterious effects during I/R.

In cardiac muscle, P2Y2 appears to be highly expressed in the left ventricular of conges-
tive heart failure [142]. Remarkably, activation of P2Y2 receptors by both ATP and uridine
triphosphate (UTP) exerts a protective role during I/R [143,144]. Like ATP, UTP is released
during cardiac ischemia, and 48 h pre-administration of UTP is reported to reduce infract
size and improve mice heart function mediated by P2Y2 and P2Y4 receptor activation [145].
Although the downstream mechanism of ATP/UTP-mediated P2Y2 activation in protection
against I/R is not fully elucidated, it most likely involves the transactivation of several
survival kinases, including PI3K, Akt, and ERK [146]. These kinases critically participate
in the blunted formation of mitochondrial permeability transition pore that causes ATP
depletion and formation of ROS, promoting organelle rupture and further myocyte necrosis.
Additionally, ATP exerts a positive inotropic effect through the formation of a non-selective
pannexin-1/P2X7 channel complex which contributed majorly to the release of endogenous
cardioprotectants such as sphingosine 1-phosphate (S1P) and adenosine [23,147]. Moreover,
a recent study by Matsuura’s group proposed that the autocrine release of ATP via the
maxi-anion channel contributes to the recovery of left ventricular function [148].

Interestingly, the rapid breakdown of accumulated extracellular ATP to adenosine
enhances protection against myocardial ischemia. It has been suggested that the downreg-
ulation of tissue-specific and systemic inflammatory response is via a negative feedback
mechanism of A2 adenosine receptors [149]. In a murine model of ischemic pre- and
post-conditioning, the A2B adenosine receptor in cardiomyocytes and ECs is activated
by adenosine. This subsequently prompted the attenuation of infarct size and vascular
leakage [150–152] (Table 2). A robust and selective activity of ectonucleoside triphosphate
diphosphohydrolases (E-NTPDases), also known as CD39, during hypoxia escalates the
conversion of ATP to AMP [153]. Later, ecto-5′-nucleotidase CD73 catalyzed the conversion
of AMP to adenosine, which was also transcriptionally induced during myocardial is-
chemia by the regulation of hypoxia-inducible factor 1α (HIF1α) [152]. Stable expression of
HIF1α protects against I/R by mediating the adaptive response of the cells to the hypoxic
condition. Remarkably, the actions of ATP and adenosine on P2Y2 and A2B receptors
were also found in ECs, which significantly protect against hypoxia-induced endothelial
apoptosis and dysfunction [154].

Although ATP may seem to protect against I/R injury, accumulation of nucleotides
(especially ATP) in prolonged hypoxia may reach a toxic level and consequently promote
apoptosis in cardiomyocytes and excessive fibrotic response [155]. In time, this will likely
lead to life-threatening changes in cardiac muscle wall structure and contractility. Further
in vivo studies are needed to determine how the positive and negative effects of P2 receptor
stimulation by ATP and adenosine balance out during myocardial I/R injury.

3.3. Angiogenesis

Angiogenesis is one of the therapeutic strategies to alleviate cardiac damage following
ischemic events. This process is vital to help in wound healing and delivering blood, oxygen,
and essential nutrients to the injury site following a series of the ischemic event [156].
The communication between cardiomyocytes and ECs residing in the microvasculature is
critical to fulfill the oxygen and metabolic demand from both physiological and pathological
stimuli. Therefore, the coordination of tissue growth and angiogenesis in the heart is vital to
prevent the progression of heart failure. Coronary angiogenesis is an important determinant
for the transition from adaptive to pathological cardiac hypertrophy [157]. In the acute
phase of adaptive cardiac growth, Akt modulates angiogenesis via enhanced expression of
potent myocardial angiogenic factors, including vascular endothelial growth factor (VEGF)
and angiopoietin-2, in an mTOR-dependent manner. Later, the inhibition of angiogenesis by
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prolonged activation of Akt downregulates the mTOR-dependent VEGF and angiopoietin-2
expression, leading to contractile dysfunction and pathological hypertrophy [158]. On the
other hand, in ECs, short-term activation of Akt-coordinated VEGF expression attenuates
the damage by ischemia. In contrast, prolonged activation of Akt promotes unorganized
blood vessel formation, as can be seen in tumor vasculature [159]. Therefore, induction of
angiogenesis via VEGF-VEGF receptor 2 signalling has been recognized as an attractive
strategy in myocardial infarction, whereby the salvation of dying cardiomyocytes takes
place. A dynamic communication between cardiomyocytes and ECs occurs via connexin
43 [160]. This suggests that a VEGF-dependent mechanism induces the formation of
vasculature and stimulation of VCAM-1, contributing to endothelial survival, proliferation,
and migration [161].

A study by Seye’s group reported that P2Y2 receptor promotes VCAM-1 expression
via direct interaction with the VEGF receptor, which mediates activation of the Rho ex-
change factor in human coronary artery ECs [162]. This early finding indicates a direct
link between purinergic and angiogenesis signalling. Dynamic interaction between ATP
and VEGF was later revealed to contribute to the stimulation of an angiogenic response
in a temporal- and environment-dependent manner [163]. Furthermore, during chronic
and transient ischemia, elevated VEGF expression potentiates the VEGF-mediated intra-
cellular Ca2+ increase via TRPC3 and TRPC6 channels on ECs [164,165]. Evidently, the
pro-angiogenic role of extracellular ATP is revealed to act synergistically with VEGF via
P2Y2 receptors with a critical downstream activation of ERK1/2, PI3K/Akt, and mTOR
signalling pathways in the hypoxic microenvironment of ECs [166]. In line with this find-
ing, a recent study by Muhleder’s group revealed the shear-stress-induced ATP release
from ECs, which in turn act on P2Y2 receptor in an autocrine manner, leading to not only
VEGF-induced angiogenesis but also NO-induced vasodilation [167]. Interestingly, the
studies that were conducted on human umbilical vein ECs and induced pluripotent stem
cell-derived ECs showed a similar finding on the functional role of P2Y2 activation in
angiogenesis. Additionally, a finding by Gast et al. [168] shows that extracellular ATP
forms a functional complex with VEGF isoform 165, contributing to the proliferation of
ECs. This finding further emphasizes the significant role of ATP in angiogenesis, which can
act independently from purinergic signalling.

Although promoting angiogenesis is favorable in preserving myocardial contractile
function and improving recovery during the post-ischemic event, a compelling study has
demonstrated its detrimental role in tumor progression. The pro-metastasis role of extracel-
lular ATP in angiogenesis has been highlighted in triple-negative breast cancer (TNBC).
The ATP-P2Y2 signalling axis promotes angiogenesis and TNBC cell adhesion to ECs via
the co-activation of CTGF, VEGF, and VCAM-1, thereby facilitating TNBC progression and
metastasis [169]. It was suggested that elevated extracellular ATP activates P2Y receptors
above the threshold, contributing to the VEGF-VEGF receptor 2 angiogenic signalling
axis, promoting pathological angiogenesis in tumor progression [170]. Furthermore, ATP
release from ECs may activate the P2X7 receptor on circulating monocytes that trigger
the production of VEGF-induced tumor angiogenesis [171]. Contrary to these findings,
a study by Gidlof’s group [172] revealed an opposite role of the ATP-P2Y2 axis in ECs,
which activates the microRNA-22 (miR-22) promoter, leading to the downregulation of
ICAM-1, a major endothelial adhesion molecule responsible for vascular inflammation
(Table 2). Recent findings later demonstrated the role of miR-22 as a potent hepatic tumor
suppressor [173], suggesting the ATP-P2Y2-miR-22 signalling cascade might be beneficial
in combating tumorigenesis. Given the importance of angiogenesis, therapeutic targeting of
the purinergic signalling in a patient with tumor progression and a heart condition will be
challenging. Therefore, targeting the cell-specific biomarker that produces pro-angiogenic
factors will be necessary for designing suitable microcirculation therapies.
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3.4. Myocardial Fibrosis

Due to the negligible regenerative capacity of the adult cardiomyocytes, reparative
fibrosis takes place to preserve the structural integrity of the infracted ventricle in the early
event of cardiac injury. Cardiomyocytes respond to the increase mechanical load through a
process known as mechanotransduction, and its downstream effect functions as a compen-
satory adaptive response by initiating the reactive interstitial fibrosis to preserve the cardiac
structure. However, fibrosis becomes a pathogenic response in an extensive myocardial
remodelling that disrupts cardiac morphology, ECM deposition, and impaired systolic and
diastolic function [174]. In the absence of infarctions, prolonged and abnormal loading
conditions may act as pathophysiological stimuli that change cardiac myocyte growth
regulation via hypertrophic or atrophic response. In the event of cardiac injury, activated
fibroblast transdifferentiates into myofibroblasts, and the process known as replacement fi-
brosis occurs to make up for the death of cardiomyocytes. As the cardiac disease progresses,
the myofibroblast population predominantly contributes to the resident cardiomyocytes’
structural, biochemical, mechanical, and electrical properties. Recent findings revealed that
the myofibroblast–myocyte coupling compromised mechanical activity of cardiomyocytes
by reducing their contractility due to reducing cell length shortening [175,176]. These
findings revealed the underlying consequences of how the increased myofibroblast/fibrosis
can cause dysfunctional heart contractility in myocardial infarction.

At the injury site, resident myofibroblasts produce excessive ECM proteins, collagen,
and pro-inflammatory cytokines [177]. Additionally, myocytes and non-myocyte cells
release nucleotides and other pro-inflammatory factors that trigger the inflammatory
responses. Since fibroblasts possess an ability to sense the danger signals released in the
extracellular environment, the communication signalling of fibroblasts with myocytes
and non-myocyte cells is vital to begin the fibrotic process at the site of an injury. For
instance, following myocardial infarction, robust ATP released via pannexin-1 channels
from cardiomyocytes, RBCs, and ECs acts as a paracrine signal to initiate inflammation-
mediated fibroblast activation [90,136]. Dolmatova’s work suggested that ATP mediates
fibroblast–myofibroblast transformation via upregulation of pro-fibrotic MAPK and p53
pathways [138]. High ATP release also contributes to IL-1β accumulation, a potent activator
of p38 MAPK/Akt-regulated fibroblast proliferation and migration [138]. Noteworthy
is the fact that autocrine signalling of ATP release from connexin-43 hemichannels of
the resident fibroblasts also significantly contributed to the pro-fibrotic response via the
activation of P2Y2-ERK signalling axis-mediated α-SMA and collagen accumulation [45].
Consequently, the activation of these pathways leads to increases in α-SMA, collagen type
III, and TGFβ, aggravating the fibrotic response [44].

Apart from the pro-fibrotic activation, the ATP-P2Y2 axis has been reported by several
studies to modulate Ca2+-induced ROS production, which causes replacement fibrosis
upon cardiomyocyte death. Diacylglycerol (DAG) is the other second messenger that PLC
produces in ATP-P2Y2-Gq signalling [178]. DAG directly activates TRPC3-mediated Ca2+

influx and functions as a positive regulator of reactive oxygen species (ROS), leading to
mechanical-stress-induced maladaptive fibrosis [179–181]. TRPC3 predominantly influ-
ences pressure overload cardiac remodelling and cardiac fibrosis instead of cardiac hyper-
trophy by activating Nox2-derived ROS signalling in cardiomyocytes and fibroblasts [180].
TRPC3 interacts with Nox2, a membrane-bound subunit activated by cytoplasmic subunits
p47phox, p40phox, p67phox, and small GTPase Rac1 and Rac2 [182]. Nox2 is reported to
participate in cardiac remodelling after myocardial infarction and age-associated cardiac
remodelling [183,184]. A negative regulator of ROS (NRROS) localized in the endoplasmic
reticulum competes with p22phox to bind to the gp91phox subunit and facilitates the degra-
dation of Nox2 through endoplasmic-reticulum-associated degradation [185]. However,
the direct interaction of TRPC3 with p22phox stabilized Nox2 and protected the enzyme
from proteasome-dependent degradation. Mechanical stretch upregulates TRPC3, which
activates PKCβ to recruit organizer subunit p47phox for Nox2-dependent ROS produc-
tion amplification, leading to the onset of left ventricular dysfunction [180]. Furthermore,
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in a different pathological setting, the interaction of the TRPC3-Nox2 complex is associ-
ated with the cardiotoxicity effect of doxorubicin, which forces the heart to shrink due
to myocardial apoptosis and interstitial fibrosis at a later stage of left ventricular dilated
cardiomyopathy [186].

Another purinergic receptor that is highly expressed in the activated cardiac fibroblast
is P2X7. The inotropic action of ATP on P2X7 receptors contributes to the increase in
cytosolic Ca2+ directly via P2X7-mediated Ca2+ influx and indirectly via Ca2+-activated
Ca2+ channels through store-operated ion and TRP channels [187]. Interestingly, the Ca2+

signalling mechanism is a prerequisite in the fibroblast-to-myofibroblast differentiation
via the TRPC6-Ca2+-calcineurin-NFAT signalling cascade [188,189]. Moreover, TRPC3-
mediated Ca2+ signalling via activation of the ERK 1/2 signalling cascade also contributed
to the proliferation and differentiation of fibroblast [190]. In addition to mediating fibrob-
last differentiation, P2X7 also aggravates the inflammatory response in the pathological
remodelling of cardiac fibrosis. ATP-stimulated P2X7 receptors in cardiac fibroblast induce
cellular activation of the NLRP3 inflammasome, increasing IL-1β production [138]. Evi-
dently, pharmacological inhibition and silencing of P2X7 significantly suppressed abnormal
cardiac fibroblast activation in mouse models of pressure-overload-induced myocardial
remodelling [191].

On the other hand, activation of the P2Y1 receptor is reported to show a protective role
in the development of myocardial fibrosis. A recent finding by Tian et al. demonstrated the
downregulation of P2Y1 expression in TAC-induced cardiac hypertrophy and fibrosis [192].
Consistently, P2Y1 expression also decreased in TGFβ-activated cardiac fibroblast, and
silencing the P2Y1 gene expression further escalated the activation of myofibroblast and
the process of fibrosis [192] (Table 2). An early study by Franke’s group supported this
finding, where the ATP-P2Y1 axis protects against oxidative-stress-induced cell death by
modulating the pro-fibrotic ERK1/2 phosphorylation to the basal level [193]. Collectively,
suppressing the over-activation of MAPK signalling pathways (ERK and p38) potentiates
the impaired production of α-SMA, CTGF, and ECM depositions.

3.5. Hypertrophic and Atrophic Remodelling

A variety of stimuli and environmental stressors instigate cardiac remodelling by
either inducing the heart to grow (hypertrophy) or shrink (atrophy). Physiological cardiac
growth, as seen in endurance and resistance training, increases terminally differentiated
cardiomyocyte mass without causing any increase in cell number [194]. On the other
hand, cardiac atrophy is usually a complication of other events such as prolonged bed rest,
weightlessness during space travel, and pharmacological or surgical intervention to stimu-
late ventricular unloading, such as the use of a left ventricular assist device (LVAD) [195].
Cancer-induced cardiac atrophy is a ramification that can result from cancer itself and
various cancer chemotherapies. Rodent models of cancer-induced cardiac atrophy showed
characteristics including a high rate of protein degradation that, in turn, causes a decrease
in cardiomyocyte size, which is responsible for a total reduction in myocardial mass [196].
Although different adaptation responses trigger cardiac hypertrophic and atrophic remod-
elling, both share many common cellular and molecular signalling profiles.

External factors such as insulin and insulin-like growth factor (IGF1) activate the
PI3K/Akt pathway, which is the critical center in cardiac molecular adaptations to ex-
ercise. PI3K was identified as a critical mediator in exercise-induced hypertrophy that
exhibits a cardioprotective role to attenuate pressure-overload-induced pathological hyper-
trophy [197]. On the other hand, the development of myocardial hypertrophy comprises
complex cellular and molecular events within cardiomyocytes and non-myocytes, includ-
ing vascular ECs, VSMCs, fibroblasts, and immune cells that release neurohumoral factors
such as ET-1, TGF-β, AngII, cytokines, and nucleotides. These factors act as key pathogenic
determinants of myocardial hypertrophy via the stimulation of G-protein-coupled recep-
tors, essentially the Gq family in a PLC/Ca2+-modulated hypertrophic gene expression in
cardiomyocytes [198,199].
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Based on previous studies, ATP-induced high cytosolic Ca2+ binds to calmodulin and
further activates calcineurin, leading to increased activity of nuclear factor of activated T
(NFAT) through dephosphorylation [200–202]. Although ATP action on purinergic recep-
tors induces classic hypertrophic signalling pathways, such as an increase in intracellular
Ca2+ and MAPK via Gq-coupling-activated PLC signalling pathway in cardiac cells, ATP
failed to promote cardiomyocyte hypertrophy [201,202]. The underlying mechanism was
later revealed by Sunggip et al., where ATP induces a sustained increase in intracellular Ca2+

level but not a transient increase, as can be seen with the treatment of hypertrophic agents
such as AngII and ET-1, hence the failure to produce a hypertrophic response. The group
also revealed that ATP negatively regulates hypertrophic response in cardiomyocytes
by the functional coupling of transient receptor potential canonical 5 channel (TRPC5)
and endothelial nitric oxide synthase (eNOS) [200]. TRPC5-eNOS coupling blunted the
TRPC3/TRPC6-mediated Ca2+ influx via the NO-cGMP-PKG axis. This contributes to
sustaining the increase in intracellular Ca2+, which is not sufficient to activate the nuclear
factor of activated T cell (NFAT)-dependent hypertrophic response.

Interestingly, P2X4, another ATP-responsive receptor in cardiomyocytes, is found to be
beneficial in increasing the cardiac contractile function via the interaction with eNOS in mouse
models of pressure overload heart failure [203]. Potentially, this interaction may contribute to
the inhibition of TRPC3/TRPC6 channels. Additionally, previous studies have consistently
shown the essential role of GPCR-stimulated Ca2+ signalling through DAG-activated TRPC3
and TRPC6 in myocardial hypertrophy and interstitial fibrosis [180,181,204]. These findings
demonstrated the potential counter-regulatory effect of ATP inhibiting the progression of
cardiac hypertrophy.

A finding from our laboratory later revealed that the activation of the P2Y2 recep-
tor by ATP exhibits an atrophic response in neonatal rat cardiomyocytes, indicated by
the upregulation of muscle atrophy F box (MAFbx or atrogin-1) protein [205]. We also
reported that a high concentration of ATP was released in response to 6 h of exposure
to pathophysiological stresses involving hypoxia, glucose, and amino acid starvation, in-
ducing cardiomyocyte atrophy via TRPC3 and Nox2 complex formation [205] (Table 2).
Fasting- and starvation-induced nutrient deprivation have been linked to activating the
ubiquitin-proteasome pathway (UPP) and other atrophic programs such as autophagy
and apoptosis [206]. MAFbx was identified to play an essential role in mediating atrophy
and suppressing hypertrophy in cardiac muscle. The negative regulation of MAFbx on
the hypertrophic response is via the inhibition of MAPKs (ERK1/2, JNK1/2, and p38)
and NF-κB signalling pathways [207]. Collectively, we postulate that high ATP produc-
tion/treatment may initiate the atrophic response as an initial compensatory mechanism,
thereby counteracting the hypertrophic signalling in cardiomyocytes. However, prolonged
accumulation of ATP in the extracellular matrix may potentiate the protein turnover in
favor of the degradation pathway, leading to cardiomyocyte death, increased myocardial
interstitial fibrosis, and heart failure.

4. Therapeutic Insights of ATP Signalling in Cardiac Remodelling

The pleiotropic role of ATP modulating protection and harm mediated by P2 receptors
in several cardiovascular diseases undeniably adds to the purinergic signalling complexity.
Early in the 1940s, angina-pectoris-associated coronary disease was treated with ATP injec-
tions, and additionally, ATP was also used to treat patients with coronary insufficiency [14].
Treatment with a low concentration of ATP (30 µM) has been proven to inhibit ischemic
pre-conditioning [147]. These findings further emphasize the therapeutic potential of this
nucleotide. On the contrary, several findings also highlighted the contribution of extracellu-
lar ATP released by stressed or dying cardiomyocytes and other resident non-myocytes in
the pathological progression of cardiac diseases. Due to the complex cell-to-cell commu-
nication in cardiovascular signalling, targeting one specific modulator may nullify other
downstream pathways that might be critical for the protective mechanism. For instance,
blocking ATP action in an excessive inflammatory response associated with myocardial
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ischemia might blunt the protective roles of ATP in modulating downstream survival path-
ways and adenosine-modulated anti-inflammatory effects. Therefore, attentive strategies
are needed to prevent or minimize the antagonizing effect of the potential therapeutic
target. Identification of ATP release sources, target receptors, and downstream signalling
cascade in different pathological settings may help to determine the target.

4.1. Targeting ATP Release Channels

Circulating blood contributes to the increase in extracellular ATP and adenosine, which
are predominantly released by RBCs in response to ischemia, tissue damage, and inflam-
mation. Ticagrelor (AZD6140), a potent P2Y12 inhibitor, is reported to enhance the release
of ATP from RBCs via anion channels, which rapidly degraded to adenosine [208]. Further-
more, ticagrelor prevents adenosine re-uptake by inhibiting the equilibrated nucleoside
transporter 1 (ENT1), which contributes to increasing circulating adenosine [209]. These
combined effects of ticagrelor collectively increase extracellular adenosine’s inhibitory
effects on platelet aggregation via suppression of P2Y12-mediated inhibition of adenylyl
cyclase [210] and improve local blood flow in the coronary artery [209]. In acute coronary
syndrome (ACS) and ischemic-induced myocardial infarction, which is often associated
with platelet aggregation and blood clots, dual anti-platelet therapy (DAPT) consisting of
aspirin and P2Y12 receptor antagonist (clopidogrel, prasugrel, ticagrelor) is often prescribed
to the patient [211]. Among the P2Y12 antagonists, ticagrelor has superior clinical benefits
in potency and less inter-individual variability. A study on the effect of P2Y12 antagonists
on VSMCs revealed that oral ticagrelor actively prevented ADP-induced VSMC vasocon-
striction compared with clopidogrel and prasugrel treatments [212]. Administration of
low-dose aspirin exerts a cardioprotective property by inhibiting platelet cyclooxygenase-
1 (COX-1) isoform, subsequently reducing the TxA2-mediated platelet aggregation and
vasoconstriction [213]. On the other hand, high-dose aspirin inhibits platelet COX-1 and en-
dothelial COX-2, which are responsible for producing potent vasodilator prostacyclin [214].
Ticagrelor supposedly inhibits the ADP-P2Y12 signalling axis, potentiating prostacyclin-
inhibited platelet aggregation [215] (Figure 2). However, in DAPT, a high dose of aspirin
reduces the clinical benefits of ticagrelor not only in suppressing platelet aggregation but
also attenuating its anti-contractile effect on ADP-induced VCSM contraction [216]. Col-
lective inhibition of prostacyclin with a higher aspirin dose may lead to increased blood
pressure and the risk of thrombosis and myocardial infarction.

The hemichannel is the proposed molecular entity responsible for mediating ATP
release in both physiological and pathological settings. A report by Kunugi et al. discovered
the existence of a negative feedback mechanism of ATP release via maxi-anion channel
which strictly regulated ATP-induced ATP release via hemichannels during ischemia [217].
The initial increase in ATP release during the onset of the in vitro ischemic model is via
maxi-anion channels. ATP later acted on the P2Y1 receptor to initiate the PLC/IP3/Ca2+-
dependent NO production. Although NO-mediated connexin channel regulation remains
poorly understood, recent studies postulate the possible mechanism involved in this
negative feedback. The NO-guanylyl cyclase a1b1 heterodimer (GC1)-cGMP-PKG-PKC
signalling cascades potentially delayed hemichannel opening by connexin-43 Ser368 phos-
phorylation in cardiomyocytes, thereby possibly contributing to reducing the massive
release of ATP during ischemic pre-conditioning [218–220]. Gap19, a selective connexin-43
hemichannel blocker with no effect on pannexin-1 channels, has been an attractive potential
treatment for hypoxic and inflammatory diseases. Recent studies have demonstrated that
the protective role of Gap19 counteracts the connexin-43 hemichannel opening by limiting
cardiac and cerebral injuries post-I/R [221,222] (Figure 2).
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Additionally, opening pannexin-1 in cardiac myocytes contributes to the accumula-
tion of ATP, which is responsible for the initiation of fibrosis in the peri-infract region
of the heart [138]. However, it is important to acknowledge the ATP-induced opening
and formation of pannexin-1-P2X7 complex channels also involved in releasing important
GPCR- targeted cardioprotectants, such as adenosine and S1P, in ischemic pre- and post-
conditioning [147]. Conflicting with this finding, recent work by Yang’s group revealed
the involvement of the pannexin-1-ATP-P2Y7 axis in apelin-13-induced cardiomyocyte
hypertrophy [223]. The nature of extracellular ATP should be considered from both cellular
contexts. In Vessey’s work [147], exogenous ATP (obtained from pharmacological treatment
of ATP) induced pannexin1 and P2X7 channel interaction, which required the release of en-
dogenous cardioprotectants. In Yang’s work [197], endogenous ATP released via pannexin-1
caused the opening of P2X7 channels, triggering autophagy and apelin-13-induced car-
diomyocyte hypertrophy. Potentially, brief administration of a low concentration of ATP
before or after index ischemia could impair the development of cardiomyocyte hypertrophy,
which is causally related to myocardial infarction following I/R injury (Figure 2). However,
simultaneously targeting the opening and blocking of cardiomyocyte-channel-derived ATP
release during pre- and post-ischemia will be challenging therapeutic strategies.

4.2. Targeting ATP-P2X Signalling Axis

Inhibition of P2X7 receptors on VSMCs, ECs, cardiomyocytes, and cardiac fibroblast
has been deemed beneficial in attenuating hypertension, excessive inflammatory response,
and developing myocardial fibrosis [108,138,187,224]. Potential P2X7 receptor inhibitors
developed by AstraZeneca (AZD9056) and Pfizer (CE-224535) have been tested in a clinical
trial for rheumatoid arthritis, which potently inhibits ATP-P2X7-induced IL-1β and IL-18
releases in the patient [225,226]. However, both treatments failed to improve symptoms
and lower the inflammatory markers in the patients. These clinical findings indicate
that targeting the P2X7 receptor alone is inadequate to suppress the deleterious effect
of pro-inflammatory cytokines that might be released by other signalling pathways in
rheumatoid arthritis. However, targeting P2X7 receptors in cardiovascular diseases may
seem promising, because collective activation of P2X7 in myocytes and non-myocytes
contributes to an unwarranted inflammatory response that can lead to myocardial infarction.
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Inhibition of P2X7 receptors in these cells might have a more significant impact on reducing
the inflammatory markers.

In recent years, several animal studies have shown the promising outcome of the
P2X7 receptor antagonists. Hansen’s group recently revealed the therapeutic potential of
highly specific P2X7 allosteric antagonist PKT100 modulating pulmonary hypertension
and right ventricle hypertrophy via suppression of maladaptive ATP/P2X7 axis-derived
inflammasome and IL-1β production [227]. Similarly, in cardiac fibroblast, administration
of Brilliant Blue G (BBG), another P2X7 antagonist, significantly attenuated TAC-induced
cardiac fibrosis via the inhibition of the ATP/P2X7-mediated NLRP3/IL-1β pathway [191].
Additionally, immunosuppressive treatment of the P2X7-specific antagonist A740003 im-
proved myocardial contraction in the murine experimental autoimmune myocarditis model
(Figure 2). It is necessary to conduct in-depth studies to understand the safety of these
P2X7 antagonists in cardiovascular diseases before further translating into clinical studies.

Another possible target from P2X receptor subtypes is P2X4 receptors. Unlike P2X7,
the cardiac P2X4 receptor has been reported by several studies to exert beneficial roles in
pathological remodelling. Overexpression of the P2X4 gene and pharmacological treatment
of ATP-induced P2X4 in cardiomyocytes and ECs demonstrated a protective role in ischemic
and pressure-overload-induced heart failure by tissue-specific activation of eNOS [203,228].
Furthermore, P2X4, one of the most Ca2+-permeant channels among the P2X receptors, can
increase cardiac contractility and improve cardiac performance, which will be beneficial
in combating heart failure progression. Despite this evidence, finding a specific agonist
other than ATP for P2X4 receptors remains challenging. Paradoxically, using ATP to evoke
the protective role of P2X4 may backfire, as this nucleotide also modulates other P2X and
P2Y receptors, and the downstream effectors might contribute to different pathological
responses. Overall, it was worth noting that activation of the ATP-P2X4 axis is protective
only when the ECs are functioning. However, this role is abrogated once the ECs are
damaged, for instance, during atherosclerosis development [116]. Therefore, finding an
alternative specific agonist or gene-therapy-mediated overexpression of P2X4 receptors
with cell-specific effects might help accentuate the protective role of this receptor.

In addition to P2X4 and P2X7 receptor subtypes, P2X1 is expressed in coronary smooth
muscle cells and cardiomyocytes of a normal and failing heart in humans [14]. Due to
the higher sensitivity of ATP compared to other P2X subtypes, the ATP-P2X1 axis is
actively involved in vasoconstriction in the vasculature, while in cardiomyocytes, a close
association of P2X1 and ATP release channel and connexin-1 was found in patients with
dilated cardiomyopathy; the pathological significance remains obscure [229]. Until now,
there have been limited studies on ATP-P2X1’s functional role in the pathological setting
of cardiovascular remodelling. Several selective agonists and antagonists of human P2X1
receptors have been identified from previous works and recently summarized in the review
by Bennetts et al. [230]. Therefore, extensive study needs to be conducted using these
agonists and antagonists to better understand the pathophysiological role of these highly
ATP-sensitive receptors.

4.3. Targeting ATP-P2Y2 and Downstream Effectors

P2Y2 receptors play a central role in modulating various downstream effectors in
cardiovascular-related diseases, including hypertension, atherosclerosis, I/R injury, my-
ocardial fibrosis, and atrophy. The previous section highlighted the detrimental activation
of the ATP-P2Y2 signalling axis on VSMCs and ECs in hypertension, cardiomyocytes in
myocardial atrophy, and cardiac fibroblast in myocardial fibrosis. Despite extensive studies
on the development of potent P2Y2 receptor antagonists, most outcomes demonstrated
severe drawbacks due to a lack of selectivity, low oral bioavailability, and generally poor
metabolic stability and pharmacokinetic properties. However, the introduction of thiouracil
derivative AR-C118925 by AstraZeneca around 20 years ago greatly contributed to the
pharmacological studies to elucidate the physiological and pathological importance of P2Y
subtypes [231]. Due to the vast action of this antagonist on almost all P2Y and all P2X recep-
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tors, subsequent works have been conducted by modifying its structure. For instance, the
final modifications include adding a symmetric methyl group and monocarboxylic group
to increase the activity [231]. This ultimately yielded a potent and selective P2Y2 antagonist
where the underlying inhibitory mechanisms are through the suppression of Gq-mediated
and Ca2+-releasing pathways [232]. In our laboratory, we showed a significant reduction
in ATP/P2Y2-induced cardiomyocyte atrophy with the treatment of AR-C118925 [205]
(Figure 2). However, further in vitro and in vivo studies are strongly needed to evaluate
the potential of this antagonist on the pathological response coupled with the activation of
P2Y2 receptors in cardiovascular diseases.

On the contrary, there is an opposing role of AR-C118925-inhibited P2Y2 in ischemic
heart disease. Previous findings showed the protective role of P2Y2 in ischemic heart
disease and angiogenesis [143,145,166,233]. A study by Hochhauser’s group demonstrated
that the pharmacological inhibition of the P2Y2 receptor by AR-C118925 exacerbates is-
chemic damage in cardiomyocytes [143]. In contrast, in vitro and in vivo treatment of
MRS2768, a moderately potent and selective P2Y2 receptor agonist, attenuates myocyte
damage and improves myocardial function in ischemic injury. In another cellular context,
MRS2768 shows pro-fibrotic properties on cardiac fibroblast via P2Y2-mediated intracellu-
lar Ca2+ transient [234]. Hence, in-depth investigation is needed to understand the benefits
of activation by MRS2768 or inhibition by AR-C118925 of P2Y2 receptors in the repara-
tive mechanism during ischemic heart disease due to the seemingly cell-specific effect of
these compounds.

Given the significant importance of the ATP-P2Y2 axis in pathological and protec-
tive roles, targeting the downstream effector may become a suitable option. The Ca2+-
permeable non-selective cation channel TRPC3 has been identified as an important mediator
in ATP-P2Y2-Gq-PLC-dependent Ca2+ signalling associated with pathological cardiac re-
modelling [235,236]. TRPC3 interaction with other membrane-bound proteins has been
reported to be associated with muscular dystrophy, myocardial hypertrophy, and atrophy;
each was activated with different upstream stimuli [180,186,237]. The severity of TRPC3-
Nox2 pathology-specific interaction functions via ATP-P2Y2 signalling, which leads to
excessive ROS production, has revealed a promising therapeutic target for myocardial
atrophy. A work by Nishiyama and colleagues showed that the interaction of TRPC3-Nox2
in doxorubicin-induced myocardial atrophy is attenuated by the treatment of ibudilast, a
phosphodiesterase (PDE) inhibitor [235]. An early study demonstrated the inhibitory effect
of ibudilast on PDE and enhanced intercellular cAMP levels to promote a cardioprotective
effect [238].

Interestingly, ibudilast also attenuates the co-morbidity effect of doxorubicin treatment
in mice with systemic-toxicity-induced muscle atrophy [235]. Recently published work by
the same group revealed that ATP released via pannexin-1 in response to SARS-CoV-2 S
protein pseudovirus exposure mediates TRPC3-Nox2 formation associated with the increase
in ROS and ACE2 gene expression, which are risk factors for myocardial dysfunction [236].
Moreover, the USA initiated a clinical trial of ibudilast to combat acute respiratory distress
syndrome in COVID-19 patients [239]. Additionally, other PDE inhibitors have shown
potent vasodilatory and anti-hypertensive effects. Rolipram (PDE4 inhibitor), sildenafil
(PDE5 inhibitor), and zaprinast (PDE5 and 6 inhibitors) induce relaxation in ET-1-induced
vasoconstriction of human mesenteric arteries [240]. Interestingly, celecoxib, a COX-2
inhibitor with unique inhibitory effects on PDE4 and PDE5, also exerts a vasorelaxant effect
comparable to other PDE inhibitors in the cAMP- and cGMP-dependent pathways [240]
(Figure 2). Collectively, targeting the downstream pathological protein–protein interaction
might be more efficient and convenient to minimize the adverse side effects that can be
assumed by direct inhibition of the P2Y2 receptor.

5. Concluding Remarks

Overall, this review highlights the interconnected mechanism underlying the dual role
of ATP in the physiological and pathological remodelling of the heart. In cardiovascular
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diseases, the involvement of purinergic signalling by ATP is well-connected. ATP released
during the development of hypertension and atherosclerosis regulates vascular tone and
remodelling. ATP may act as a danger signal by informing other resident cells to initiate
the protective mechanism combating the approaching insult. However, accumulating
extracellular ATP changes the Ca2+ homeostasis in VSMCs and ECs, leading to vascular
endothelial damage. More ATP will be released, alerting other resident cells to the incoming
changes in the metabolic function of the heart. Low blood flow will decrease the oxygenated
blood supply that prompts the I/R injury, predominantly affecting the cardiomyocytes’
viability. Dynamic angiogenesis might be a final resolve to rescue the dying cardiomyocytes
by forming new blood vessels to deliver oxygen and essential nutrients. Dying myocytes
contribute to high extracellular ATP, which acts on purinergic receptors, thus generating
excessive production of inflammatory cytokines and pro-fibrotic factors. The infarcted
site undergoes an uncontrolled reparative mechanism by pro-fibrotic factors, leading to
myocardial fibrosis. Consequently, the contractility of the cardiomyocytes decreases due to
the high ratio of fibroblast to myocytes in the left ventricular, instigating hypertrophic- and
atrophic-response-mediated heart failure.

Due to the pleiotropic role of ATP in these disease settings, it is challenging to target
one particular receptor. Understanding the actions and consequences of ATP-modulated
P2 receptor subtype activation in a cell-specific perspective may change our perception
of designing the therapeutic target. Targeting downstream effectors could be exploited
to regulate the detrimental effect of ATP release and accumulation in the extracellular
milieu. However, further investigation is required to understand the counter-regulatory
activity of ATP on the onset of the change from a protective to a pathological role in
cardiac remodelling.
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Celecoxib on the Vasodilating Properties of Human Mesenteric Arteries Constricted with Endothelin-1. Biomed. Rep. 2014, 2,
412–418. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.jphs.2022.04.007
http://www.ncbi.nlm.nih.gov/pubmed/35641023
http://doi.org/10.3892/br.2014.233
http://www.ncbi.nlm.nih.gov/pubmed/24748985

	Introduction 
	Extracellular ATP Sources and Signalling 
	Cardiomyocytes 
	Cardiac Fibroblasts 
	Vascular Smooth Muscle Cells 
	Vascular Endothelial Cells 
	Circulating Red Blood Cells 

	ATP in Cardiovascular Remodelling 
	Hypertension and Atherosclerosis 
	Ischemic Reperfusion (I/R) Injury 
	Angiogenesis 
	Myocardial Fibrosis 
	Hypertrophic and Atrophic Remodelling 

	Therapeutic Insights of ATP Signalling in Cardiac Remodelling 
	Targeting ATP Release Channels 
	Targeting ATP-P2X Signalling Axis 
	Targeting ATP-P2Y2 and Downstream Effectors 

	Concluding Remarks 
	References

