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Abstract: Circular economy holds great potential to minimize the use of finite resources, and re-
duce waste formation by the creation of closed-loop systems. This also pertains to the utilization
of sidestreams in large-scale biotechnological processes. A flexible feedstock concept has been es-
tablished for the industrially relevant Corynebacterium glutamicum, which naturally synthesizes the
yellow C50 carotenoid decaprenoxanthin. In this study, we aimed to use a preprocessed aquacul-
ture sidestream for production of carotenoids, including the fish feed ingredient astaxanthin by
C. glutamicum. The addition of a preprocessed aquaculture sidestream to the culture medium did not
inhibit growth, obviated the need for addition of several components of the mineral salt’s medium,
and notably enhanced production of astaxanthin by an engineered C. glutamicum producer strain.
Improved astaxanthin production was scaled to 2 L bioreactor fermentations. This strategy to improve
astaxanthin production was shown to be transferable to production of several native and non-native
carotenoids. Thus, this study provides a proof-of-principle for improving carotenoid production by
C. glutamicum upon supplementation of a preprocessed aquaculture sidestream. Moreover, in the
case of astaxanthin production it may be a potential component of a circular economy in aquaculture.

Keywords: Corynebacterium glutamicum; astaxanthin; RAS; aquaculture sidestream; circular economy

1. Introduction

The consumer demand for seafood is rising as the world population is growing
and healthier diets are becoming more important. The worldwide fish production was
178.5 million tons (mt) in 2018, and is anticipated to reach 204.4 mt in 2030 [1]. This tremen-
dous demand for fish cannot be met by fishery alone. Accordingly, aquaculture is the
fastest-growing food production system [2], enabling the fishing industry to meet the
global needs [3,4]. The amount of seafood bred in aquaculture systems contributed 46% of
the global production (82.1 mt) in 2018, and this share is expected to reach 53% (108.5 mt)
in 2030 [1].

Recirculating aquaculture systems (RAS) present a promising alternative to the tra-
ditional cultivation systems as they have greatly reduced land and water requirements,
and can be built without exploitation of farmland [5,6]. Moreover, they offer year-round
fish growth and provide a high degree of environmental control [7,8]. RAS have great
opportunities for waste management and nutrient recycling [9]. The lower flow rates of
RAS compared to raceway systems, and the high stocking densities of RAS compared to
ponds and cages lead to lesser, more concentrated effluents from the fish tanks, which can
be treated more cost effectively [2,7,9,10]. RAS and other aquaculture effluents are mainly
composed of settleable and dissolved nutrients from feces and unconsumed fish feed [11],
which need to be removed in order to reuse the water for the fish tanks. Via settling of the
backwash water, a sludge phase containing most of the settleable wastes and an aqueous
sidestream can be obtained [7,12]. Several efforts have been made to recycle this solid and
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aqueous sidestreams from RAS. For instance, the aqueous phase of the waste streams has
been used for the cultivation of several algae [13–15]. The algal biomass may be used as
natural fertilizer [15,16], an aquaculture feed [17,18], or food [19] ingredient. Alternatively,
the algae can be used for the extraction of high value compounds, such as polyunsaturated
fatty acids [20] or vitamins [21]. Further technological developments are in demand to
utilize these aquaculture sidestreams.

One of the most important quality criteria of aquaculture bred fish, such as salmon
(2.4 mt in 2018) and rainbow trout (0.8 mt in 2018), and crustaceans (9.4 mt in 2018) [1], is
the degree of flesh and/or shell pigmentation, as it dictates their market value [22,23]. As
fish and other aquatic animals are unable to synthesize the responsible carotenoids de novo
carotenoids are mixed into the feed of farmed fish and crustaceans [24,25]. Astaxanthin and
other carotenoids from synthetic [23,26,27] and from natural sources, such as yeasts [28,29],
algae [30–32], maize [33], and bacteria [22,34], have been used in aquatic feed formulations,
achieving different levels of coloration. The red, cyclic C40 carotenoid astaxanthin is the
major carotenoid used in aquatic feeds [25]. The global astaxanthin market is predicted
to reach 4.75 billion US$ in 2028, with an annual growth rate of 16.8% [35]. Currently,
the petrochemical synthesis of astaxanthin is the most cost-efficient and, therefore, dom-
inates the market [24,36]. However, there is a growing trend towards naturally sourced
carotenoids due to consumer demand and regulation. This opens the market for alternative
production technologies. Furthermore, it was shown that the antioxidant properties of
natural astaxanthin from Haematococcus pluvialis are stronger than those of synthetic astax-
anthin [37]. However, studies with rainbow trout showed that the esterified astaxanthin
produced by microalgae are deposited in fish muscle less effectively than the free variant,
and therefore cause lower coloration [38,39]. Taken together, the demand for natural, unes-
terified astaxanthin that can be produced efficiently and environmentally friendly is rising.
Microbial hosts, such as Yarrowia lipolytica [40,41], Paracoccus carotinifaciens [42], Escherichia
coli [43,44], Saccharomyces cerevisiae [45], and Corynebacterium glutamicum [46] are natural or
heterologous producers of carotenoids and have been engineered for high-level production
of astaxanthin.

Astaxanthin can be synthesized by the Gram+ soil bacterium C. glutamicum that is a
natural producer of the yellow C50 carotenoid decaprenoxanthin and its glucosides [47]
(Figure 1). Metabolic engineering is effective for C. glutamicum, which efficiently pro-
duces the endogenous decaprenoxanthin [48] and lycopene [49], and the heterologous
isoprenoids α-pinene [50], (+)-valencene [51], 4-apolycopene and 4-aponeurosporene [52],
patchoulol [53], α-farnesene [54] α-carotene [55], bisanhydrobacterioruberin (BABR) [56],
C.p.450 and sarcinaxanthin [57], β-carotene [57], and astaxanthin [46]. In order to achieve
high level astaxanthin production several engineering strategies have been applied. First,
the carotenoid biosynthesis pathway was terminated at lycopene by deletion of
crtYeYfEb [49,58], and the precursor supply was improved [58,59]. Furthermore, the regula-
tory mechanism of the carotenoid biosynthesis by its precursor molecule geranylgeranyl
pyrophosphate (GGPP) responsive transcriptional repressor CrtR was elucidated [57,60]
and deletion of its gene was shown to improve astaxanthin production [46]. Conversion
of β-carotene to astaxanthin was improved by a fusion protein of the heterologous β-
carotene hydroxylase and β-carotene ketolase from Fulvimarina pelagi [46]. A CRISPRi
library screening identified potential further targets for metabolic engineering [61].

In addition to genetic engineering, other attempts have been made to optimize the
carotenoid production by microbial hosts and to design sustainable production processes.
Successful strategies include: two-stage cultivations [62,63], the adjustment of operative
bioprocess parameters, such as aeration rate [64], CO2 levels [65], light irradiation [66,67],
temperature [68,69], pH [70,71], optimization of the growth medium composition [72,73],
and utilization of various sustainable carbon sources [64,74–76].
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can be utilized as component of the growth medium to support growth and carotenoid 

production by C. glutamicum.  

Figure 1. Carotenoid Biosynthesis in C. glutamicum. Gene names are given next to the reactions
catalyzed by their gene products. Heterologous genes are depicted with a grey box. GAP: Glyc-
eraldehyde 3-phosphate; IPP: isopenthenyl pyrophosphate; DMAPP: dimethylallyl diphosphate;
BABR: bisanhydrobacterioruberin; C.p.450: 2,2′-bis-(4-hydroxy-3-methybut-2enyl)-β,β-carotene; dxs:
1-deoxy-D-xylulose 5-phosphate synthase; idsA: geranylgeranyl pyrophosphate synthase; crtE: ger-
anylgeranyl pyrophosphate synthase; crtB: phytoene synthase, crtI: phytoene desaturase; crtEb:
lycopene elongase; crtYe/f : ε-cyclase; crtYg/h Ml: C50 carotenoid γ-cyclase from Micrococcus leuteus;
lbtBCDs: subunit of C50 carotenoid β-cyclase (B) and lycopene elongase (C) from Dietzia sp. CQ4;
lbtABDs: C50 carotenoid β-cyclase from Dietzia sp. CQ4; crtYPa: lycopene cyclase from Pantoea
ananatis; crtWFp: β-carotene ketolase from Fulvimarina pelagi; crtZFp: β-carotene hydroxylase from
Fulvimarina pelagi.

C. glutamicum has been engineered for utilization of agricultural sidestreams [77].
This is relevant since the bacterium is used for decades in the production of amino acids
at the million ton scale [78]. The flexible feedstock concept for C. glutamicum comprises
efficient utilization for growth and production of a number of compounds, for instance,
the lignocellulosic sugars arabinose [79,80] and xylose [81–84], the chitin derived amino
sugars glucosamine [85] and N-acetyl-glucosamine [86]. Furthermore, also less processed
substrates, such as chitin [87], and hydrolysates of plant biomass, such as rice straw or
wheat bran [88–90], and sidestreams from biodiesel factories [91], biorefineries [92], or the
starch and paper industry [93,94] were harnessed as carbon sources for C. glutamicum.

Here, we studied if a sidestream from a Norwegian salmon farm, operated as a RAS,
can be utilized as component of the growth medium to support growth and carotenoid
production by C. glutamicum.
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2. Results
2.1. Analysis of the Untreated Aquaculture Sidestream

The liquid phase of an aquaculture sidestream from a Norwegian RAS salmon farm
was analyzed regarding its physical parameters and nutrient composition in order to
get insights about which components of the standard minimal growth medium CGXII
of C. glutamicum might be substitutable by the aquaculture sidestream. The aquaculture
sidestream has a pH of 5.5, and a dry matter fraction of 16.5 g L−1. In a loss on ignition
analysis an organic fraction could not be detected (detection limit 0.1% (w/w) of dry
matter fraction). The nutrient analysis of the aquaculture sidestream (Figure 2) showed
that nitrogen (8 g L−1) is the major macronutrient present in the aquaculture sidestream,
followed by potassium (3 g L−1 K, 3 g L−1 K2O) and sulphate (2 g L−1). Furthermore,
elemental sulfur, phosphorus, calcium, zinc, and boron were detected. The analysis also
covered ammonium derived nitrogen (NH4-N) (<1 g L−1), P2O5 (<3 g L−1), CaO (<2 g L−1),
Mg (<1 g L−1), MgO (<2 g L−1), Mn, Cu, and Mo (all <0.0000485 g L−1), but these nutrients
could not be detected.
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Figure 2. Nutrient composition of the aquaculture sidestream. Macro- and Micro-nutrients de-
tected in an analysis of the untreated aquaculture sidestream performed by Eurofins Agraranalytik
Deutschland GmbH. Nutrients below the detection limit are not represented.

Furthermore, the amino acid and amine composition of preprocessed aquaculture
sidestream (AQ) was analyzed via HPLC. The results (Table S1) display that besides
proteinogenic amino acids, the non-proteinogenic ω-amino acid 5-aminovaleric acid (5-
AVA), and the diamines putrescine and cadaverine are present in AQ. The concentrations
of the proteinogenic amino acids range from 0.5 to 10.7 mg L−1, while 5-AVA (76 mg L−1),
putrescine (62 mg L−1), and cadaverine (53 mg L−1) are present in higher concentrations.

Moreover, an ion exchange chromatography (detection with a RID at λ = 210 nm)
analysis of AQ was performed via HPLC (Figure S2). Four Peaks were detected. How-
ever, none of the peaks could be identified. Glucose, malate, lactate, trehalose, succinate,
and α-ketoglutarate were used as standards and can therefore be excluded as possible
carbohydrate components of the AQ.

2.2. Growth in Various Media Based on or Supplemented with AQ

In order to use the aquaculture sidestream as a growth medium component, it was
preprocessed. Centrifugation and subsequent sterile filtration (Section 4.1) were applied
to obtain a clear liquid. C. glutamicum WT was used to verify if AQ as a new complex
media component is compatible with growth. Therefore, cultivations in different media
compositions were performed in a Biolector® microcultivation system. Addition of AQ to
the standard minimal growth medium CGXII to 20% (v/v) led to significantly increased
biomass formation (from OD600 nm 52.0 ± 0.9 to 62.0 ± 0.8) and decaprenoxanthin content
(from 1.1 ± 0.2 to 1.6 ± 0.0 mg L−1), while the growth rate was only slightly reduced
(Figure 3A). To elucidate which components of CGXII could be replaced by the complex
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media component AQ, each component of the CGXII media composition was substituted
by 20% (v/v) AQ (Figure 3A). Replacement of the CGXII components CaCl2, MgSO4,
biotin, protocatechuic acid (PCA), or trace elements by AQ led to comparable biomass
formation and growth rates compared to CGXII with addition of 20% (v/v) AQ. This
indicated that addition of 20% (v/v) AQ is sufficient to replace these components of CGXII.
However, replacing PCA or trace elements with 20% (v/v) AQ significantly increased
decaprenoxanthin production (plus 58% for PCA; plus 155% for trace elements). The
addition of AQ instead of phosphorous reduced biomass formation (∆OD600 nm of 50 ± 3.7;
minus 19%), but decaprenoxanthin production was comparable. The replacement of
nitrogen had the strongest negative effect: biomass formation was reduced to one-fifth
(∆OD600 nm of 10 ± 0.3), the maximal growth rate by one-third (0.3 ± 0.0 h−1), and the
decaprenoxanthin production by more than half (0.5 ± 0.0 mg L−1) compared to CGXII.
To test whether AQ could function as a carbon source for C. glutamicum, the standard
carbon source glucose was replaced by 5%, 10%, 20%, or 40% (v/v) AQ (Figure 3B). In all
cases growth was observed, but even with the addition of 40% (v/v) AQ only one-sixth of
biomass formation (∆OD600 nm of 8.0± 0.0) was observed (Figure 3B). These results indicate
that AQ can only partially substitute for the carbon and nitrogen sources of CGXII medium.

Second, we tested if C. glutamicum WT could grow with 20% (v/v) AQ (adjusted to
pH 7) as sole medium component. However, the biomass and decaprenoxanthin forma-
tion were negligible (Figure 3C). When MOPS buffer (42 g L−1, adjusted to pH 7) and
glucose were added, some growth (∆OD600 nm of 10 ± 0.2) and decaprenoxanthin produc-
tion (0.4 ± 0.0 mg L−1) were detected (Figure 3C). The addition of the nitrogen sources
ammonium sulfate and/or urea increased biomass formation to ∆OD600 nm of 34 ± 2.3,
38 ± 0.5 and 36 ± 2.1 for ammonium sulfate, urea, and both, respectively. Regarding
decaprenoxanthin production, a significant increase was observed upon addition of urea
alone (3.3 ± 0.1 mg L−1), or combined with ammonium sulfate (3.5 ± 0.1 mg L−1). The
decaprenoxanthin titer was 3-fold higher than from the standard CGXII medium.

Third, we developed an AQ based growth medium for carotenoid production with
C. glutamicum, in which all components that could be replaced by AQ without reducing
biomass formation or decaprenoxanthin production (CaCl2, MgSO4, biotin, trace elements,
and PCA) were omitted. The new medium was named CGAQ, and it contained 20% (v/v)
AQ, 42 g L−1 MOPS buffer, 40 g L−1 glucose, 20 g L−1 (NH4)2SO4, 5 g L−1 urea, 1 g L−1

K2HPO4, and 1 g L−1 KH2PO4). Growth of C. glutamicum was supported by the medium
CGAQ (Figure 3C). The biomass formation in CGAQ was comparable to the culture grown
in CGXII, even though the growth rate dropped from 0.45 ± 0.02 h−1 to 0.27 ± 0.01 h−1.
Notably, a more than doubled decaprenoxanthin content of 2.6 ± 0.2 mg L−1 was observed
using medium CGAQ.

Taken together, we have developed two growth media using AQ that are suitable for
C. glutamicum: CGAQ and the regular CGXII minimal medium supplemented with 20%
(v/v) AQ.

2.3. Carotenoid Production in AQ Supplemented Media

As the new AQ based medium CGAQ more than doubled the decaprenoxanthin
production, we further tested its impact on the production of other carotenoids. Therefore,
we performed production experiments in the Biolector® microcultivation system using
strains overproducing various carotenoids. Strain ASTA* produces astaxanthin while
ASTALYS* (strain construction see Section 4.4) is producing astaxanthin along with L-
lysine. Strains LYC6, BETA4, ZEA5, and CAN5 (strain construction of ZEA5 and CAN5
see Section 4.4) produce the astaxanthin precursors lycopene, β-carotene, zeaxanthin, and
canthaxanthin, respectively. Furthermore, we chose strains MB001∆crtR, BABR1, CP1,
and SAX1 for production of the C50 carotenoids decaprenoxanthin, BABR, C.p.450, and
sarcinaxanthin, respectively. All strains were grown either in CGXII, CGXII supplemented
with 20% (v/v) AQ or CGAQ (Figures 4, S3 and S4).
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decaprenoxanthin production after 48 h of C. glutamicum WT grown in a Biolector®  flowerplate 
Figure 3. Growth of C. glutamicum WT in AQ containing media. ∆OD600 nm, µmax, and decaprenox-
anthin production after 48 h of C. glutamicum WT grown in a Biolector® flowerplate microcultivation
system. The maximal OD600 nm difference from the initial OD600 nm during 48 h of cultivation is given
as ∆OD600 nm. Values and error bars represent means and standard deviations of triplicate cultiva-
tions. Statistical significance in comparison to the cultivation in CGXII medium was assessed for
∆OD600 nm (marked in green) and decaprenoxanthin production (marked in black) in Student’s t-test
(*** p < 0.0001, ** p < 0.001, * p < 0.05). (A) Growth on CGXII, CGXII with addition of 20% (v/v) AQ
and CGXII with 20% (v/v) AQ replacing media components of the CGXII composition. (B) Growth
on CGXII without carbon source, 5 to 40% (v/v) AQ were supplemented as replacement. (C) Growth
on AQ as the sole medium component, with adjustment to pH 7 and the addition of MOPS buffer,
glucose, (NH4)2SO4, and/or urea and phosphorous source (P). The last column represents the AQ
based medium CGAQ.

Decaprenoxanthin and biomass formation by MB001∆crtR were increased in CGAQ
(55.1± 1.8 mg L−1 decaprenoxanthin; plus 13%), but reduced by supplementation of CGXII
with 20% (v/v) AQ (Figure 4). Lycopene formation by LYC6 in CGAQ (8.7 ± 0.4 mg L−1)
was comparable to the one in CGXII, but was reduced by 24% when AQ was supplemented.

Production of BABR by strain BARBR1 was increased by supplementation of CGXII
with 20% (v/v) AQ (13.7 ± 1.2 mg L−1; plus 17%), and further improved in CGAQ
(20.3 ± 1.6 mg L−1; plus 73%), while the biomass formation was decreased in CGAQ.
Production of two other non-native C50 carotenoids C.p.450 and sarcinaxanthin by strains
CP1 and SAX1, respectively, was reduced in CGAQ as was biomass formation. However,
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upon addition of AQ to CGXII, carotenoid production increased considerably: plus 280%
C.p.450 (47.5 ± 1.2 mg L−1), and plus 360% sarcinaxanthin (72.3 ± 4.3 mg L−1).
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Figure 4. Carotenoid production of C. glutamicum strains in AQ supplemented media. Carotenoid
production of C. glutamicum MB001∆crtR (decaprenoxanthin), LYC6 (lycopene), CP1 (C.p.450), BABR1
(bisanhydrobacterioruberin), SAX1 (sarcinaxanthin), BETA4 (β-carotene), ZEA5 (zeaxanthin), CAN5
(canthaxanthin), ASTA* (astaxanthin) grown on CGXII, CGXII supplemented with 20% (v/v) AQ,
or the AQ derived medium CGAQ for 48 h. Values and error bars represent means and standard
deviations of triplicate cultivations. Statistical significance in comparison to the cultivation of each
strain in CGXII medium was assessed in Student´s t-test (*** p < 0.0001, ** p < 0.001, * p < 0.05).

A similar pattern was observed for production of astaxanthin and its precursors
by BETA4, ZEA5, CAN5, and ASTA*, respectively. In CGAQ, these strains exhibited
reduced biomass and carotenoid formation. By contrast, the addition of AQ to CGXII
had a positive impact on biomass formation and carotenoid production. While the slight
increases in production of β-carotene (127.4 ± 2.7 mg L−1; plus 6%) and canthaxanthin
(3.0 ± 0.2 mg L−1; plus 5%) were not significant compared to CGXII, considerable and
statistically significant increases were observed for zeaxanthin (0.6 ± 0.0 mg L−1; plus
173%) and astaxanthin (7.4 ± 0.1 mg L−1; plus 213%).

The strain that co-produces astaxanthin with lysine, ASTALYS*, showed very low
biomass formation compared to the other carotenoid production strains, which increased
significantly upon addition of AQ to the medium (5.6 ± 0.2; plus 393%) or in the CGAQ
medium (4.0 ± 0.2; plus 246%). Strain ASTALYS* showed 1.5-fold increased astaxanthin
production (0.3 ± 0.0 mg L−1) upon addition of AQ to CGXII. Lysine production was
increased 1.8-fold in CGAQ (1.40 ± 0.03 g L−1), and more than 6-fold (5.52 ± 0.14 g L−1)
upon supplementation of CGXII with AQ.

For all strains, changes in the total carotenoid content (Figure S3) were observed.
In case of strains MB001∆crtR, LYC6, and BETA4, all precursors were converted to de-
caprenoxanthin, lycopene and β-carotene, respectively. Here, changes in total carotenoids
arose solely from changes in the respective product. In the other strains conversion of the
precursors e.g., lycopene and β-carotene was incomplete, and therefore changes in the total
carotenoid contents result from changes in product and precursor contents.

Taken together, the usage of AQ as a media component showed a positive effect
on the carotenoid production by C. glutamicum. Notably, while production of the native
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carotenoid decaprenoxanthin was increased in CGAQ, supplementation of 20% AQ to
CGXII improved production of most other carotenoids, in particular astaxanthin.

2.4. Fermentative Production of Astaxanthin in AQ Supplemented Media

After having shown that astaxanthin production by C. glutamicum ASTA* was en-
hanced by the addition of 20% (v/v) AQ to CGXII medium in microcultivation, lab-scale
bioreactors (2 L) were used to test if this improvement was stable at larger scale. Two paral-
lel 2 L batch fermentations using C. glutamicum ASTA* were performed. They contained
either CGXII medium (Figure 5A) or CGXII plus 20% (v/v) AQ (Figure 5B). After 16 h,
both cultures reached the stationary phase. The biomass formation was higher upon AQ
supplementation (∆OD600 nm of 58 as compared to 46), as was the growth rate (0.31 h−1

compared 0.24 h−1). In CGXII, astaxanthin accumulated to a cellular content of 0.38 mg g−1

cell dry weight (CDW) (equivalent to 3.12 mg L−1) during 77 h, with a maximal volumetric
productivity of 0.05 mg L−1 h−1 (Figure 5A). Upon AQ supplementation, the maximum as-
taxanthin concentration of 4.51 mg L−1 (cellular content of 0.44 mg g−1 CDW) was reached
already after 61 h, increasing the maximal volumetric productivity to 0.09 mg L−1 h−1

(Figure 5B). Thus, astaxanthin production was considerably improved regarding titers and
volumetric productivities in bioreactor batch cultivation indicating that the beneficial effect
of AQ supplementation is transferable to larger scales under defined bioreactor conditions.

With the aim to improve astaxanthin production in bioreactor cultivation, fed-batch
fermentations were performed. In a comparison, 1 L CGXII with 20% (v/v) AQ medium
was used as a batch medium, and either 600 mL CGXII concentrate or CGXII concentrate
supplemented with 20% (v/v) AQ were used as feed medium (Figure S5). Both cultures
reached the stationary phase after about 32 h with comparable growth rates (0.21 h−1 for
CGXII concentrate as feed, 0.19 h−1 for CGXII concentrate with 20% (v/v) AQ as feed).
With CGXII concentrate as feed, a maximal ∆OD600 nm of 206, and an astaxanthin concen-
tration of 6.1 mg L−1 (cellular content of 0.15 mg g−1) accumulated during 64 h with a
maximum productivity of 0.10 mg L−1 h−1 (Figure S5A). When AQ was added to the feed,
the ∆OD600 nm was 208 and an astaxanthin concentration of 3.8 mg L−1 (cellular content
of 0.08 mg g−1 CDW) accumulated during 64 h with a maximum volumetric productivity
of 0.08 mg L−1 h−1 (Figure S5B). Therefore, the beneficial effect of AQ supplementation is
stable at larger scales, at least in the batch phase. However, additional supplementation
of AQ via the feed did not further increase production. H3PO4 was used as acid for pH
adjustments in all fermentations. The H3PO4 consumption during both batch fermentations
was comparable, as was the consumption during both fed-batch fermentations. Therefore,
the addition of H3PO4 did not lead to significant differences in the phosphorus source com-
position of the cultivation media, and all occurring effects can be attributed to the presence
or absence of AQ in the medium. The total carotenoid content was more than doubled in
both fed-batch fermentations (max. 72.7 mg L-1 when fed with CGXII concentrate, and max.
106 mg L−1 when fed with CGXII concentrate plus 20% (v/v) AQ, respectively) compared
to the batch fermentations (max. 24.8 mg L-1 in CGXII and max. 30.3 mg L-1 in CGXII plus
20% (v/v) AQ) (Figure S6). Thus, the best conditions for astaxanthin production using AQ
by C. glutamicum strain ASTA* required supplementation of 20% (v/v) AQ in the batch
phase, but not during the feeding phase.
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Figure 5. Batch-Fermentations. Progression of astaxanthin content (red squares), OD600 nm (green
dots), agitator speed (grey line), and relative dissolved oxygen concentration (rDOS) (blue line) over
time during 2 L batch fermentations with C. glutamicum ASTA* grown in CGXII medium (A) and
CGXII medium supplemented with 20% (v/v) AQ (B).

3. Discussion

In this study, a promising example with potential for the circular economy was pre-
sented. The liquid phase of a sidestream from a recirculating aquaculture system for salmon
served as a sustainable feedstock for C. glutamicum. Fermentative production of several
carotenoids, including the aquaculture feed ingredient astaxanthin was increased by usage
of AQ.

Growth of C. glutamicum was supported by AQ as the sole medium component.
However, it was a poor source of carbon and nitrogen. The addition of glucose, urea,
and/or ammonium sulfate restored the growth to levels comparable with the standard
medium. While L-glutamine, L-glutamate and a number of other amino acids present in
AQ, e.g., L-alanine, L-asparagine, L-serine, and L-threonine, can be used as nitrogen sources



Molecules 2023, 28, 1996 10 of 21

by C. glutamicum [95], their concentration was comparatively low. Other amines present in
AQ, such as putrescine, cadaverine, and 5-AVA, cannot be utilized as nitrogen sources by
C. glutamicum [96–98]. Likely, nitrites and nitrates are present in AQ. C. glutamicum is able to
metabolize nitrate to nitrite as part of a respiratory chain [99,100]; however, neither is used
as a nitrogen source. In RAS, nitrogen is typically removed from the circulating water, e.g.,
by biofilter arrangements containing microbial communities of nitrifying and denitrifying
microorganisms [101,102]. Prior to the demonstration that AQ supported growth and
carotenoid production by C. glutamicum, it was reported that the supplementation of an
aquaculture sidestream with aquaculture sludge improved growth and omega-3 fatty acid
production of an algal co-cultivation [21].

Carotenoid production by C. glutamicum was improved by supplementation with AQ.
However, since AQ is a complex source of macro- and micro-elements, it is very difficult to
speculate which component(s) cause the improvement. It is tempting to hypothesize that
trace elements may be involved as several enzymes of carotenogenesis use metal ions as
cofactors. For example, prenyltransferases use divalent metal ions, such as Mg2+ and Mn2+

as cofactors [103–105]. In C. glutamicum, the geranylgeranyl pyrophosphate synthases IdsA
and CrtE require Mg2+ for their activity [106]; however, Mg and MgO concentrations in AQ
were below the detection limit (<3 g L−1). It is not known whether the substrate specificities
of the prenyltransferases used here (IdsA, CrtE, CrtB, CrtEb, or LbtBC) are affected when
Mg2+ is replaced by Mn2+, as was recently observed for a flavonoid prenyltransferase from
Artocarpus heterophyllus [107]. Ferredoxin is involved as an electron carrier in several steps
of decaprenoxanthin biosynthesis in C. glutamicum. For example, 28 reduced ferredoxins
are required for the biosynthesis of the isoprenoid diphosphate precursors DMAPP, IPP
and HMBPP, while their conversion to decaprenoxanthin yields only three reduced ferre-
doxins [61]. For the biosynthesis of zeaxanthin and astaxanthin, four additional reduced
ferredoxins are required for the reactions catalyzed by CrtZ [108]. These iron-sulfur cluster
containing enzymes of carotenoid biosynthesis have a high demand for sulfur and iron to
be provided by the medium. In this respect, it is noteworthy that supplementation with
AQ (containing 1 g L−1 S and 2 g L−1 SO4) increased sulfur availability. Taken together the
diverging effects of AQ supplemented CGXII and CGAQ on the production of the tested
native and heterologous carotenoids prompt that the production of each carotenoid may
be improved by optimization of the (trace) element composition of the growth medium.
Earlier studies in carotenoid producing yeast [109,110] and bacteria [111,112] suggest that
the optimum concentration ratios for trace elements have to be evaluated with regards to
the production host, the involved enzymes, their cofactors, and further reaction partners.

Bacterial astaxanthin production from AQ was demonstrated here for the first time.
Previously, sidestream derived astaxanthin production was described for the yeast Xantho-
phyllomyces dendrorhous. Cultures of X. dendrorhous produced up to 9.69 µg L−1 astaxanthin
when grown for five days on pre-treated whey, a sidestream of the dairy industry (volumet-
ric productivity of 0.08 µg L−1 h−1), and up to 1.88 mg L−1 astaxanthin when cultivated in
a fruit and vegetable waste derived medium for 7 days (0.01 mg L−1 h−1) [113]. Moreover,
26 mg L−1 astaxanthin were produced by X. dendrorhous after about 200 h of cultivation
(0.13 mg L−1 h−1) in a partially-saccharified mussel wastewater [114]. In a co-cultivation of
the bacterium Bacillus subtilis and the alga H. pluvialis for astaxanthin production from a
starch-containing sidestream of a potato processing plant a titer of 8 mg L−1 astaxanthin
was achieved after 350 h of cultivation (0.02 mg L−1 h−1) [115]. Our study revealed a much
faster astaxanthin production (7.4 mg L−1 in 48 h; 0.15 mg L−1 h−1) upon supplementation
with AQ and partially also higher titers than those achieved by X. dendrorhous. The yeast
P. rhodozyma produced about 130 mg L−1 astaxanthin after 120 h by direct fermentation of
food wastes (1.08 mg L−1 h−1) [116]. On stillage media derived from bagasse-based ethanol
fermentation of S. cerevisiae, about 18 mg L−1 astaxanthin accumulated within one week
of fermentation (0.10 mg L−1 h−1) [117]. Both sidestreams are much richer as compared
to the AQ used in this study. The total carotenoid concentrations of up to about 0.1 g L−1

observed in this study may indicate that more astaxanthin can be produced if all precursor
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carotenoids are converted to astaxanthin. This may be approached by adjusting the copy
number and/or expression levels of crtZ and crtW as previously demonstrated for E. coli
and S. cerevisiae [118,119].

In aquatic feeds, bacterial biomass proved to be a sustainable, protein rich substrate
to partially or completely replace traditional protein sources, such as fish meal [120]. In
aquaculture feed formulations, phototrophic purple bacteria [121,122], lactic acid bacte-
ria [123], and methanotrophic bacteria [124,125] have been used. Feeding whole cells of
C. glutamicum to fish or crustaceans may be an option to provide astaxanthin and additional
components relevant as feed additives. For this application, the strain ASTALYS* may be
beneficial as it secretes L-lysine to the culture medium and accumulates astaxanthin in the
cells [126]. Lysine typically is deficient in aquatic feeds [127,128] and astaxanthin is used in
flesh and/or shell coloration of several aquaculture reared fish and crustaceans [24,127].
Whole cells obtained by spray-drying fermentation broth of L-lysine producing C. glutam-
icum were already commercialized for poultry feeds [95]. Thus, spray-dried fermentation
broth of C. glutamicum ASTALYS* may support growth of poultry and coloration of egg
yolks. In this regard, it has to be noted that several amino acid producing C. glutamicum
strains have been approved by the European Food Safety Authority (EFSA) as a feed addi-
tive for all animal species [129]. Today, the establishment of a circular economy-based fish
farm, including fish tanks and bioreactors, might be visionary. However, on-site production
of the fish feed ingredients by cultivation of bacteria and algae on the sidestreams from the
fish tanks would not only reduce the energy consumption of RAS due to reduced transport
of feed ingredients [7], but would be one step closer towards a sustainable society.

4. Materials and Methods
4.1. Preprocessing of the Aquaculture Sidestream

The aquaculture sidestream was collected from the sump of a post-smolt RAS for
salmon operated by Lumarine AS (Tjeldbergodden, Norway) outside of Trondheim (Norway).
A plastic canister was filled with aquaculture sidestream, and was left to settle by grav-
itation for 0.5 h. The supernatant (liquid aquaculture sidestream) was thereafter gently
poured off, frozen (−20 ◦C), and transported to our research facility in Bielefeld (Germany).
The liquid aquaculture sidestream was defrosted, stirred, and frozen (−20 ◦C) in smaller
containers until further use. Preprocessing of the liquid aquaculture sidestream in order
to use it as a growth medium component was implemented by a 90 min centrifugation
step at 4000 rpm and subsequent sterile filtration of the supernatant. The filtration was
performed with a vacuum driven Steritop® (Millipore, Burlington, MA, USA) with 0.22 µm
pore diameter. The resulting AQ was used in the growth experiments.

4.2. Microorangisms and Cultivation Conditions

Strains and plasmids used in this study and their characteristics and references are
listed in Table 1. Chemicals were delivered by Carl Roth (Karlsruhe, Germany), if not
stated differently. Precultures were grown in 100 mL or 500 mL shake flasks at 30 ◦C and
120 rpm, or 37 ◦C and 180 rpm for C. glutamicum or E. coli respectively. Precultures of E. coli
DH5α, C. glutamicum ATCC 13032, and derived strains were grown in LB medium [130].
C. glutamicum ASTALYS* precultures were grown in BHIS (37 g L−1 BHI, 91 g L−1 Sorbitol)
supplemented with 10 g L−1 glucose. For main cultures CGXII minimal medium (20 g L−1

(NH4)2SO4, 1 g L−1 K2HPO4, 1 g L−1 KH2PO4, 5 g L−1 urea, 42 g L−1 MOPS buffer,
0.2 mg L−1 biotin, 30 mg L−1 PCA, 10 mg L−1 CaCl2, 250 mg L−1 MgSO4·7 H2O, trace
elements: 10 mg L−1 FeSO4·7 H2O, 10 mg L−1 MnSO4·H2O, 0.02 mg L−1 NiCl2·6 H2O,
0.313 mg L−1 CuSO4·5 H2O, and 1 mg L−1 ZnSO4·7 H2O) [95] supplemented with 40 g L−1

glucose was used as a control. Comparisons of AQ-based or -supplemented media were
carried out using 20% (v/v) AQ. When appropriate, 25 µg mL−1 kanamycin, 100 µg mL−1

spectinomycin, and 1 mM IPTG were added to the medium. Cultures were inoculated to
an initial OD600 nm of 1 after washing in TN buffer (50 mM Tris, 50 mM NaCl and pH 6.3).
For OD measurements a Shimadzu UV-1202 spectrophotometer (Duisburg, Germany) was
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used. Growth experiments were conducted in 1 mL scale with gas permeable sealing foil
in a flowerplate of the Biolector® microcultivation system (m2p-labs GmbH, Baesweiler,
Germany) at 30 ◦C and 1100 rpm in triplicates.

Table 1. Strains and plasmids used in this study.

Strain/Plasmid Characteristics Reference

Escherichia coli DH5α F- thi−1 endA1 hsdR17(r-, m-) supE44 ∆lacU169 (Φ80lacZ∆M15) recA1 gyrA96 [131]
Fulvimarina pelagi Type strain, HTCC 2506; DSM No. 15513 [132]

Corynebacterium glutamicum strains
WT wild type, ATCC 13032 [133]

MB001 ATCC 13032 with in-frame deletion of prophages cgp1 (cg1507-cg1524), cgp2 (cg1746-cg1752),
cgp3 (cg1890-cg2071) [134]

MB001∆crtR MB001 derivative with deletion of crtR (cg0725) [57]

LYC5 MB001 derivative with deletion of crtYefEb (cg0717-cg0719), and chromosomal integration of
Ptuf -dxs and Ptuf -crtEBI [58]

LYC6 LYC5 derivative with deletion of crtR (cg0725) [57]
BABR1 LYC5 carrying pVWEx1_lbtBC and pEKEx3_sigA [56]

CP1 LYC6 carrying pEKEx3_lbtABC [57]
SAX1 LYC6 carrying pEKEx3_crtE2Y [57]

BETA4 LYC6 with chromosomal integration of crtY from P. ananatis under the control of tuf promotor [57]
ZEA5 BETA4 carrying pSH2_crtZFp this work
CAN5 BETA4 carrying pSH2_crtWFp this work
ASTA* BETA4 carrying pSH1_crtZ~WFp [46]

BETALYS GRLys1 with the following modifications: ∆ldhA (cg3219), ∆sugR (cg2115), ∆crtR (cg0725),
∆crtYefEb (cg0717-cg0719), chromosomal integration of Ptuf -crtEBI and Ptuf -crtYPa

[126]

ASTALYS* BETALYS carrying pSH1_crtZ~WFp this work
Plasmids

pEKEx3_sigA SpecR; pBL1 oriVCg, E. coli/C. glutamicum shuttle vector; for IPTG-inducible expression of
sigA from C. glutamicum

[135]

pEKEx3_crtE2Y SpecR; pBL1 oriVCg, E. coli/C. glutamicum shuttle vector; for IPTG-inducible expression of
crtE2 and crtYg/h from M. luteus containing an artificial ribosome binding site in front of crtE2

[48]

pEKEx3_lbtABC
SpecR; pBL1 oriVCg, E. coli/C. glutamicum shuttle vector for IPTG-inducible expression of

codon optimized lbtABC from Dietzia sp. CQ4 containing artificial ribosome binding sites in
front of each gene

[48]

pVWEx1_lbtBC KmR; pCG1 oriVCg, E. coli/C. glutamicum shuttle vector for IPTG-inducible expression of
lbtBC from Dietzia sp. CQ4

[56]

pSH1_crtZ~WFp
KmR; pHM519 oriVCg; E. coli/C. glutamicum shuttle vector, Ptuf, encoding a fusion protein

comprising CrtZ and CrtW from F. pelagi
[46]

pSH2 pSH1 derivative with mutation in repA this work
pSH2_crtZFp pSH2 derivative for constitutive expression of crtZ from F. pelagi this work
pSH2_crtWFp pSH2 derivative for constitutive expression of crtW from F. pelagi this work

4.3. Fermentative Production

A glass bioreactor with a total volume of 3.7 L (KLF, Bioengineering AG, Switzerland)
was used for the fermentations. Two six-bladed Rushton turbines were placed on the
stirrer axis with a distance of 6 cm and 12 cm from the bottom of the reactor. A mechanical
foam breaker was installed on the stirrer axis with a distance of 22 cm to the bottom of the
reactor. The stirrer to reactor diameter ratio was 0.39, and the aspect ratio of the reactor
was 2.6:1.0. A steady airflow of 1 NL min−1 was maintained from the bottom through a
ring-sparger. The fermentations were performed with a head space overpressure of 0.3 bar.
An automatic control of the stirrer speed between 400 rpm and 1500 rpm kept the relative
dissolved oxygen saturation (rDOS) at 30%. The temperature was kept at 30 ◦C, and a
pH of 7.0 was automatically maintained by the addition of 10% (v/v) H3PO4 and 4 M
KOH. For inoculation a first pre-culture was grown in 10 mL LB medium with addition of
10 g L−1 glucose and 25 µg mL−1 kanamycin in a 100 mL shake flask. A second pre-culture
in 200 mL CGXII medium with addition of 40 g L−1 glucose and 25 µg mL−1 kanamycin
in a 2 L shake flask was inoculated to an OD600 nm of 1. For the batch fermentation an
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initial working volume of 2 L was inoculated to an OD600 nm of 2 from the second pre-
culture. The fed-batch fermentations were performed with an initial working volume of
1 L, inoculated to an OD600 nm of 2 with the second pre-culture. An amount of 600 mL
feed medium (CGXII concentrate) was used with the following formulation: 433.7 g L−1

glucose, 34.4 g L−1 (NH4)2SO4, 8.7 g L−1 K2HPO4, 8.7 g L−1 KH2PO4, 8.6 g L−1 Urea,
5.2 g L−1 MgSO4·7 H2O, 100 mg L−1 FeSO4·7 H2O, 100 mg L−1 MnSO4·H2O, 0.2 mg L−1

NiCl2·6 H2O, 3.13 mg L−1 CuSO4·5 H2O, 10 mg L−1 ZnSO4·7 H2O, 1 mg L−1 Biotin, and
6 mL L−1 Antifoam 204. If indicated, 20% (v/v) AQ was added to this feed formulation. A
steady airflow of 0.5 NL min−1 was maintained from the bottom through a ring sparger
for the first 24 h of cultivation, afterwards the airflow was increased to 1 NL min−1. The
feed was primed when the rDOS fell below 30% for the first time. The feed pump activated
every time the rDOS exceeded 60% and stopped when it subsequently fell below 60%,
to prevent oversaturation with glucose. Foam formation during the fermentation was
reduced by addition of antifoam 204 controlled via an antifoam probe. Samples during
the fermentations were collected with an autosampler and cooled down to 4 ◦C until
further use.

4.4. Recombinant DNA Work

The pSH2 expression vector was constructed by site-directed mutagenesis of the repA
gene in the pSH1 vector. This mutation (exchange of Gly at position 429 of RepA protein
by Glu) resulted in an increased plasmid copy number. Site-directed mutagenesis was
performed via plasmid backbone amplification (primer HA36 + HA37; see Table 2) with
Pfu Turbo DNA Polymerase (Agilent, Santa Clara, CA, USA). The plasmids pSH2_crtZFp
and pSH2_crtWFp were constructed in E. coli DH5α on the basis of pSH2. Polymerase chain
reaction (PCR) fragments of crtZFp and crtWFp were generated from Fulvimarina pelagi using
the primers HA34 + HA35, and FpW1 + FpW4, respectively. The PCR products were cloned
into the BamHI (Thermo Fisher Scientific, Waltham, MA, USA) digested pSH2 vector by
Gibson assembly [136]. The CaCl2-competent E. coli DH5α were prepared and transformed
via heat shock [137]. Transformants were screened by colony PCR using the primers PD5
and 582. Plasmid isolates were prepared with a plasmid miniprep kit (GeneJet, Thermo
Fisher Scientific, Schwerte, Germany), and confirmed via sequencing with primers PD5 and
582. C. glutamicum strains were transformed by electroporation [138]. For the construction
of ASTALYS*, BETALYS [126] was transformed with pSH1_crtZ~W [46].

Table 2. Oligonucleotides used in this study.

Oligonucleotide Sequence (5′→3′)
HA36 AAAATCGCTTGACCATTGCAGGTTG
HA37 CTTTAGCTTTCCTAGCTTGTCGTTGAC

HA34 CATGCCTGCAGGTCGACTCTAGAGGAAAGGAGGCCCTTCAGATGACG-
ATCTGGACTCTCTACTAC

HA35 ATTCGAGCTCGGTACCCGGGGATCTTACCGAACCGGCGCGT

FpW1 CATGCCTGCAGGTCGACTCTAGAGGAAAGGAGGCCCTTCAGATGACCC-
TCAGCCCAACCTC

FpW4 ATTCGAGCTCGGTACCCGGGGATCTTAGGACTGGCGAGTATGCG
PD5 CGCTCACCGGCTCCAGATTTATCAG
582 ATCTTCTCTCATCCGCCA

4.5. Quantification of Macro- and Micronutrients

A 1·10−2 dilution of the untreated liquid aquaculture sidestream in water was sent to
Eurofins Agraranalytik Deutschland GmbH (Jena, Germany) to analyze the pH, organic
substance content, and total nitrogen, ammoniacal nitrogen, phosphorous, phosphorous
as P2O5, potassium, potassium as K2O, magnesia, magnesia as MgO, calcium, calcium as
CaO, sulfur, sulfur as SO4, boron, manganese, molybdenum, copper, and zinc content of
the untreated liquid aquaculture sidestream.
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4.6. High-Performance Liquid Chromatography (HPLC) Analysis

For all HPLC analysis an Agilent 1200 series system (Agilent Technologies Deutschland
GmbH, Böblingen, Germany) was used. Culture samples (200 or 500 µL) were centrifuged
at 14,000 rpm for 10 min, the supernatants and pellets were stored separately at −20 ◦C
until analysis.

4.6.1. Quantification of Amino Acids and Amines

For the analysis of extracellular amino acids and their derivatives 5 µL sample and
an automatic pre-column derivatization with ortho-phthaldialdehyde (OPA) were used
with a reversed-phase main column (LiChrospher 100 RP18 EC-5, 125 × 4.6 mm; CS-
Chromatographie Service GmbH, Langerwehe, Germany). L-asparagine was used as an
internal standard. The separation was achieved at 40 ◦C with 0.25% (v/v) sodium acetate
(pH 6.0) (A) and methanol (B) as mobile phases, with the following gradient and flow profile:
0 min 20% B 0.7 mL min−1, 3 min 38% B 0.7 mL min−1, 6 min 42% B 0.1 mL min−1, 7 min
46% B 0.7 mL min−1, 14.5 min 70% B 1.2 mL min−1, 14.8 min 75% B 1.2 mL min−1, 16.8 min
85% B 1.2 mL min−1, 17.8 min 20% B 1.2 mL min−1, and 19.5 min 20% B 1.2 mL min−1

adapted from [139]. The fluorescent derivatives were detected using a fluorescence detector
with an excitation wavelength of 230 nm, and an emission wavelength of 450 nm.

4.6.2. Quantification of Carbohydrates and Organic Acids

The carbohydrates in the cultivation medium were quantified with an organic acid
resin column (Aminex, 300 mm × 8 mm, 10 µm particle size, 25 Å pore diameter; CS-
Chromatographie Service GmbH, Langerwehe, Germany) under isocratic conditions with
a flow of 0.8 mL min−1 as described previously [80]. The analytes were detected using a
refractive index detector (RID) and a diode array detector (DAD) at 210 nm.

4.6.3. Quantification of Carotenoids

The analysis of carotenoids was performed as previously described [61]. Samples
were extracted until the remaining pellet of cell debris was colorless; no further analysis
in regards to recovery percentage and purity of the extracted carotenoids was performed.
Carotenoid analysis was performed for all growth and production experiments in this
study. For quantification of the carotenoid contents the peaks detected at 471 nm were used.
Decaprenoxanthin, BABR, C.p. 450, and sarcinaxanthin contents presented in the results
section were standardized with β-carotene.

5. Conclusions

The preprocessed liquid phase of a sidestream from a recirculating aquaculture system
for salmon was shown to be suitable to support growth and carotenoid production by
C. glutamicum. The beneficial effect of adding this sidestream to growth media was observed
for strains overproducing either native or non-native carotenoids. In particular, astaxanthin
production more than doubled upon AQ supplementation in small-scale cultivation, and
in 2 L batch and fed-batch bioreactor fermentations. Thus, our proof-of-principle example
for production of the fish feed supplement astaxanthin from AQ holds the potential to
contribute to the establishment of the circular economy in aquaculture.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules28041996/s1, Table S1: Amino acid concentrations in the
aquaculture sidestream, Figure S1: Chromatogram of the amino acid analysis of the aquaculture
sidestream, Figure S2: Chromatogram of the carbohydrate analysis of the aquaculture sidestream,
Figure S3: Carotenoid content of C. glutamicum strains grown in AQ supplemented media, Figure S4:
Growth of C. glutamicum strains in AQ supplemented media, Figure S5: Fed-batch fermentations,
Figure S6: Carotenoid content of C. glutamicum ASTA* during batch and fed-batch fermentations.
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