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Abstract: γ-secretase is an intramembrane proteolytic enzyme that is mainly involved in the cleavage
and hydrolysis of the amyloid precursor (APP). The catalytic subunit presenilin 1 (PS1) is the catalytic
subunit of γ-secretase. Since it was found that PS1 is responsible for Aβ-producing proteolytic
activity, which is involved in Alzheimer’s disease, it is believed that reducing the activity of PS1 and
preventing or delaying the production of Aβ could help treat Alzheimer’s disease. Consequently,
in recent years, researchers have begun investigating the potential clinical efficacy of PS1 inhibitors.
Currently, most PS1 inhibitors are only used as a tool to study the structure and function of PS1, and
a few inhibitors with a high selectivity have been tested in clinics. Less-selective PS1 inhibitors were
found to not only inhibit Aβ production but also inhibit Notch cleavage, which led to serious adverse
events. The archaeal presenilin homologue (PSH) is a surrogate protease of presenilin that is useful
for agent screening. In this study, we performed 200 ns molecular dynamics simulations (MD) of
four systems to explore the conformational changes of different ligands binding to PSH. Our results
indicated that the PSH-L679 system formed 3–10 helices in TM4, loosening up TM4 and allowing
substrates to enter the catalytic pocket, thereby making it less inhibitory. Additionally, we found
that III-31-C can bring TM4 and TM6 closer, resulting in the contraction of the PSH active pocket.
Altogether, these results provide the basis for the potential design of newer PS1 inhibitors.

Keywords: subunit presenilin 1; inhibitors; Alzheimer’s disease; molecular dynamics simulations;
conformational changes

1. Introduction

γ-Secretase [1–5], an intramembrane proteolytic enzyme composed of four subunits,
is primarily involved in the cleavage and hydrolysis of the amyloid precursor (APP) [6,7]
and has been reported to regulate the Notch signaling pathway [8,9]. It has been observed
that a decrease in the expression level of any of its subunits can impede the formation of its
enzymatic complex.

The four subunits of γ-secretase, PS (presenilin) [1,10–16], NCT (Nicastrin) [17–20],
APH1(anterior-pharynx-defective-1) [21,22] and PEN2 (Presenilin Enhancer-2) [23,24], are
closely and orderly arranged. The functions of the four subunits differ; of these functions,
the catalytic subunit of γ-secretase, PS, has substrate-cleaving activity. Dysfunction in
the intramembrane protease γ-secretase [1–5] has been associated with Alzheimer’s dis-
ease (AD) [1]. Most mutations derived from AD map to the catalytic subunit presenilin
1 (PS1), which is the catalytic subunit of the enzyme [1,4,10–14] and responsible for its
Aβ-producing proteolytic activity [1,15,16]. NCT plays a role as a “substrate receptor”.
Before the substrate of γ-secretase is cleaved by PS, it is specifically recognized and bound
by NCT [17–20]. APH1 [21,22] and PEN2 [23,24] are two smaller subunits. APH1 is the
“scaffold” of the γ-secretase complex assembly and can stabilize active PS. Under necessary
conditions, PEN2 contributes to the maturation and cleavage activity of γ-secretase [23,24].
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Although it was traditionally believed that the four subunits of γ-secretase could not be
separated from each other, recent research showed that only PS1, APH1A and PEN2 cleaved
APP and Notch, while the function of NCT was only to stabilize the γ-secretase complex
rather than to recognize the substrates [25].

Considering that preventing or delaying the production of Aβ by reducing the activity
of γ-secretase could be an effective strategy for treating AD [1], the current focus in this
field is research for clinically effective γ-secretase inhibitors. At present, most γ-secretase
inhibitors are only used as a tool to study the structure and function of γ-secretase, and
only a few have shown promising prospects for potential clinical application. Less-selective
γ-secretase inhibitors were shown to not only inhibit Aβ production but also inhibit Notch
cleavage, leading to serious toxic side effects [22]. Therefore, it is important to develop new
selective γ-secretase inhibitors that can effectively reduce Aβ production without affecting
Notch cleavage.

The archaeal presenilin homologue PSH [26] is a protein discovered by Yigong Shi’s
team that has a high degree of homology with PS1. This protein can be used as a cost-
effective surrogate protease to screen for agents that can regulate the protease activity and
the cleavage preference of γ-secretase. Furthermore, this protein can provide valuable
insight into the structure and function of γ-secretase, which is essential for understanding
the role of this enzyme in the pathogenesis of Alzheimer’s disease.

III-31-C [27] and L682,679 (Abbreviated as L679 below) [28] are aspartyl protease
transition-state analogues that mimic gemdiol intermediate and belong to the PS1 mimetic
peptide inhibitor. Although they are structurally similar, in vitro assays [26] have demon-
strated that L679 is more effective at inhibiting the PS1 homologous alternative PSH than
III-31-C. L679 has an IC50 of 0.2 mM compared to an IC50 of 10 µM for III-31-C. However,
the mechanisms behind these differences remain largely unknown. Investigating the mech-
anisms behind these differences could be clinically beneficial as it could provide valuable
insight into the structure of PS1 inhibitors.

In this study, we performed 200 ns molecular dynamics simulations (MD) of four
systems (PSH, PSH-APP, PSH-L679 and PSH-III-31-C) to investigate the different confor-
mational changes for PSH binding to different ligands (APP and two inhibitors). Our
theoretical research might provide useful clues for the design of a new specific inhibitor of
PS1. Additionally, this research could help to further our understanding of the structure
and function of γ-secretase and its role in the pathogenesis of Alzheimer’s disease.

2. Results and Discussion
2.1. The Binding Mode of Inhibitors to PSH

The PSH cavity is surrounded by transmembrane helices TM3, TM6, TM7 and TM9,
and the motifs (AVYDA on TM6 and MGMGD on TM7) are important for substrate cat-
alyzing. Figure 1A shows the helices in red and the catalytic motifs in a golden color. L679,
a peptide-like inhibitor, is located at PSH (PDB code:4Y6K) [29] (Figure 1B,E). APP and the
inhibitor, III-31-C (Figure 1C), were docked to PSH with Autodock vina [30] (Figure 1D,F).
The docking pose with the lowest energy between the ligands and the PSH was chosen for
further study. Figure 1D shows the active residues around APP to PSH. F47, I48, L51, L52,
F139, L151, L155, Y158, D159, M220 and I223 were key residues for the PSH binding to APP.
Figure 1E shows that L51, T55, L155, Y158, D159, M213 and M220 were key residues for
PSH to bind to the inhibitor L679. Figure 1F shows the active residues (I48, L51, T55, l58,
L155, Y158, M213 and M220) of PSH around III-31-C. Figure S1A,B displays the interac-
tions between L697 and III-31-C and PSH. Figure S2 shows the interactions between APP
and PSH.
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Figure 1. (A) Domain composition of PSH (PDB code:4Y6K) and structure sequence (right). The 
transmembrane helices are shown in red and the catalytic motifs are in a golden color. (B) Chemical 
structure of L679. (C) Chemical structure of III-31-C. Binding pocket for (D) APP, (E) L679 and (F) 
III-31-C. Residues that interacted with the legends are shown as sticks. 

2.2. Structural Stability and Dynamics Properties of the Four Systems 
To evaluate the stability of simulations, the root mean square deviation (RMSD) of 

the CA atoms was calculated (Figures 2A,B and S3A,B). After 75 ns simulations, the RMSD 
in each MD trajectory reached equilibrium, indicating that all the investigated systems 
were stable. Moreover, these small mean RMSD values indicated that the investigated 
four systems had no significant changes. Therefore, the equilibrated 200 ns trajectories can 
be performed for a post-processing analysis. 

Figure 1. (A) Domain composition of PSH (PDB code:4Y6K) and structure sequence (right). The
transmembrane helices are shown in red and the catalytic motifs are in a golden color. (B) Chemical
structure of L679. (C) Chemical structure of III-31-C. Binding pocket for (D) APP, (E) L679 and
(F) III-31-C. Residues that interacted with the legends are shown as sticks.

2.2. Structural Stability and Dynamics Properties of the Four Systems

To evaluate the stability of simulations, the root mean square deviation (RMSD) of the
CA atoms was calculated (Figures 2A,B and S3A,B). After 75 ns simulations, the RMSD
in each MD trajectory reached equilibrium, indicating that all the investigated systems
were stable. Moreover, these small mean RMSD values indicated that the investigated four
systems had no significant changes. Therefore, the equilibrated 200 ns trajectories can be
performed for a post-processing analysis.
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3C shows the average SASA values of the AVYDA catalytic motif during the 200 ns MD 
for the four systems. Figure 3D–F show the SASA values of the MGMGD catalytic motif 
of PSH and PSH-APP, PSH-L679 and PSH-III-31-C during 200 ns MD (Figure 3E) and the 
average SASA values of MGMGD catalytic motif during 200 ns for the four systems (Fig-
ure 3F). Additionally, Figure 3G illustrates the surface of TM6 and TM7 of the four sys-
tems. The average sum of the SASA values of the the two motifs indicates that the catalytic 
motifs of PSH-III-31-C had the smallest solvent-accessible surface area (Figure 3H). Since 
the inhibitors were hydrophobic, the smaller SASA value indicated that III-31-C bound 
more tightly to the active site of PSH. 

Figure 2. Analysis of structural stability. (A) The temporal evolution of the RMSDs from their initial
structure of the four systems. (B) Relative frequencies of RMSDs for the four systems. (C) The radius
of gyration over 200 ns MD for the four systems. (D) Relative frequencies of radius gyration.

The Rg value of the PSH-APP system was higher than the other systems after 50 ns
MD simulations, indicating that the PSH-APP system had a larger volume than the other
systems (Figures 2C,D and S3C,D). As can be seen from Figures 2C and S3C,D, the Rg values
of PSH-III-31-C are significantly less than PSH-L679 after the systems became stable in the
three replicas, demonstrating that protein tightness was enhanced by III-31-C binding.

The solvent-accessible surface area (SASA) was used to predict the number of residues
in the outlier regions (surface) of the protein and the number of residues in the hydrophobic
core (buried). The SASA values of the AVYDA catalytic motif of PSH and PSH-APP, PSH-
L679 and PSH-III-31-C during the 200 ns MD are shown in Figure 3A,B. Figure 3C shows
the average SASA values of the AVYDA catalytic motif during the 200 ns MD for the four
systems. Figure 3D–F show the SASA values of the MGMGD catalytic motif of PSH and
PSH-APP, PSH-L679 and PSH-III-31-C during 200 ns MD (Figure 3E) and the average
SASA values of MGMGD catalytic motif during 200 ns for the four systems (Figure 3F).
Additionally, Figure 3G illustrates the surface of TM6 and TM7 of the four systems. The
average sum of the SASA values of the the two motifs indicates that the catalytic motifs
of PSH-III-31-C had the smallest solvent-accessible surface area (Figure 3H). Since the
inhibitors were hydrophobic, the smaller SASA value indicated that III-31-C bound more
tightly to the active site of PSH.
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the 200 ns for the four systems. SASA values of the MGMGD catalytic motif of (D) PSH and PSH-
APP, (E) PSH-L679 and PSH-III-31-C during the 200 ns MD. (F) The average SASA values of 
MGMGD catalytic motif during the 200 ns for the four systems. (G) The surface of TM6 and TM7 of 
the four systems. PSH, PSH-APP, PSH-L679 and PSH-III-31-C are shown from left to right, respec-
tively. The two catalytic motifs are shown in golden color. (H) The average sum of the two motifs’ 
SASA values indicated that the catalytic motifs of PSH-III-31-C had the smallest solvent-accessible 
surface area. 

Further, we also explored the distance between the hydrophilic residues Asp159 and 
Asp217. The distance between the CA atoms of Asp159 on TM6 and Asp217 on TM7 dur-
ing 200 ns MD is shown in Figure 4 (Figure 4A shows PSH and PSH-APP and Figure 4B 
shows PSH-L679 and PSH-III-31-C, respectively). The average distance between the active 
residues, Asp159 and Asp217, of the four systems is shown in Figure 4C. Figure 4D,E il-
lustrate the distance between the catalytic residues Asp159 and Asp 160. Based on the 
observations, the distance in PSH-III-31-C was the closest. A closer distance between the 
two active residues indicates that they passed through a narrower channel, making it dif-
ficult for the substrate to enter. Our results were consistent with the experimental results 
that III-31-C is a better inhibitor for PSH than L679 [2]. Altogether, the III-31-C binding 

Figure 3. SASA values of the AVYDA catalytic motif of (A) PSH and PSH-APP, (B) PSH-L679 and
PSH-III-31-C during the 200 ns MD. (C) Average SASA values of the AVYDA catalytic motif during
the 200 ns for the four systems. SASA values of the MGMGD catalytic motif of (D) PSH and PSH-APP,
(E) PSH-L679 and PSH-III-31-C during the 200 ns MD. (F) The average SASA values of MGMGD
catalytic motif during the 200 ns for the four systems. (G) The surface of TM6 and TM7 of the four
systems. PSH, PSH-APP, PSH-L679 and PSH-III-31-C are shown from left to right, respectively. The
two catalytic motifs are shown in golden color. (H) The average sum of the two motifs’ SASA values
indicated that the catalytic motifs of PSH-III-31-C had the smallest solvent-accessible surface area.

Further, we also explored the distance between the hydrophilic residues Asp159 and
Asp217. The distance between the CA atoms of Asp159 on TM6 and Asp217 on TM7
during 200 ns MD is shown in Figure 4 (Figure 4A shows PSH and PSH-APP and Figure 4B
shows PSH-L679 and PSH-III-31-C, respectively). The average distance between the active
residues, Asp159 and Asp217, of the four systems is shown in Figure 4C. Figure 4D,E
illustrate the distance between the catalytic residues Asp159 and Asp 160. Based on the
observations, the distance in PSH-III-31-C was the closest. A closer distance between the
two active residues indicates that they passed through a narrower channel, making it
difficult for the substrate to enter. Our results were consistent with the experimental results
that III-31-C is a better inhibitor for PSH than L679 [2]. Altogether, the III-31-C binding
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brought TM6 and TM7 closer together, resulting in the PSH active site contract and thereby
aiding the binding.
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Figure 4. Distance between the Asp159 and Asp217 CA atoms during the 200 ns MD for (A) PSH and
PSH-APP and (B) PSH-L679 and PSH-III-31-C. (C) Average distance between the Asp159 and Asp217
of the four systems. (D) Schematic diagram of the structure. The dashed line shows the distance
between the catalytic residues Asp159 and Asp 217, shown as sticks. (E) The distance between
catalytic residues from another angle view.

2.3. Comparison of the Conformational Changes of the Four Systems

Here, we analyzed the RMSF plot of the four systems (Figures 5C,D and S3E,F)
and the secondary structures of residues 100–125 at TM4 and residues 155–180 at TM6
(Figure 5A,B,E,F). In all three replicates, PSH-III-31-C exhibited lower a RMSF than PSH-
L679 in both TM4 and TM6 regions, indicating better rigidty.

Compared to the PSH-APP system, TM6 was affected by the hydrophobic interaction
of the two inhibitors, with fewer helices and more turns, in both the PSH-L679 and PSH-III-
31-C systems. The averaged probabilities of the α-helix and turn over three replicates for
PSH-APP, PSH-L679 and PSH-III-31-C of residues 158–171 on TM6 are shown in Table S1,
indicating the good repeatability of secondary structure changes. This may be a similarity
in the mechanism of PSH inhibition between the two inhibitors (Figure 5E,F).

From Figure 5B, it can be seen that the PSH-L679 system formed 3–10 helices in TM4,
loosening up the helix and facilitating the substrate entering the catalytic pocket, reducing
its inhibition ability. This could be attributed to the large steric hindrance of L679. In
contrast, the TM4 of III-31-C contained an alpha helix that maintained rigidity to prevent
the substrate from entering the active pocket. This reliability can be demonstrated by the
averaged probabilities of the α-helix and 3–10 helix for TM4 in PSH-L679 and PSH-III-31-C
over three replicates (see Table S2). This may be one of the reasons for the difference in the
inhibitory ability of the two inhibitors.
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PSH-III-31-C. The RMSFs of CA atoms in the four systems. (C) PSH compared with PSH-APP. (D) 
PSH-L679 compared with PSH-III-31C. The TM4 and TM6 regions are shown as rectangles. DSSP 
and structures comparison of TM6, (E) PSH and PSH-APP and (F) PSH-L679 and PSH-III-31-C. 

2.4. Protein Network Analysis 
Figure 6 shows the interaction network analysis between ligands and PSH. The nodes 

represent residues, and the edges represent interactions. The gray color indicates the hydro-
phobic forces, green represents the hydrogen bonds and red represents pi–sulfur. Figure 6 
shows that more residues interacted with III-31-C than L679. In addition, the III-31-C in-
hibitor and Leu272, located at TM9, had hydrophobic interactions that were useful for III-
31-C binding to PSH. 

Figure 5. DSSP and structures comparison of TM4, (A) PSH and PSH-APP and (B) PSH-L679 and
PSH-III-31-C. The RMSFs of CA atoms in the four systems. (C) PSH compared with PSH-APP.
(D) PSH-L679 compared with PSH-III-31C. The TM4 and TM6 regions are shown as rectangles. DSSP
and structures comparison of TM6, (E) PSH and PSH-APP and (F) PSH-L679 and PSH-III-31-C.

2.4. Protein Network Analysis

Figure 6 shows the interaction network analysis between ligands and PSH. The nodes
represent residues, and the edges represent interactions. The gray color indicates the
hydrophobic forces, green represents the hydrogen bonds and red represents pi–sulfur.
Figure 6 shows that more residues interacted with III-31-C than L679. In addition, the
III-31-C inhibitor and Leu272, located at TM9, had hydrophobic interactions that were
useful for III-31-C binding to PSH.
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2.5. Quantum Chemical Calculation

To explore the mechanism of the PSH inhibitors, quantum chemical calculations
were conducted for the two compounds. The HOMO-LUMO energy gap represents the
energy difference between the HOMO orbit and the LUMO orbit (Figure 7A–D), which
depend on all coordinates of the system, providing a more efficient sampling method than
a geometrical reaction coordinate to better reflect the activities of the compounds. The
HOMO-LUMO energy gap of III-31-C was 516.50 KJ/mol, and the HOMO-LUMO energy
gap of L679 was 558.70 KJ/mol. Considering that a lower energy can result in electronic
transitions and the easy formation of new interactions, III-31-C is capable of forming more
interactions than L679, including hydrogen bonds (H-bonds) and van der Waals (vdW)
interactions. As a result, III-31-C binds to PSH more effectively than L679.

2.6. Dynamical Cross-Correlation Matrix and Principle Component Analysis

A PCA analysis of the CA atoms, performed for the four systems, is shown in
Figure 8A–D). PC1 and PC2 accounted for more than 40%, reflecting the reliability of
the results. The red region shows the conformational changes in TM6. The stable conforma-
tions are consistent with the previous analysis.

The dynamic cross-correlation map for the 200 ns MD simulation trajectories of the
four systems is shown in Figure 9A–D, respectively. The positive regions are shown in cyan
and the negative regions are shown in pink, representing the correlated and anti-correlated
motions between residue CA atoms. Red rectangles show the action between TM6 and
TM7. From Figure 7C, it can be observed that the pink areas show the backward direction
movement of TM6 and TM7 in PSH-L679, while in Figure 7D, the cyan areas show the
opposite direction movement in PSH-III-31-C. This is consistent with the previous results,
which showed that the distance between ASP159 and ASP217 was decreased in PSH-L679
and increased in PSH-III-31-C. Once again, the binding of III-31-C was proven to constrict
the PSH active site; hence, its inhibitory ability was greater than that of L679.
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2.7. MM-PBSA Study

The results of MM-PBSA are shown in Table 1. The binding free energy of PSH-APP was
−48.32 ± 1.35 KJ/mol, while the binding free energy of PSH-L679 was −31.78 ± 0.54 KJ/mol.
This was even less than the binding free energy of the APP, indicating that the inhibitory
effect was highly concentration-dependent. The binding free energy of PSH-III-31-C was
−65.02 ± 0.35 KJ/mol: the strongest binding force. Overall, the results were consistent with
the experiment [2], with III-31-C demonstrating a better binding affinity to PSH than L679.

Table 1. The results of MM-PBSA(KJ/mol).

System PSH-APP PSH-L679 PSH-III-31-C

∆EvdW −92.80 ± 2.11 −70.08 ± 0.42 −90.25 ± 0.43
∆Eele −177.48 ± 4.53 −30.80 ± 0.76 −20.07 ± 0.40

∆Gsolv 221.95 ± 5.44 69.09 ± 0.78 45.31 ± 0.64
∆Ggas −270.27 ± 6.47 −100.88 ± 0.90 −110.33 ± 0.68
∆Gtotal −48.32 ± 1.35 −31.78 ± 0.54 −65.02 ± 0.35

Figure 10A–C show the binding energy contribution of residues in three PSH–ligand
systems. From Figure 10A, R196, I48, R63, L52, M213, M169, L165, S203, L51, V212 and I202
were key residues for APP binding to PSH. T55, L56, L59, L52, L272, M220, M213, L155 and
L51 were key residues for L679 binding to PSH (Figure 10B). Comparatively, L56, L52, I219,
P54, M215, L59, L155, L189, I74, V135, M220, L56, V212, I183, M213, L62, G216, R165 and
M184 were key residues for III-31-C binding to PSH (Figure 10C). Altogether, we found
that more residues were involved in III-31-C binding to PSH, which decreased the free
energy between III-31-C and PSH.
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Figure 9. The dynamic cross-correlation map for the 200 ns MD simulation trajectories of the four
systems: (A) PSH, (B) PSH-APP, (C) PSH-L679 and (D) PSH-III-31-C. The positive regions are shown
in cyan and the negative regions are colored in pink, representing correlated and anti-correlated
motions between residue CA atoms. Red rectangles show the action between TM6 and TM7.
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3. Materials and Methods
3.1. System Preparation

The 3D structures of PSH-L679 (PDB code: 4Y6K) were obtained from the protein
database (www.rcsb.org (accessed on 21 April 2022)) [29]. Using the UCSF Chimera
software, PSH was prepared by removing the ligand, repeated monomers and water, and
the Modeller plugin was used to model all the missing structures. The structure of APP
was then separated from PSH-APP (PDB code: 3SV1) [31]. The III-31-C compound was
modeled using Discovery Studio [32]. Next, Gaussian 09 [33] was used to optimize the
structure at the level of B3LYP/6-31G* to obtain the optimal conformation for molecular
docking. APP and III-31-C were docked to the active site of PSH with Autodock Vina [30]
to form the PSH-APP and PSH-III-31-C systems, respectively. The size of the docking box
was set to x = 50, y = 40 and z = 50, and the spacing between grid points was set to 0.375 Å.
The lowest energy structures were selected from docking results as the initial structures for
the MD simulations. Lastly, the four systems, including the free PSH, PSH-APP, PSH-L679
and PSH-III-31-C, were constructed.

3.2. Molecular Dynamics Simulations

Molecular dynamics (MD) simulations were performed using the PMEMD engine
provided with the AMBER 16 [34] package, in which the FF99SB AMBER force field [35]
was used to describe the systems. The TIP3P water model [36] was used, and edge effects
were prevented using periodic boundary conditions (PBCs) during the simulation time.
The distance between the solute surface and the box was set to 12 Å. Then, appropriate
amounts of Na+ were added to the system to neutralize the system. All bonds involving
hydrogen atoms were constrained using the SHAKE algorithm [37]. The particle mesh

www.rcsb.org
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Ewald (PME) algorithm [38] was used to handle non-bonded electrostatic interactions. An
initial minimization of 3000 steps was conducted with an applied restraint potential of
10 kcal/mol for the enzyme. An additional full minimization of 1000 steps was further
carried out using a conjugate gradient algorithm without restraints. A gradual heating MD
simulation from 0 K to 300 K was executed for 50 ps for the systems to maintain a fixed
number of atoms and volume. Solutes within the systems were imposed with a potential
harmonic restraint of 10 kcal/mol and a collision frequency of 1 ps. Following heating, an
equilibration estimating 500 ps of each system was conducted with a constant operating
temperature of 300 K. The system’s pressure was maintained at 1 bar using the Berendsen
barostat [39], and the total simulation trajectory was 200 ns. The simulations coincided with
the isobaric–isothermal ensemble (NPT), with randomized seeding, a constant pressure
of 1 bar (maintained by the Berendsen barostat), a pressure-coupling constant of 2 ps, a
temperature of 300 K, and a Langevin thermostat [40] with a collision frequency of 1 ps.
Each MD simulation was performed three times (See Figure S3).

3.3. Trajectory Analysis

A trajectory analysis, including the RMSD, Rg, SASA, RMSF and a dictionary of
secondary structures, was computed using Amber16’s Cpptraj module [41]. Representative
structures were obtained using K-means clustering.

3.4. Protein Structure Network Analysis

The network analysis of the proteins to different ligands was analyzed using generated
graphs, in which the average structures were used and each residue was defined as a
node. They were connected by edges corresponding to non-covalent interactions. The
Cytoscape [42] software was used for graphing.

3.5. Quantum Chemical Calculation

Quantum chemical calculations of L679 and III-31-C were performed using the B3LYP
function at the 6-31G* set in the Gaussian 09 [33] software. Multiwfn [43] was used to
calculate the HOMO-LUMO energy gap and plot.

3.6. MM-PBSA Calculations

The accurate calculation of protein–protein binding free energy is of great importance
in biological and medical science. This work used the molecular mechanics/Poisson–
Boltzmann surface area (MM/PBSA) method to explore the ligands’ binding affinity to
PSH [44,45].

The binding free energy (∆Gbind) can be expressed by Equation (1).

∆Gbind = ∆H − T∆S (1)

The changes in the protein and ligand upon binding were similar in all systems, with
very small entropy differences; therefore, the calculation of the solvate entropy term is
omitted. The enthalpy change (∆H) was computed as the sum of changes of the gas phase
energy (∆EMM), and the solvation-free energy (∆Gsol), averaged over a conformational
ensemble generated by MD simulations (Equation (2)):

∆H = ∆EMM + ∆Gsol (2)

∆EMM was estimated using the following formula:

∆EMM = ∆Eele + ∆EvdW + ∆Eint (3)

where ∆Eele, ∆EvdW and ∆Eint represented the electrostatic, vdW energies and internal
energies corresponding to the bond, angle and dihedral energies, respectively.



Molecules 2023, 28, 2076 14 of 16

In this study, the conformational structures of the protein–ligand complex, protein and
ligand were obtained from a single MD trajectory (only complex trajectory) that regarded
the protein–ligand structure as a rigid body. Thus, the ∆Eint between the complex and the
isolated components could offset each other because this energy term was calculated from
the same MD simulated trajectory.

Further, only the ∆Eele and ∆EvdW of Equation (3) were studied in the following work.
∆Gsol was used to indicate the sum of the polar solvation-free energy (∆Gpb) and

non-polar solvation-free energy(∆Gnp).

∆Gsol = ∆Gpb + ∆Gnp (4)

∆Gpb was determined by solving the linearized Poisson–Boltzmann equation using
the PBSA program in the AMBER 16 suite [34]. Then, 50 snapshots were extracted from the
final trajectory for MM/PBSA calculation.

4. Conclusions

In this study, we used a 200 ns molecular dynamics simulation to determine the
mechanisms responsible for the differences in the inhibitory effects in four systems (PSH,
PSH-APP, PSH-L679 and PSH-III-31-C). The conformational change showed that during
the 200 ns MD simulation, both the inhibitors made TM6 rigid to prevent substrate entry,
whereas the excessive spatial site resistance of L679 elevated the flexibility of TM4, prevent-
ing it from binding tightly to the PSH. In addition, III-31-C binding caused a contraction
of the PSH active site, allowing III-31-C to bind tightly to PSH and inhibit it better. Quan-
tum chemical calculations also showed that III-31-C is more likely to interact with PSH.
Lastly, when compared to L679, the binding free energy of III-31-C was lower, once again
indicating a better binding capacity. These results revealed the mechanism responsible for
the difference in the effect of the two inhibitors, III-31-C and L679, and could be used as a
referential basis for designing new inhibitors to treat Alzheimer’s disease.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28052076/s1, Figure S1: (A) The interactions between
L697 and PSH. (B) The interactions between III-31-C and PSH. Figure S2: The interactions between
APP and PSH. Figure S3: RMSD, Rg and RMSF values of replicas. Table S1: α-helix and Turn
probabilities of residues 158–171 on TM6 for PSH-APP, PSH-L679 and PSH-III-31-C. Table S2: α-helix
and 3–10 helix probabilities of residues 104-113 on TM4 for PSH-L679 and PSH-III-31-C.
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