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Abstract: Owing to the rapid development of the cosmetic industry, cosmetic safety has become the
focus of consumers’ attention. However, in order to achieve the desired effects in the short term, the
illegal addition of hormones in cosmetics has emerged frequently, which could induce skin problems
and even skin cancer after long-term use. Therefore, it is of great significance to master the illegal
addition in cosmetics and effectively detect the hormones that may exist in cosmetics. In this review,
we analyze the illegally added hormone types, detection values, and cosmetic types, as well as discuss
the hormone risks in cosmetics for human beings, according to the data in unqualified cosmetics
in China from 2017 to 2022. Results showed that although the frequency of adding hormones
in cosmetics has declined, hormones are still the main prohibited substances in illegal cosmetics,
especially facial masks. Because of the complex composition and the low concentration of hormones
in cosmetics, it is necessary to combine efficient sample preparation technology with instrumental
analysis. In order to give the readers a comprehensive overview of hormone analytical technologies in
cosmetics, we summarize the advanced sample preparation techniques and commonly used detection
techniques of hormones in cosmetics in the last decade (2012–2022). We found that ultrasound-assisted
extraction, solid phase extraction, and microextraction coupled with chromatographic analysis are still
the most widely used analytical technologies for hormones in cosmetics. Through the investigation
of market status, the summary of sample pretreatment and detection technologies, as well as the
discussion of their development trends in the future, our purpose is to provide a reference for the
supervision of illegal hormone residues in cosmetics.
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1. Introduction

With rapid economic development, the enhancement of consumer awareness, and the
trend of taking care of health and body, the community is starting to use more and more
cosmetics. Although the cosmetic industry is facing opportunities, cosmetic safety is still
facing great challenges. According to “Regulations on the Supervision and Administration
of Cosmetics in China” and “Cosmetic regulations of the European Union (regulation
1223/2009)”, some substances, such as lead, mercury, arsenic and their compounds, ph-
thalate plasticizers, antibiotics, hormones, nitrosamines, carcinogenic substances, as well
as dioxane are forbidden components in cosmetics [1–3]. However, there are still many
illegal cosmetics containing prohibited substances in recent years. In addition to the po-
tential sources from unqualified raw materials, cases of artificial addition have frequently
appeared. For example, in order to achieve the effects of whitening and acne removal in a
short time, some cosmetics would illegally add heavy metals, hormones, antibiotics, and
other drugs [4–8]. Different from ordinary drugs, the daily dose and frequency of cosmetics
mainly depend on personal habits. Hence, once illegal cosmetics are used without the
consumer’s knowledge, it is easy to have adverse reactions, such as skin problems or
even abnormal growth, which can cause serious damage to human health. Therefore, the
detection of forbidden components plays an important part in cosmetic safety.
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Among forbidden components, hormones are one of the main reported forbidden
components in cosmetics in recent years. Different from pesticides and other forbidden
components, hormone residues are generally attributed to the artificial addition in cosmetic
products, instead of the residue in cosmetic raw materials. Hormones are a class of widely
used and significantly therapeutic drugs. In clinical applications, hormones have anti-
inflammatory, anti-allergic, anti-viral, and anti-shock effects, which have been used in the
treatment of rhinitis, asthma, and lung disease [9–13]. In the treatment of skin diseases,
they are generally used to relieve skin problems, such as psoriasis and eczema. It is
worth noting that hormones should only be used under medical supervision. Otherwise,
the mindless usage of hormones would cause problems such as hormone-dependent
dermatitis [14]. For this reason, the efficient determination of hormones in cosmetics is
crucial for cosmetic safety.

Cosmetics are very complex matrices, containing large numbers of substances with
various properties. In order to concentrate the analytes and minimize matrix effects, the
previous sample pretreatment before instrumental analysis is usually required. In recent
years, there have been several reviews reporting the commonly used sample preparation
technologies for cosmetics, such as microextraction (ME), matrix solid-phase dispersion
(MSPD), solid-phase extraction (SPE), and ultrasound-assisted extraction (UAE) [7,15–20].
However, the above analytes involve both essential ingredients and restricted/prohibited
substances, and analytical methods are not discussed in detail. In addition, there are some
comments on the analytical methods for special types of ingredients in cosmetics, such as
oils [20], fragrances [21], parabens [22], dyes [23], and endocrine-disrupting chemicals [24].
Even though the pretreatment and analytical methods are summarized in detail, the
analytical methods are mainly covering traditional confirmation techniques, such as liquid
chromatography (LC) methods and LC with mass spectrometry (LC-MS) or tandem mass
spectrometry (LC-MS/MS), rare attention is paid on the emerging analytical technologies
represented by rapid detection approaches [2,19,25].

In order to give the readers a comprehensive overview of the hormone risk and illegal
addition status in cosmetics, we investigate the non-conformity announcements of illegal
cosmetics from the Chinese National Medical Products Administration (2017–2022) and
analyze the status of illegal addition of hormones in cosmetics, such as hormone types,
proportions, and detection values, as well as illegal cosmetic types in this review. Although
people have realized the importance of hormone detection in cosmetics, there is a lack of
detailed introduction and discussion of hormone analysis methods in cosmetics. In this
respect, we summarize the application of advanced technologies such as UAE, SPE, ME,
MSPD, and cloud point extraction (CPE) in recent ten years (2012–2022), as well as the
application of confirmation techniques and rapid detection technologies such as enzyme-
linked immunosorbent assay (ELISA) and lateral flow immunoassay (LFIA) in cosmetic
hormone analysis (Figure 1). In addition, the development trends in the future, such as
the exploration of novel sample preparation adsorbents and new analytical methods for
hormone analysis in cosmetics, are also discussed. This paper aims to give readers a clear
understanding of hormone analysis in cosmetics and provide technical support for the
supervision and detection of hormone residues that may exist in cosmetics.
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2. Hormone Risk and Market Status in Cosmetics
2.1. Hormones and Their Risks in Cosmetics

As biologically active substances, hormones are synthesized by highly differentiated
endocrine cells and secreted directly into the bloodstream to transmit chemical messages,
which in turn influence the physiological activities of the body by regulating the metabolic
activities of various tissue cells [26]. Among various hormones, steroid hormones are
mainly applied to the skin. According to the pharmacological effects, steroid hormones
can be divided into adrenal cortical hormones and sex hormones. Furthermore, adrenal
cortical hormones can be further divided into glucocorticoids and salt-metabolizing cor-
ticotropic hormones [27]. The above hormones can only be used following the doctor’s
advice, otherwise, abuse or misuse would cause problems, such as dependence dermatitis.
However, in order to give skincare products visible effects and thus reap huge benefits, the
illegal addition of hormones in cosmetics has happened in recent years [28,29]. Therefore,
hormones, represented by glucocorticoids and sex hormones, are the main focus of cosmetic
supervision.

Glucocorticoids play important roles in maintaining homeostasis and normal organ
function in the body. It has been reported that glucocorticoids are widely used in endocrine,
respiratory, hematological, and rheumatic immune diseases, as well as in the treatment
of skin diseases, such as eczema, dermatitis, and psoriasis [9,30,31]. However, the use of
glucocorticoids may be accompanied by adverse reactions, as well as possible reactions or
rebounds after drug withdrawal. To pursue fast action and profit, some vendors illegally
add glucocorticoids into cosmetics. Even though they can achieve anti-inflammatory and
anti-allergic effects in the short term, long-term usage would lead to thinning skin, dry and
peeling skin, skin inflammation, and even induce skin cancer [28,30]. Sex hormones have
the function of controlling sexual organs and secondary sexual characteristics, and are also
involved in the basic metabolic activities of living substances, such as sugars, fats, proteins,
and inorganic salts in the body, which have been widely used for the treatment of infertility
and gynecologic diseases, such as functional disorders and uterine bleeding [32,33]. Even
though some cosmetics illegally adding sex hormones could produce short-term benefits,
such as skin whitening, wrinkle reduction, and hair growth promotion, long-term usage
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would cause skin problems, such as thinning and atrophy of the skin, and even increase the
risk of breast cancer and hysteromyoma for women [34]. The typical hormones and their
risks in cosmetics are listed in Table 1. As mentioned previously, the habits and dosages of
cosmetics are difficult to control for each customer. Once cosmetics containing hormones
are used excessively, consumers are prone to experience adverse reactions. Therefore, it is
important to detect hormones in cosmetics for the supervision of the cosmetics market and
the protection of the personal safety of consumers.

Table 1. Typical hormones in cosmetics and their potential risks for humans.

Hormones Typical Chemical Structures Risks

Glucocorticoids
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2.2. Hormone Addition Status in Cosmetics

Driven by interests, some traders would illegally add hormones into cosmetics. With-
out consumers’ knowledge, hormones would be misused and abused, which could easily
cause skin problems, and ultimately threaten human health. For this reason, the national
regulatory authority conducts routine inspections of potentially prohibited components
in cosmetics by means of random inspections and unannounced inspections every year.
China has already been the second-largest cosmetics consumer market. Therefore, the
survey of Chinese cosmetic status has instructive significance for cosmetic regulation in
the world. From the non-conformity announcements of cosmetics on the website of the
Chinese National Medical Products Administration in the recent six years (2017–2022), it is
clear that the substandard cosmetic batches have a significant downward trend with the
intensification of national supervision. However, there are still 63 batches of substandard
cosmetics containing hormones (Figure 2a), and two kinds of hormones are detected in
10 batches of substandard cosmetics. Based on the statistical data, the detection values of
hormones are in the range of 0.1 to 1385.2 µg g–1 (Figure 2b). Among them, the detection
value of betamethasone 17-valerate is the highest, which is even over the content in skin
clinical drugs. In addition, clobetasol 17-propionate, betamethasone and its derivatives (i.e.,
betamethasone 17-valerate, betamethasone 21-valerate, and betamethasone dipropionate),
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as well as triamcinolone acetonide and its derivatives (i.e., triamcinolone acetonide acetate)
were the most frequently found hormones in cosmetics, whose proportions are 39.7%,
17.8%, and 13.7%, respectively (Figure 2c). It is worth noting that, compared with other
cosmetic products, the facial mask is a potentially high-risk cosmetic (Figure 2d). Therefore,
it is necessary to increase the monitoring of facial masks in the future.
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3. Cosmetic Sample Preparation Technologies

Cosmetics are extremely complex and may contain lipophilic or polar, basic, acidic or
neutral components. Otherwise, there are various cosmetic dosage forms, such as solid,
colloid, and emulsified conditions. Due to the complexity of cosmetic ingredients and the
low concentration of hormones, it is necessary to carry out efficient pretreatment before
instrumental analysis, which plays an important role in the separation and collection of
hormones from the complex cosmetic matrix. In this section, we will introduce some
advanced technologies and discuss their development trends in cosmetic pretreatment,
including UAE, SPE, ME, and other pretreatment technologies.

3.1. UAE

UAE is a classic extraction technology, which uses the mechanical, cavitation and
thermal effects of ultrasound to extract the active compounds in the matrix [35,36]. This
technique can shorten extraction time and save solvent amount, which has been applied in
food and natural products [37,38]. The factors affecting the extraction efficiency of the UAE
are ultrasound frequency, intensity, time, and temperature. According to the literature,
acetonitrile (ACN), methanol (MeOH), and tetrahydrofuran (THF) can be used as the
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extraction solution for ultrasonic treatment for 20~30 min for hormones in cosmetics [39–41].
Compared with ACN, MeOH can cause cosmetic emulsification easily, therefore ACN is
more widely used to simplify the procedure and maintain its accuracy [9]. To further reduce
the emulsification of cosmetic products, saturated sodium chloride (NaCl) solution can
also be added during the extraction process. After the extraction process, centrifugation
and filtration steps are commonly necessary.

Based on UAE, Xu et al. [42] extracted hydrocortisone, prednisolone, prednisone,
dexamethasone, hydrocortisone acetate, cortisone acetate, prednisolone acetate, and tri-
amcinolone acetonide from body lotion and creams by sonication in MeOH for 20 min
at 20 ◦C. Wu et al. [41] added NaCl solution and ACN in lotions and creams, followed
by sonication at 25 ◦C for 30 min. Coupled with LC–MS/MS, the limit detections (LODs)
of hydrocortisone, estrone, canrenone, triamcinolone acetonide, and progesterone were
less than 25 pg and the recoveries ranged from 90.6% to 118.0%. Fiori et al. [39] adopted
THF as the solvent to extract betamethasone 17-valerate, beclomethasone, beclomethasone
dipropionate, and methylprednisolone in cosmetics by sonication for 20 min. Coupled with
LC–MS, the LODs for the above six glucocorticoids were from 12.1 to 35.4 mg L–1 and the
recoveries were from 92% to 98% in cream samples.

3.2. SPE

SPE is an advanced sample pretreatment technique in modern analytical chemistry, in
which the targets present in the sample are generally retained on the solid phase extraction
material by adsorption, ion exchange, ligand, or other chemical interactions, thus achieving
the separation of the analytes from the matrix [43,44]. There are two types of SPE technique.
One is to retain the analytes on solid sorbents and the other is the interference. Due to the
high selectivity and potential recyclability, the first one is the most widely used type. As
shown in Figure 3a, the main operation steps may include conditioning (or activation), load-
ing, washing, and elution [15]. This method is simple, rapid, and environmentally friendly,
and has been applied in environmental monitoring, food, and drug analysis [45–47].

Currently, the most commonly used adsorbents in SPE are normal-phase materials
(Florisil, alumina, silica, and sea sand) and reverse-phase materials (C18 and C8 silica) [15].
In order to improve the affinity with analytes, researchers proposed selective sorbents,
such as molecular imprinting polymers (MIPs) [48]. These polymers are porous materials
with selective binding cavities for the specific recognition of a particular analyte or class
of chemically related analytes, which can also be called “artificial antibodies” [49–51]. For
instance, Wang et al. [52] developed a MIP-based SPE material for prednisone capture in
cosmetics. The polyethylene filter plate was coated with multi-walled carbon nanotubes
(MWCNTs), and then MIPs were prepared based on the surface imprinting technique
(Figure 3b). These materials (plate@MWCNTs@MIPs) can simplify the experimental steps,
save time and costs, and can be recycled. Coupled with high-performance LC (HPLC), this
approach could be used for the selective prednisone separation, purification, and detection
in mask, moisturizer, masque, and milk samples with satisfactory recovery (83.0–106.0%)
and low LOD (5.0 µg L–1).

Even though it is high efficiency, the sorbent bets of SPE (cartridges, pre-columns, or
disks) would cause high mass transfer resistance, which may cost a long time and a large
amount of solvents during the elution process. For this reason, the dispersive SPE (dSPE) is
developed as a supplement [3,53,54]. Based on magnetic or magnetizable sorbents, mag-
netic solid-phase extraction (MSPE) has also been applied, which makes the recovery under
a magnetic field easier and faster [55,56]. For instance, Zhao et al. [57] proposed an MSPE
method using magnetic MWCNTs (MMCNTs) as the sorbents. Followed by HPLC, this
method could be used for the rapid and efficient extraction of four sex hormones in toners,
with recoveries ranging from 80.1% to 118.8%. Magnetic metal-organic frameworks-101
functionalized with graphite-like carbon nitride materials (Fe3O4/g-C3N4/MIL-101) were
also fabricated [58]. These materials show excellent selectivity for glucocorticoids due to
the hydrogen bonding effect with g-C3N4 and the size-matching effect with MIL-101, which
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could be used as MSPE extractants for glucocorticoids. Coupled with ultra-performance
LC-MS/MS (UPLC-MS/MS), this method could be applied to the determination of gluco-
corticoids in facial masks and toners. In order to further improve the selectivity further,
researchers also proposed magnetic MIPs (MMIPs, Fe3O4@SiO2-MIP), which used dexam-
ethasone and hydrocortisone as the templates [59,60]. As shown in Figure 3c, the MMIPs
showed a higher adsorption amount for the template molecule than its structure analog.
Combined with HPLC, this method could realize the rapid and selective extraction and
determination of dexamethasone and hydrocortisone in skincare cosmetic samples.
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and Interface Science. (c) Synthesis of magnetic MIPs and their application for MSPE. Reprinted with
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3.3. ME

ME allows the extraction and concentration of analytes in extractants with a volume
of less than 100 µL [61,62]. Hence, this technique is more eco-friendly and has lower LODs
than traditional extraction technologies, which has been applied for multiple-compound
extraction (e.g., volatile and non-volatile, polar and nonpolar, ionic or metallic species) in
the complex matrix [24]. Based on the phases, microextraction techniques can be classed
into liquid-phase ME (LPME) and solid-phase ME (SPME) [17,63,64].

Due to their designed physical and less-harmful properties, some friendly alternatives,
such as ionic liquids (ILs), have been explored as extractants for LPME [64]. As shown
in Figure 4a, the IL homogeneous ME (LLME) method was performed using hydrophilic
1-hexyl-3-methylimidazolium tetrafluoroborate ([C6MIM][BF4]) as extraction solvent and
ammonium hexafluorophosphate (NH4PF6) as the ion-pairing agent [65]. Coupled with
HPLC, this method can be applied for eight hormones detection in liquid and gel-like
cosmetics, such as 17α-estradiol and estrone, with the low LODs (0.03–0.24 µg L–1) and
good recoveries (96.3% to 111.4%). As the new subclass of ILs, magnetic ILs (MILs), such
as [P6,6,6,14

+]2[CoCl42−], were also synthesized by the incorporation of a paramagnetic
component [66]. Adopting the dispersive LLME (DLLME) coupled with HPLC analysis,
this method can be used for the extraction and detection of six estrogens in lotions, with
the LODs not over 15 ng mL−1 and recoveries ranging from 96.3% to 111.4% (Figure 4b).

Using porous monolithic polymer as an extraction medium, polymer monolith ME
(PMME) technology integrates extraction, purification, and enrichment, which has the ad-
vantages of continuous porosity, wide pH application range, high extraction capacity, and
good stability. Generally, PMME columns are prepared by in situ polymerization of a mix-
ture of functional monomers (e.g., methacrylic acid-co-ethylene glycol dimethacrylate, butyl
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methacrylate-co-ethylene dimethacrylate), crosslinking agents and pore-causing agents.
Combined with HPLC, some modified PMME columns have been used as the extraction
media for the determination of sex hormones, including estrogen, testosterone, methyl-
testosterone, and progesterone in cosmetics with the low LODs (not over 4.6 µg L–1) [67,68].
Based on the above features, Wei et al. [69] prepared a porous monolithic polymer inside
fiber by in situ photopolymerization combined with sacrificial support in hollow fiber
(Figure 4c). Coupled with HPLC, this fabricated micro-SPE (µ-SPE) device could be used
for prednisone acetate, prednisone and prednisolone determination in lotions with the
LOD of 1.5 µg L–1 and recoveries of 69.0–113.3%.
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3.4. Other Pretreatment Technologies

Since first reported in 1989, MSPD has been widely used for the one-step extraction and
purification of organic analytes in various fields [63,70]. Different from SPE or SPME, the
samples and sorbents are mixed and grinded directly. Without the dissolving or dispersing
of samples into solvents in advance, MSPD integrates extraction and clean-up processes in
one step, which can eliminate matrix interference and reduce solvent consumption [16,71].
The commonly used solid support materials are the same as those in SPE [15]. For example,
Guo et al. [72] adopted MIPs as the MSPD adsorbents for the special and selective extraction
of dexamethasone and hydrocortisone in cosmetics. Coupled with HPLC, this method
can be validated for dexamethasone and hydrocortisone analysis in cosmetics samples
with good selectivity, sensitivity, and efficiency, in which the LODs are of 0.03 µg g–1 for
dexamethasone and 0.02 µg g–1 for hydrocortisone, respectively.

Compared with the traditional liquid–liquid extraction, CPE is a more eco-friendly
tool, which can be used to extract/preconcentrate and analyze hydrophobic analytes, or can
be converted to hydrophobic analytes, because nonionic surfactants will form micelles in
aqueous media when heated above cloud point temperature or added with salt (salting-out
phenomenon) [73]. Currently, non-ionic surfactants (e.g., Triton X-114 and Triton X-100), ILs,
polyethylene glycols, and anionic surfactants have been applied for CPE [15]. To shorten the
equilibration time of estrogens in the CPE procedure, Xiao et al. [74] developed a rapid and
efficient co-precipitation-assisted CPE (CpCPE) technique based on the combination of co-
precipitation with aluminum hydroxide and CPE with sodium dodecyl sulfate. Followed
by HPLC analysis, this method can be achieved for five estrogens determination in toner
samples, including 17β-estradiol, estrone, ethinyl estradiol, diethyl stilbestrol, and dihydro
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stilbestrol. The recoveries ranged from 77.3–104.1% with RSD of 2.0–10.4%, and the LODs
were not over 0.7 µg L–1. This method was suitable for the rapid and sensitive analysis of
trace estrogens.

4. Analytical Technologies for Hormones in Cosmetics

The determination of the hormones in cosmetics is usually carried out by confirmation
techniques, such as LC and LC-MS or LC-MS/MS. In order to satisfy the demand for rapid
and on-site determination, some rapid detection methods have come out. In this section,
we discuss the widely used analytical technologies for hormones in cosmetics. Detailed
information including pretreatment and analytical technologies for hormones in cosmetics
is listed in Tables 2 and 3.

4.1. Confirmation Technologies

LC is a chromatographic system, in which the liquid is used as the mobile phase,
and the pressure is increased by the high-pressure infusion pump to improve efficiency.
Common detectors used in LC include UV-VIS detectors and diode array detectors (DAD),
which use the principle that a physical or chemical property of the sample differs from the
mobile phase to achieve the separation of substances [75,76]. This technique has been used
to detect polar compounds with high sensitivity, selectivity, and reproducibility [77,78].
The choice of mobile phase and chromatographic column are the main two important
parts. Generally, the mobile phase should have a different polarity from the chromato-
graphic column. Due to the polar properties, the reverse phase LC system is suitable for
hormone separation, including a non-polar chromatographic column and polar mobile
phases. According to the literature, C18 columns are the widely used reversed-phase
columns for hormone separation. In order to enhance the separation efficiency for special
targets, the multi-dimensional liquid chromatographic system has been used for hormone
detection. For example, a two-dimensional liquid chromatography method consisting
of a molecular-imprinted monolithic column coupled with a C18 column (MIMC-2D-LC)
was also developed for estradiol analysis in cosmetic samples [34]. Generally, ACN/H2O
or MeOH/H2O are generally performed as the mobile phases. To help the subsequent
ionization of the analytes and consequently enhance the detection signals, formic acid (FA),
acetic acid (Ac), ammonium formate (NH4OFA), ammonium acetate (NH4OAc), phosphate,
or ammonium bicarbonate (NH4HCO3) at low concentrations would be added into the
aqueous phase or organic phase.

MS can separate the various components into ions with different charge-to-mass ratios,
generate an ion beam by accelerating the electric field, and use a mass analyzer to detect
data such as chemical structure and molecular mass [76,79,80]. LC-MS or LC-MS/MS makes
full use of the high qualitative performance of MS and the high separation performance of
LC, allowing the simultaneous identification and detection of multiple target analytes at
trace levels. Generally, the choice of mobile phase and chromatographic column for LC-MS
or LC-MS/MS follows the same principle as LC. Based on UPLC-MS/MS, Meng et al. [53]
developed a broad screening method for 100 illicit ingredients (including 40 glucocorticoids
and 8 sex hormones) in cosmetics using the C18 column as the analytical column. Two
binary mobile phase compositions were used for analyses run in positive and negative
electrospray ionization (ESI+ and ESI−) modes (ACN/5 mM NH4OFA solution for the ESI+

mode, and ACN/5 mM NH4HCO3 solution for the ESI− mode). After employing UAE
and dSPE as the preparation procedures, this method can realize the identification and
quantitation of 48 hormones in lotions and creams, with the LODs of 1.1–12.5 µg kg–1.



Molecules 2023, 28, 1980 10 of 20

Table 2. Confirmation technologies for hormone determination in cosmetics.

Hormones Pretreatment
Method Condition/Material Analytical

Method
Mobile
Phase

Stationary
Phase

Linear Range
µg L–1

LOD
µg L–1 Sample Ref.

Methylprednisolone
beclomethasone

flunisolide
budesonide

betamethasone 17-valerate
beclomethasone dipropionate

UAE UAE in THF for 20 min LC–MS
0.1% FA in

ACN/0.1% FA
in H2O

C18 300–10000

24.2
35.4
30.1
18.5
12.1
12.4

Creams [39]

Triamcinolone
prednisolone

methylprednisolone
betamethasone
dexamethasone

fluocinolone acetonide
prednisolone-21acetate

hydrocortisone-21-acetate
clobetasol propionate

betamethasone dipropionate
fluocinolone

acetonide-21-acetate

UAE UAE in ACN for 15 min
at 50 ◦C LC-MS/MS ACN/0.1% FA

in H2O Atlantis T3 10–1000

0.25
1.0
0.3
0.3

0.25
1.0
0.25
1.0
0.25
1.0
1.0

Creams [40]

Hydrocortisone
estrone

canrenone
triamcinolone acetonide

progesterone

UAE UAE in ACN for 15 min
at 25 ◦C LC–MS/MS

0.2% FA in
MeOH/0.2% FA

in H2O
C18 10–1500 <25 pg Lotions, creams [41]

Glucocorticoids (43) UAE UAE in MeOH for 30
min UPLC-MS/MS

0.1% FA in
ACN/0.1% FA

in H2O
C18 100–2000 0.33–30

Solutions,
lotions, creams,
gels, powders

[81]

Glucocorticoids (47) SPE Oasis HLB SPE
cartridge UPLC–MS/MS ACN/0.1% FA

in H2O C18 – 0.05–0.4
Cream, gel,

lotion, solution,
powder, mask

[82]

Prednisone SPE plate@MWCNTs@MIPs HPLC–UV ACN/H2O C18 1000–6000 5.0
Mask, masque,

milk,
moisturizer

[52]
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Table 2. Cont.

Hormones Pretreatment
Method Condition/Material Analytical

Method
Mobile
Phase

Stationary
Phase

Linear Range
µg L–1

LOD
µg L–1 Sample Ref.

Glucocorticoids (12)
Sex hormones (32) dSPE C18 and MgSO4 UPLC–MS/MS

MeOH/1.5 mM
NH4OAc in

H2O
HSS-T3 0–480 –

Cream,
emulsion,
shampoo

[3]

Glucocorticoids (40)
Sex hormones (8) UAE-dSPE C18 and PSA UPLC-MS/MS ACN/NH4HCO3

solution C18 3.6–2000 1.1–12.5 Lotions, creams [53]

Ethinylestradiol
norgestrel

megestrol acetate
medroxyprogesterone acetate

MSPE MMWCNTs HPLC–DAD

ACN/0.1%
phosphate
aqueous
solution

C18 200–20,000

330
60
80
80

Toners [57]

Hydrocortisone
dexamethasone

desonide
fluocinonide
flunisolide

MSPE Fe3O4/g-C3N4/MIL-
101 UPLC–MS/MS ACN/0.2% FA

in H2O C18

0.02–2.0
0.02–2.0
0.02–2.0
0.02–2.0
0.01–1.0

0.005
0.005
0.005
0.005
0.002

Facial masks,
toners [58]

Dexamethasone MSPE Fe3O4@SiO2-MIPs HPLC–UV ACN/H2O C18 500–50,000 50 Cosmetics [59]

Dexamethasone
hydrocortisone MSPE Fe3O4@SiO2-MIPs HPLC–UV ACN/H2O C18 500–15,000 15 Lotions, toners,

masks [60]

17α-Estradiol
17α-ethinylestradiol

estrone
17α-hydroxyprogesterone

medroxyprogesterone
megestrol-17-acetate

norethisterone acetate
progesterone

HILME [C6MIM][BF4] HPLC–DAD ACN/H2O C18

0.625–125
0.625–125
0.625–125

0.25–50
0.25–50

0.125–100
0.25–125

0.125–125

0.24
0.19
0.18
0.08
0.09
0.03
0.05
0.03

Liquid and
gel-like

cosmetics
[65]

Estrone
estradiol

17-α-hydroxyprogesterone
chloromadinone 17-acetate

megestrol 17-acetate
medroxyprogesterone

17-acetate

DLLME MILs
[P6,6,6,14

+]2[CoCl4−] HPLC–UV ACN/H2O C18

40–1000
40–1000
20–1000
30–1000
30–1000
40–1000

15
15
5.0
8.0
8.0
15

Lotions [66]
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Table 2. Cont.

Hormones Pretreatment
Method Condition/Material Analytical

Method
Mobile
Phase

Stationary
Phase

Linear Range
µg L–1

LOD
µg L–1 Sample Ref.

Estrone
estradiol

estriol
progesterone

diethylstilbestrol

PMME ACB[6]@poly(BMA-
EDMA) HPLC–DAD ACN/H2O

Shimpack
PREP-ODS
(H) and C18

1.0–1000
1.0–1000
1.0–1000
1.0–1000
1.0–700

0.012
0.022
0.053
0.017
0.019

Cosmetics [68]

Dexamethasone
betamethasone
prednisolone
triamcinolone

triamcinolone acetonide
cortisone

hydrocortisone
fluocinonide

beclomethasone dipropionate

PMME P(BMA-EDMA-GN) LC–MS
0.3% FA in

ACN/0.3% FA
in H2O

C18 1.0–800

0.28
0.32
1.40
1.93
0.22
0.89
1.52
0.18
0.13

Cosmetics [83]

Prednisone
prednisolone

prednisolone acetate
µ-SPE hollow fibers HPLC–UV MeOH/H2O C18 5.0–2000 1.5 Lotions [69]

Dexamethasone
hydrocortisone MSPD MIPs HPLC–UV ACN/H2O C18 50–50,000 30

20 Cosmetics [72]

17β-estradiol
ethinyl estradiol

estrone
diethyl stilbestrol
dihydro stilbestrol

CPE AlCl3 and SDS HPLC–UV ACN/H2O C18 2.0–50

0.2
0.7
0.4
0.4
0.2

Toners [74]

UAE: ultrasound-assisted extraction; THF: tetrahydrofuran; ACN: acetonitrile; FA: formic acid; MeOH: methanol; SPE: solid phase extraction; MWCNTs: multiwalled carbon nanotubes;
MIPs: molecular imprinted polymers; UV: UV-vis detector; dSPE: dispersive solid-phase extraction; UPLC: ultra-high-performance liquid chromatography; MSPE: magnetic solid-phase
extraction; MMWCNTs: magnetic multiwalled carbon nanotubes; DAD: diode array detector; Fe3O4/g-C3N4/MIL-101: magnetic metal-organic frameworks-101 functionalized
with graphite-like carbon nitride material; µ-SPE: micro-solid phase extraction; HILME: homogeneous ionic liquid microextraction; [C6MIM][BF4]: 1-hexyl-3-methylimidazolium
tetrafluoroborate; DLLME: dispersive liquid-liquid microextraction; MILs: magnetic ionic liquids; PMME: polymer monolith microextraction; ACB[6]: allyloxy-cucurbit [6]; P(MMA-co-
MAA): poly(methyl methacrylate-co-methacrylic acid); EDMA: ethylene dimethacrylate; GN: graphene; MSPD: matrix solid-phase dispersion; CPE: cloud-point extraction; SDS: sodium
dodecylsulfate.
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Table 3. Rapid analytical technologies for hormone determination in cosmetics.

Hormones Pretreatment
Method Condition Detection

Method Nanomaterial Recognition
Element

Linear Range
µg L–1

LOD
µg L–1 Sample Ref.

Hydrocortisone UAE UAE for 10 min ELISA – Antibody 0.1–2.0 0.04
Body lotions,

moisture
creams, toners

[84]

Dexamethasone UAE

UAE in ACN
and saturated
NaCl solution

for 10 min

LFIA colloidal gold Antibody 10–200 10 Facial masks [85]

Dexamethasone Dilution 20-fold dilution
by H2O LFIA UCNPs Antibody 0.1–9.0 2.0

Cosmetics with
skin whitening

and acne
treatment
functions

[86]

Triamcinolone
acetonide Dilution 20-fold dilution

by H2O LFIA UCNPs Antibody 1.0–100 20 Creams, masks,
essences [87]

ELISA: enzyme-linked immunosorbent assay; LFIA: lateral flow immunoassay; UCNPs: up-conversion nanoparticles.
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4.2. Rapid Detection Methods

Although the above methods have high sensitivity and accuracy, they are high cost,
require professional operators and complicated pretreatment technologies, and cannot
meet the demand for on-site and rapid detection of hormones in cosmetics. In this regard,
many efforts have been carried out to explore rapid and reliable immunoassays, such as
ELISA [88,89] and LFIA technologies [90], which could act as important supplements for
the current analytical means.

Based on antigen-antibody immunoreactions and enzyme catalysis, ELISA is the gold
standard technology, which has been used in clinical diagnosis, food quality control, and
environmental monitoring [91,92]. As a rapid and inexpensive tool for compound residues,
ELISA also shows satisfying sensitivity and only needs easy pretreatment procedures.
To realize the supervision and control of the hormone additives in large series of cos-
metic samples, Zhang et al. [86] established a heterologous competitive indirect ELISA
method for hydrocortisone detection. Herein, the polyclonal antibodies were obtained by
immunization after the conjugation of hydrocortisone with bovine serum albumin, and pro-
gesterone carboxylic acid acted as a competitive hapten. Only adopting the centrifugation,
ultrasound-assisted extraction, and five-fold working buffer dilution steps, this assay could
be used for the determination of hydrocortisone in lotion, cream, and toner samples with
the LOD of 0.04 ng mL−1 and recoveries of 82.5% to 118.9%. Compared with the standard
LC–MS/MS, this method appeared good correlation, indicating its potential application in
hydrocortisone monitoring in cosmetics.

LFIA is a very simple, rapid, and portable analytical device that combines immunoas-
say technology with chromatography. Typically, this device is composed of a sample pad,
conjugated pad, nitrocellulose membrane, and absorption pad [93,94]. As a paper-based
chromatography, LFIA can transport a fluid sample across various strip zones under the
capillary force, which can be used for the immediate detection of antibodies or antigens
via antibody-antigen interactions [95]. The conventional immunoassay format approaches
and the LFIA principle for on-site applications are shown in Figure 5a. Based on the
rapid and flexible features of LFIA, our group [85] developed a bare eye-based semiquan-
titative colloidal gold test strip for the rapid detection of dexamethasone in commercial
facial masks (Figure 5b). According to the colloidal gold aggregation precipitation chro-
mogenic reaction, this LFIA-based test strip could be directly viewed by eyes towards
dexamethasone with the concentration of 10 to 200 ng mL–1. To enhance the sensitivity and
accuracy, a fluorescent reader-based test strip was developed for the quantitative detection
of triamcinolone acetonide in cosmetics using up-conversion nanoparticles (UCNPs) as
the probe [87]. Using dexamethasone derivative as a coating antigen, this assay provides
an easy (only diluting samples with water), fast (10 min including pretreatment), wide
linear range (1.0–100 ng mL−1), low LOD (20 µg kg−1) and low-cost method, which can
be applied for the on-site determination of triamcinolone acetonide in cream, mask and
essence samples (Figure 5c). In order to further achieve the accurate quantitative analysis
for glucocorticoids, Zhang et al. [86] also proposed the bifunctional LFIA test strip for the
direct visual or quantitative detection of dexamethasone based on UCNPs. This strategy
exhibits a favorable detection range of 0.1–9 ng mL−1, with the LOD of 2.0 µg kg−1 for
dexamethasone in food supplements and cosmetic samples. Using the optical density
scanner, more accurate quantitative data could be obtained, which offers a new avenue for
the visual quantitative analysis of glucocorticoids in cosmetics.
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5. Conclusions and Outlooks

As a sunrise industry, the cosmetic industry has not only ushered in the opportunity
for rapid development, but also faces new challenges, especially cosmetic safety. According
to the data from China in 2017–2022, hormones are still the main prohibited substances
in illegal cosmetics. Even though the frequency of hormone additions in cosmetics has
declined significantly, the community still needs to pay close attention to potentially banned
substances in cosmetics due to the growing expansion of sales channels represented by
e-commerce. Currently, many efforts have been carried out to develop reliable analytical
methods for the determination of hormones in cosmetics. Due to the complex matrices,
efficient sample pretreatment is necessary before analysis. At present, UAE, SPE, and ME
are still widely used pretreatment techniques. The current analytical methods for hormones
in cosmetics are still limited to standard methods, such as LC or LC-coupled MS methods.
Only several kinds of literature report immunological-based rapid methods. Therefore,
there is still a lack of reliable and rapid analytical methods for hormones in cosmetics.

In the future, researchers will explore more environmentally friendly extraction ap-
proaches, combining miniaturization and portable extraction equipment to reduce the
consumption of samples, solvents, and time. In this case, with the development of nan-
otechnology, novel and functional nano-sorbents, such as MOFs, MIPs, and magnetic
nano-sorbents will play important parts owing to their high specific surface areas and
special binding sites for the efficient or selective extraction of hormones. It should be
noticed that some rapid and on-site analytical strategies such as surface-enhanced Raman
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spectroscopy (SERS) [96,97] and electrochemical methods [98–101] have been applied for
the detection of hormones in the field of food and environment. Moreover, new recogni-
tion mechanisms based on the specific binding between hormones and aptamer or other
molecules are also put into application [99,102,103]. In fact, the kinds of hormones in
cosmetics are similar to those in food and environment, so these strategies will provide
guidance for the development of rapid detection methods for hormones in cosmetics. Fi-
nally, the whole society should make concerted efforts to ensure the quality and safety
of cosmetics.
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