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Abstract: LiFePO4 takes advantage of structure stability, safety and environmental friendliness, and
has been favored by the majority of scientific researchers. In order to further improve the properties
of LiFePO4, AO-type metal oxides (MgO and ZnO) and LiFePO4/C composites were successfully
prepared by a two-step sol-gel method. The effects of AO-type metal oxides (MgO and ZnO) on
LiFePO4/C composites were studied. TG, XRD, FTIR, SEM and VSM analysis showed that the final
product of the MgO and LiFePO4/C composite was about 70.5% of the total mass of the precursor;
the complete main diffraction peak of LiFePO4 and MgO can be found without obvious impurity
at the diffraction peak; there is good micro granularity and dispersion; the particle size is mainly
300 nm; the saturation magnetization (Ms), the residual magnetization (Mr) and the area of hysteresis
loop are increased with the increase in MgO content; and the maximum Ms is 11.11 emu/g. The final
product of ZnO and LiFePO4/C composites is about 69% of the total mass of precursors; the complete
main diffraction peak of LiFePO4 and ZnO can be found without obvious impurity at the diffraction
peak; there is good micro granularity and dispersion; the particle size is mainly 400 nm; and the
coercivity (Hc) first slightly increases and then gradually decreases with the increase of zinc oxide.

Keywords: LiFePO4; ZnO; MgO; composite; Li-ion battery; magnetic; cathode material

1. Introduction

With the shortage of disposable energy, green and environment-friendly lithium-ion
secondary batteries have become the focus of attention [1,2]. Lithium-ion batteries have
been well used in various electrical equipment because of their advantages such as high
energy density, small self-discharge current, many cycles and long service life [3]. Examples
include emergency lights, flashlights, cameras, mobile phones, music players, video players,
video game consoles, electronic computers, electric toys, hybrid electric vehicles, trams,
robots and UAVs, etc. With the increasing demand for lithium-ion batteries, it is necessary
to further improve the capacity and power of lithium-ion batteries. At present, lithium iron
phosphate, as the cathode material of lithium-ion batteries, is one of the hotspots in this
research field.

Since 1997, J.B. goodenough et al. [4] has proposed that lithium iron phosphate
(LiFePO4) is a cathode material (cathode material) for lithium-ion batteries. As LiFePO4 has
the advantages of having a long service life and rich raw materials; is non-toxic, pollution-
free, and environment-friendly; and has good cycle performance, good safety performance,
high capacity, high voltage, a low self-discharge rate and low price [5], it is loved and
deeply studied by researchers. In the crystal structure of olivine lithium iron phosphate,
all the atoms are arranged in a hexagonal close arrangement, but there is a slight distor-
tion. It is an orthogonal crystal system. The crystal structure space group is Pnma [4], in
which the phosphorus atom (P) and four oxygen atoms (O) form the PO4 structure, and
the lithium atom (Li) and iron atom (Fe) form the octahedral structure of LiO6 and FeO6
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with the surrounding six oxygen atoms (O), respectively. Below the Neel temperature,
the magnetic properties of LiFePO4 are antiferromagnetic, which is caused by the super
exchange between internal iron atoms (Fe) through the Fe-O-P-O-Fe bond [6].

At present, research on the influence of AO-type metal oxides on lithium iron phos-
phate (LiFePO4) is mainly about its electrical properties. For example, B. León et al. [7]
optimized the electrochemical properties of lithium iron phosphate by introducing zinc
oxide to prepare lithium iron phosphate composites. Shuxin Liu et al. [8] improved the
electronic conductivity of lithium iron phosphate by modifying lithium iron phosphate
with zinc oxide. Zhang et al. [9] studied a three-dimensional (3D) nanostructured skeleton
substrate composed of hollow carbon fiber/carbon nanosheet/ZnO and found that the full
cell of a NHCF/CN/ZnO/Li anode with LiFePO4 can work very well. Qiu X et al. [10]
studied and found that full cells with LiFePO4 cathodes sustain 300 cycles with 98.8% capac-
ity retention at 1 C by pairing with the Li-CuO@Cu anodes. ZnO and carbon co-modified
LiFePO4 nanomaterials (LFP/C-ZnO) were prepared by Xiaohua Chen et al. [11], and it
was found that when x = 3 wt%, LFP/C-xZnO exhibited well-dispersed spherical particles
and remarkable cycling stability (it maintained 94.8% of the initial capacity after 50 cycles
at 0.1 C). However, there are few studies on the magnetism of lithium iron phosphate
(LiFePO4). Among them, the essence of the antiferromagnetism of lithium iron phosphate
(LiFePO4) was studied by Jun Sugiyama et al. [12]. The hysteresis loop of LiFePO4/carbon
at room temperature was studied by Ming Chen et al. [13] and it can be showed that the
hysteresis loop of some lithium iron phosphate at room temperature had obviously weak
ferromagnetism. The LiFePO4 (010) surface, due to exposure to atmospheric gases, was
studied by Karol jarolimek and Chad RISKO [14], and it can be found that the molecular
additives have an impact on the LFP magnetic properties. Wensong Zou et al. [15] prepared
magnetic adsorbent from waste spent LiFePO4 batteries and found that the adsorption
capabilities achieved for Cu2+, Cd2+, and Mn2+ were up to 71.23, 80.31 and 68.73 mg·g−1.
Hongying Hou et al. [16] studied the standardization curves M (H) of the LiFePO4/C
samples calibrated at 500 ◦C, 600 ◦C, 650 ◦C, and 700 ◦C.

From the above, it can be seen that the magnetic properties of lithium iron phosphate
are closely related to the electrical properties. It is clear that the magnetic properties of
lithium iron phosphate can further improve the electrochemical performance of lithium
iron phosphate and provide a reference basis for further promoting the application of
lithium iron phosphate in other fields. For example, using the magnetic detection of lithium
iron phosphate and recycling the waste lithium iron phosphate. However, there is little
research on the effect of AO-type metal oxides (MgO, ZnO) on the structure and magnetism
of lithium iron phosphate (LiFePO4). Therefore, this paper mainly uses a two-step synthesis
of AO-type metal oxides (MgO, ZnO) and LiFePO4/C composites, and studies the effect of
different content of AO-type metal oxides (MgO, ZnO) on lithium iron phosphate carbon
composites.

2. Results and Discussion
2.1. Thermogravimetric Analysis

In order to study the decomposition and quality changes of precursors of different
contents of magnesium oxide and lithium iron phosphate carbon composites at high tem-
perature, the precursors with a mass ratio of MgO to LiFePO4/C of 0.06 were analyzed
by a thermogravimetric method, which was conducted in an N2 atmosphere. The thermo-
gravimetric analysis (Figure 1) shows that there are three obvious mass change platforms
at high temperatures for the composite precursor.

First, in the temperature range from room temperature to 110 ◦C, the heatflow curve
shows an obvious endothermic peak, which mainly corresponds to the water evaporation
endothermic reaction of the precursor; the DTG curve shows an obvious mass change peak;
and the TG curve shows that the sample mass decreases by about 17.5%. Second, in the
temperature range from 110 ◦C to 260 ◦C, the heatflow curve shows that there is a relatively
small endothermic peak, which mainly corresponds to the detachment of crystalline water
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in the composite precursor [17]; the DTG curve shows that there is a relatively small mass
change peak; and the TG curve shows that the sample mass is reduced by about 3%. Thirdly,
from 260 ◦C to 400 ◦C, the heatflow curve shows that there is an obvious endothermic
peak, which mainly corresponds to the decomposition of NO3

− and organic matter in the
precursor [18]; the DTG curve shows that there is a relatively obvious mass change peak;
and the TG curve shows that the sample mass is reduced by about 9%. In general, the
decrease of the sample mass is mainly before 400 ◦C, which is similar to the TG curve of
the magnesium-doped lithium iron phosphate prepared by Xu Heng Liu et al. [19]. After
400 ◦C, the mass of the precursor basically remains unchanged and tends to be stable. The
final composite material is about 70.5% of the total mass of precursor, which is about 30%
compared with the TG analysis product in reference [20] and about 40% in reference [21],
with a higher relative yield. It shows that there may be target product synthesis at 400 ◦C,
while the heatflow curve has an obvious endothermic peak at about 900 ◦C. The DTG
and TG curves show that there is no mass change around this temperature, which may
correspond to the growth of material crystal particles at high temperature [22], potentially
resulting in large particles affecting material properties. Therefore, the more suitable
temperature range for preparing materials may be about 400~900 ◦C.
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Figure 1. Thermogravimetric analysis of composite material with mass ratio of MgO to LiFePO4/C
equal to 0.06.

Figure 2 is a thermogravimetric analysis of a precursor with a mass ratio of zinc
oxide to LiFePO4/C composite of 0.10. Thermogravimetric analysis is performed in an
N2 atmosphere. Figure 2 shows that there are three obvious mass change platforms of
the composite precursor at high temperature. First, in the temperature range from room
temperature to 100 ◦C, the heatflow curve shows an obvious endothermic peak, which
mainly corresponds to the water evaporation endothermic of the precursor; the DTG
curve shows an obvious mass change peak; and the TG curve shows that the sample mass
decreases by about 16%. Second, in the temperature range of about 100 ◦C to 240 ◦C, the
heatflow curve shows that there is a relatively small endothermic peak, which mainly
corresponds to the detachment of crystalline water in the composite precursor [17]; the
DTG curve shows that there is a relatively small mass change peak; and the TG curve shows
that the sample mass is reduced by about 5%. Thirdly, from 240 ◦C to 410 ◦C, the heatflow
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curve shows that there is an obvious endothermic peak, which mainly corresponds to the
decomposition of NO3

− and organic matter in the precursor [18].
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Figure 2. Thermogravimetric analysis of composites with mass ratio of ZnO to LiFePO4/C composite
equal to 0.10.

The DTG curve shows that there is a relatively obvious mass change peak and the TG
curve shows that the sample mass is reduced by about 10%. In general, the decrease of
sample quality is mainly before 410 ◦C, which is similar to the TG curve of preparing a
magnesium-doped lithium iron phosphate material. After 410 ◦C, the mass of the precursor
basically remains unchanged and tends to be stable. The final composite material accounts
for about 69% of the total mass of precursor, which is about 30% compared with the TG
analysis product in reference [20] and about 40% in reference [21], with a higher relative
yield. It shows that there may be target product synthesis at 410 ◦C, while the heatflow
curve has an obvious endothermic peak around 900 ◦C. The DTG and TG curves show that
there is no mass change around this temperature, potentially corresponding to the growth
of material crystal particles at a high temperature, which may result in large particles
affecting material properties [22]. Therefore, the more suitable temperature range for
preparing materials may be about 410~900 ◦C.

2.2. XRD Analysis

Figure 3 is the XRD diagram of magnesium oxide and lithium iron phosphate carbon
composites with different mass ratios. It shows that there are lithium iron phosphate
peaks in each composite, and the main diffraction peaks, including (200), (101), (111), (211),
and (311), correspond to the standard card (PDF#83-2092), indicating that each composite
sample has a complete pure phase lithium iron phosphate peak, and the main diffraction
peaks are basically consistent with the X-ray diffraction peaks of lithium iron phosphate
studied by Yangluo Gui et al. [23], Chaironi Latif et al. [24], Lingyu Guan et al. [25] and
Chaoqi shen et al. [26]. The space group is Pnma and it belongs to an orthorhombic
olivine structure. In addition, there are also magnesium oxide diffraction peaks. The main
diffraction peaks are (111) [27], (200) [28], (220), etc., which all correspond to the standard
card (PDF#75-1525). The crystallinity is good, indicating that the magnesium oxide and
lithium iron phosphate carbon composites have been successfully synthesized. The peaks
are similar to the X-ray diffraction patterns of LiFePO4 and MgO alone in the lithium
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iron phosphate electrode material prepared by Xiankun Huang et al. [29] by introducing
magnesium oxide and other substances as additives, with sharp X-ray diffraction peaks.
The XRD average lattice constant of the composite (Table 1) shows that the average lattice
constant of each composite is basically the same as that of the standard pure phase lithium
iron phosphate (PDF#83-2092), indicating that the introduction of magnesium oxide has no
significant effect on the crystal structure of lithium iron phosphate.
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Figure 3. X-ray diffraction analysis of MgO and LiFePO4/C composites.

Table 1. XRD analysis parameters of magnesium MgO and LiFePO4/C composites.

Samples x=mMgO:mLiFePO4

Average Lattice Constants

a-Axis (Å) b-Axis (Å) c-Axis (Å)

PDF#75-1525 4.1900 4.1900 4.1900

PDF#83-2092 10.3340 6.0100 4.6930

13L2F2P15h851 0.00 10.2769 5.9870 4.6842

cMg4h651 0.03 10.2780 6.0069 4.6935

cMg4h652 0.06 10.1981 5.9862 4.6920

cMg4h653 0.09 10.2834 5.9173 4.6899

cMg4h654 0.12 10.4374 5.8742 4.6825

cMg4h655 0.15 10.2511 5.9115 4.6843

Moreover, the small figure on the right in Figure 3 shows the offset diagram of the
main diffraction peak of lithium iron phosphate (311). It can be found that the offset of the
main diffraction peak of composite samples with different magnesium oxide content has
little change, indicating that the introduction of magnesium oxide has no great effect on the
crystal structure of lithium iron phosphate. In addition, for X-ray diffraction analysis, the
Bragg equation [30] is:

2d · sinθ = n · λ (1)

The d in the equation is the crystal plane spacing of the crystal. θ is the diffraction
angle of X-ray. λ is the wavelength of X-ray. n is an integer. Due to diffraction angle θ

being basically unchanged, and n and λ are for a specific value, according to the Bragg
equation [30], the crystal plane spacing d value of its crystal is also basically unchanged.
For the diffraction pattern, the uneven bottom line may be caused by amorphous, low
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crystalline and amorphous carbon [31,32]. It can be seen from Figure 4 that the average
lattice parameters b-axis and c-axis of the composite basically decrease with the increase in
magnesium oxide content.
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Figure 4. Variation trend of XRD parameters of MgO and LiFePO4/C composites.

The XRD diffraction pattern of zinc oxide and lithium iron phosphate carbon compos-
ites is showed in Figure 5. It shows that there are lithium iron phosphate peaks in each
composite, and the main diffraction peaks, including (111), (211), and (311), correspond to
the standard card (PDF#83-2092), indicating that there is a complete pure phase lithium iron
phosphate peak for each composite sample, which is basically consistent with the lithium
iron phosphate X-ray diffraction peaks studied by Ming Shi et al. [33] and A.Sarmadi
et al. [34]. The space group is Pnma. It belongs to the orthorhombic olivine structure.
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In addition, there are also zinc oxide diffraction peaks. The main diffraction peaks
are (111), (200) [35,36], (220), (311), and (222), which correspond to the standard card
(PDF #77-0191) one by one, and the crystallinity is good, indicating that the composite of
ZnO and LiFePO4/C composites has been successfully synthesized. This is similar to the
X-ray diffraction pattern of the zinc oxide-modified lithium iron phosphate prepared by
Shuxin Liu et al. [8], which has the complete diffraction peak of lithium iron phosphate
and zinc oxide. In addition, with the increase of the mass ratio of ZnO to LiFePO4/C, the
diffraction peak of lithium zinc phosphate appears when the mass ratio reaches 0.16. For the
diffraction pattern, the uneven bottom line may be caused by amorphous, low crystalline
and amorphous carbon [31,32]. The XRD average lattice constant of the composite (Table 2)
shows that the average lattice constant of each composite is basically unchanged, compared
with that of the standard pure phase lithium iron phosphate (PDF#83-2092), indicating that
the introduction of zinc oxide does not greatly change the crystal structure of lithium iron
phosphate [37]. It can be seen from Figure 6 that the average lattice parameters b-axis and
c-axis of the composite have a similar change trend. There is basically no change before the
mass ratio is 0.15. When the mass ratio continues to increase, they slightly decrease and
then increase.

Table 2. XRD analysis parameters of ZnO and LiFePO4/C composites.

Samples x=mZnO:mLiFePO4

Average Lattice Constants

a-Axis (Å) b-Axis (Å) c-Axis (Å)

PDF#77-0191 4.2800 4.2800 4.2800

PDF#83-2092 10.3340 6.0100 4.6930

13L2F2P15h851 0.00 10.2769 5.9870 4.6842

cZn4h651 0.05 10.2892 5.9891 4.7059

cZn4h652 0.10 10.2081 5.9791 4.6867

cZn4h653 0.16 10.2453 6.1175 4.6937

cZn4h654 0.21 11.0362 5.8485 4.6315

cZn4h655 0.27 10.2542 6.0989 4.6902

Molecules 2023, 28, x FOR PEER REVIEW 7 of 17 
 

 

compared with that of the standard pure phase lithium iron phosphate (PDF#83-2092), 

indicating that the introduction of zinc oxide does not greatly change the crystal structure 

of lithium iron phosphate [37]. It can be seen from Figure 6 that the average lattice param-

eters b-axis and c-axis of the composite have a similar change trend. There is basically no 

change before the mass ratio is 0.15. When the mass ratio continues to increase, they 

slightly decrease and then increase. 

Table 2. XRD analysis parameters of ZnO and LiFePO4/C composites. 

Samples 
4

: LiFePOZnO mmx =  
Average Lattice Constants 

a-Axis 

(Å) 

b-Axis 

(Å) 

c-Axis 

(Å) 

PDF#77-0191  4.2800 4.2800 4.2800 

PDF#83-2092  10.3340 6.0100 4.6930 

13L2F2P15h851 0.00 10.2769 5.9870 4.6842 

cZn4h651 0.05 10.2892 5.9891 4.7059 

cZn4h652 0.10 10.2081 5.9791 4.6867 

cZn4h653 0.16 10.2453 6.1175 4.6937 

cZn4h654 0.21 11.0362 5.8485 4.6315 

cZn4h655 0.27 10.2542 6.0989 4.6902 

 

Figure 6. Variation trend of XRD parameters of ZnO and LiFePO4/C composites. 

2.3. Infrared Spectrum Analysis 

The Fourier infrared spectrum analysis of MgO and LiFePO4/C composite with dif-

ferent mass ratios is shown in Figure 7. It shows that the samples of magnesium oxide and 

lithium iron phosphate carbon composites with six different mass ratios mainly show ob-

vious infrared absorption characteristic peaks around 3432, 1631, 1384, 1138, 1061, 971, 

639, 578, 550, 507 and 475 cm−1 [38,39]. It can also be seen from Figure 7 that with the 

increase of magnesium oxide content, the vibration absorption peak with a wave number 

of about 971 cm−1 tends to shift slightly to the left. According to the research of P. Jozwiak 

and Roger Frech [40,41], the infrared vibration absorption peak of lithium iron phosphate 

in the wave number range of about 400~1200 cm−1 is mainly caused by the vibration of the 

P-O bond and Li-O bond. The group vibration modes of materials include symmetrical 

stretching vibration (v1) [42], antisymmetric stretching vibration (v3) [43], symmetrical 

bending vibration (v2) and antisymmetric bending vibration (v4) [44]. The P-O bond in 

lithium iron phosphate mainly corresponds to symmetric stretching vibration (v1) and an-

0.00 0.05 0.10 0.15 0.20 0.25 0.30

10.2

10.4

10.6

10.8

11.0

11.2
5.829

5.916

6.003

6.090

4.640

4.672

4.704

4.736

 a-axis

x= mZnO : mLiFePO4/C 

 

 

 

 b-axis

  

ZnO and LiFePO4/C composite material
 c-axis

 

 

 

Figure 6. Variation trend of XRD parameters of ZnO and LiFePO4/C composites.



Molecules 2023, 28, 1970 8 of 18

2.3. Infrared Spectrum Analysis

The Fourier infrared spectrum analysis of MgO and LiFePO4/C composite with
different mass ratios is shown in Figure 7. It shows that the samples of magnesium oxide
and lithium iron phosphate carbon composites with six different mass ratios mainly show
obvious infrared absorption characteristic peaks around 3432, 1631, 1384, 1138, 1061, 971,
639, 578, 550, 507 and 475 cm−1 [38,39]. It can also be seen from Figure 7 that with the
increase of magnesium oxide content, the vibration absorption peak with a wave number
of about 971 cm−1 tends to shift slightly to the left. According to the research of P. Jozwiak
and Roger Frech [40,41], the infrared vibration absorption peak of lithium iron phosphate
in the wave number range of about 400~1200 cm−1 is mainly caused by the vibration of the
P-O bond and Li-O bond. The group vibration modes of materials include symmetrical
stretching vibration (v1) [42], antisymmetric stretching vibration (v3) [43], symmetrical
bending vibration (v2) and antisymmetric bending vibration (v4) [44]. The P-O bond in
lithium iron phosphate mainly corresponds to symmetric stretching vibration (v1) and
antisymmetric stretching vibration (v3), while the O-P-O bond mainly corresponds to
symmetric bending vibration (v2) and antisymmetric bending vibration (v4) [44]. It can
be seen that the infrared analysis images of the six composite samples show absorption
peaks at wave numbers of about 1138 cm−1 and 1061 cm−1, which are mainly caused by
the antisymmetric stretching vibration (v3) of the P-O bond, and the absorption peak at the
wave number of about 971 cm−1 is mainly caused by the symmetrical stretching vibration
(v1) of the P-O bond. The absorption peaks with wave numbers of about 639, 578, 550, 507
and 475 cm−1 are mainly caused by the mixed vibration of symmetric bending vibration
(v2) and antisymmetric bending vibration (v4) of the O-P-O bond [45].
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Figure 7. Infrared spectrum analysis of MgO and LiFePO4/C composites.

To sum up, the wave number is about 372~1139 cm−1, which mainly corresponds
to the internal vibration mode of the PO4

3− ion [46]. For the infrared spectrum absorp-
tion peak caused by the vibration of the lithium ion (Li+), it mainly appears in the low
wavenumber section with a wavenumber of about 400~600 cm−1 [47], but because some
infrared absorption peaks caused by the vibration of PO4

3- also exist in the low wavenum-
ber section with the wavenumber of about 400~600 cm−1, the vibration absorption peak in
this wavenumber section is the superposition of the two [45]. Therefore, it is impossible to
clearly distinguish which peaks are infrared absorption peaks caused by lithium ion (Li+)
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vibration. The infrared vibration absorption peak of the Mg-O bond appears at about 870,
598, 440 cm−1 [48,49], indicating that there is an infrared characteristic peak of magnesium
oxide. In general, the vibration absorption peak patterns of the infrared spectra of six MgO
and LiFePO4/C composite samples with different mass ratios are basically consistent with
the FTIR test peak patterns of lithium iron phosphate by Heru Setyawan et al. [50], with
vibration absorption peaks corresponding to lithium iron phosphate.

The Fourier infrared spectra of the ZnO and LiFePO4/C composite are shown in
Figure 8. It shows that the samples of zinc oxide and lithium iron phosphate carbon
composites with six different mass ratios mainly show obvious infrared absorption char-
acteristic peaks around 1061, 971, 639, 578, 550, 507 and 475 cm−1 [51,52]. It is mainly
the vibration absorption peak of the P-O bond and the O-P-O bond [45]. The infrared
vibration absorption peak of the Zn-O bond appears at about 500 cm−1 [53,54] and 600
cm−1 [55], indicating that there is an infrared characteristic peak of zinc oxide. In general,
the vibration absorption peak patterns of the infrared spectra of six zinc oxide and lithium
iron phosphate carbon composite samples with different mass ratios are basically consistent
with the FTIR test peak patterns of lithium iron phosphate by Heru Setyawan et al. [50],
with vibration absorption peaks corresponding to lithium iron phosphate.

Molecules 2023, 28, x FOR PEER REVIEW 9 of 17 
 

 

 

Figure 8. Infrared spectrum analysis of ZnO and LiFePO4/C composites. 

2.4. Scanning Electron Microscope Analysis 

Scanning electron microscope (SEM) analysis is a very important analysis method for 

the measurement and analysis of the micro surface morphology, particle size and particle 

dispersion of materials [56]. In order to analyze the micro morphology of magnesium ox-

ide and lithium iron phosphate carbon composites with different mass ratios, the samples 

with a mass ratio of MgO to LiFePO4/C of 0.09 were analyzed by SEM. The results are 

shown in Figure 9, which shows that the particles of the composites are dispersed rela-

tively evenly. Through the statistics of particle size, it is found that the particle size distri-

bution is similar to the normal distribution. The particle size is mainly concentrated at 

about 300 nm. The particle size is smaller than that of some samples(400–800 nm) in ref-

erence [57], and it is smaller than the particle size of some samples (micron) in reference 

[58]. In addition, it can be seen from Figure 9 that there are many smaller particles around 

the larger particles, and the smaller particles may be magnesium oxide, indicating that the 

introduction of magnesium oxide may hinder the growth of composite particles to a cer-

tain extent, and the smaller material particles may have higher conductivity. 

  

Figure 9. SEM analysis of MgO and LiFePO4/C composites (the mass ratio of MgO to LiFePO4/C is 

0.09. The calcination temperature is 850 °C and the calcination time is 15 h.). 

The SEM analysis result with the mass ratio of ZnO to LiFePO4/C of 0.16 is shown in 

Figure 10. It can be seen that the particles of the composite are relatively evenly dispersed. 

Through the statistics of the particle size, it is found that the particle size distribution fol-

lows a quasi-normal distribution, and the particle size is mainly concentrated at about 400 

nm. Compared with zinc oxide-modified lithium iron phosphate particles (about 1 µm) 

prepared by Shuxin Liu et al. [8] and some lithium iron phosphate sample particles (2–50 

μm) prepared by Marco G. Rigamonti et al. [59], our particle size is smaller. It shows that 

4000 3600 3200 2800 2400 2000 1600 1200 800 400

ZnO and LiFePO4/C composite material

47
5

50
7

55
0

57
8

63
9

97
1

10
6111

38

13
84

16
31

34
32

x=0.00

x=0.05

x=0.10

x=0.16

x=0.21

x=0.27
x= mZnO : mLiFePO4/C 

Wavenumber/cm
-1

T
ra

ns
m

it
ta

nc
e

  

 

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

MgO and LiFePO4/C composite material

 

 

F
re

q
.

Mean/um

Figure 8. Infrared spectrum analysis of ZnO and LiFePO4/C composites.

2.4. Scanning Electron Microscope Analysis

Scanning electron microscope (SEM) analysis is a very important analysis method for
the measurement and analysis of the micro surface morphology, particle size and particle
dispersion of materials [56]. In order to analyze the micro morphology of magnesium oxide
and lithium iron phosphate carbon composites with different mass ratios, the samples with
a mass ratio of MgO to LiFePO4/C of 0.09 were analyzed by SEM. The results are shown in
Figure 9, which shows that the particles of the composites are dispersed relatively evenly.
Through the statistics of particle size, it is found that the particle size distribution is similar
to the normal distribution. The particle size is mainly concentrated at about 300 nm. The
particle size is smaller than that of some samples (400–800 nm) in reference [57], and it is
smaller than the particle size of some samples (micron) in reference [58]. In addition, it
can be seen from Figure 9 that there are many smaller particles around the larger particles,
and the smaller particles may be magnesium oxide, indicating that the introduction of
magnesium oxide may hinder the growth of composite particles to a certain extent, and the
smaller material particles may have higher conductivity.
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Figure 9. SEM analysis of MgO and LiFePO4/C composites (the mass ratio of MgO to LiFePO4/C is
0.09. The calcination temperature is 850 ◦C and the calcination time is 15 h.).

The SEM analysis result with the mass ratio of ZnO to LiFePO4/C of 0.16 is shown in
Figure 10. It can be seen that the particles of the composite are relatively evenly dispersed.
Through the statistics of the particle size, it is found that the particle size distribution
follows a quasi-normal distribution, and the particle size is mainly concentrated at about
400 nm. Compared with zinc oxide-modified lithium iron phosphate particles (about 1
µm) prepared by Shuxin Liu et al. [8] and some lithium iron phosphate sample particles
(2–50 µm) prepared by Marco G. Rigamonti et al. [59], our particle size is smaller. It shows
that the introduction of zinc oxide may hinder the growth of composite particles to a certain
extent and improve the electromagnetic properties of composites.
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Figure 10. SEM analysis of ZnO and LiFePO4/C composites (the mass ratio of ZnO to LiFePO4/C is
0.16. The calcination temperature is 850 ◦C and the calcination time is 15 h).

2.5. Magnetic Performance Analysis

The magnetic properties of MgO and LiFePO4/C composites were analyzed by a
vibration magnetometer (VSM). The results are shown in Figures 11 and 12 and Table 3.
Table 3 shows that the magnetization of all composites is greater than the room temperature
magnetization (about 0.35 emu/g) calculated by theoretical simulation [60], indicating that
there is a gap between theory and practice.

When magnesium oxide is not introduced, the saturation magnetization of lithium
iron phosphate carbon composites is smaller than that of reference [61] (the maximum is
about 1 emu/g), and the magnetization of composites with magnesium oxide is larger than
that of reference [61], indicating that the introduction of magnesium oxide enhances the
magnetic properties of composites. The magnetic properties of lithium iron phosphate
carbon composites with different contents of magnesium oxide have great changes. It can
be seen from the variation trend of magnetic parameters (Figure 12) that the saturation
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magnetization (Ms, emu/g), residual magnetization (Mr, emu/g) and hysteresis loop area
of the hysteresis loop (kOe·emu/g) basically increase with the increase in magnesium oxide,
while the coercivity Hc first increases and then decreases. For lithium iron phosphate, its
Neel temperature TN is 50 K [62,63]. That is, it is antiferromagnetic when the temperature
is lower than 50 K, and paramagnetic when the temperature is higher than 50 K. The six
samples analyzed at room temperature should be paramagnetic, the hysteresis loop of
theory should be a straight line, and the hysteresis loop area should be zero. It can be seen
from the results that the hysteresis loop area is small, while the coercivity of the sample
is relatively large, showing weak ferromagnetism, which may be caused by ferrous or
ferromagnetic impurities after the introduction of magnesium oxide [13–64]. However, no
obvious ferromagnetic impurity phase was found in the previous XRD analysis, indicating
that the ferromagnetic impurity content may be small, and its XRD diffraction peak may be
relatively weak. It is difficult to find its obvious XRD characteristic peak, which is similar to
the analysis of some samples of lithium iron phosphate carbon composites synthesized by
Ming Chen et al. [13], and there is no obvious impurity peak in XRD. Weak ferromagnetism
is shown in the hysteresis loop of the sample at room temperature.
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Figure 11. Hysteresis loop of MgO and LiFePO4/C composites at room temperature.

Table 3. Magnetic parameters of MgO and LiFePO4/C composites at room temperature.

Samples x Ms (emu/g) Mr (emu/g) Hc (Oe)
Area Of

Hysteresis Loop
(kOe·emu/g)

13L2F2P15h851 0.00 1.15 0.13 170.67 0.1

cMg4h651 0.03 4.59 1.42 173.22 0.1

cMg4h652 0.06 7.89 2.37 232.55 0.2

cMg4h653 0.09 9.26 2.71 218.07 0.2

cMg4h654 0.12 9.50 2.21 188.63 0.3

cMg4h655 0.15 11.11 2.81 193.00 0.4
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Figure 12. Variation trend of magnetic parameters of MgO and LiFePO4/C composites at room
temperature.

Figure 13 is the hysteresis loops of ZnO and LiFePO4/C composites at room tempera-
ture, and Table 4 and Figure 14 show the variation of magnetic parameters. It can be found
that the magnetic properties of lithium iron phosphate carbon composites with different
contents of zinc oxide have great changes. It can be seen from the variation trend chart of
magnetic parameters (Figure 14) that the Ms and Mr basically increase with the increase
of magnesium oxide, the area of hysteresis loop basically does not change, and the Hc
first increases slightly and then decreases. Compared with other references [60,61], the
lithium iron phosphate carbon composite with zinc oxide has relatively large saturation
magnetization, indicating that the introduction of zinc oxide is conducive to improving the
magnetic properties of the composite.

Table 4. Magnetic parameters of ZnO and LiFePO4/C composites at room temperature.

Samples x Ms (emu/g) Mr (emu/g) Hc (Oe) Area of Hysteresis
Loop (kOe·emu/g)

13L2F2P15h851 0.00 1.15 0.13 170.67 0.1

cZn4h651 0.05 3.82 1.41 296.87 0.2

cZn4h652 0.10 5.36 1.84 204.37 0.2

cZn4h653 0.16 6.75 1.88 159.21 0.2

cZn4h654 0.21 7.16 1.85 130.25 0.2

cZn4h655 0.27 6.91 1.70 132.72 0.2
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Figure 13. Hysteresis loop of ZnO and LiFePO4/C composites at room temperature.
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Figure 14. Variation trend of magnetic parameters of ZnO and LiFePO4/C composites at room
temperature.
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3. Experiment
3.1. Experimental Steps

The experimental steps include two parts. The first part is the synthesis of LiFePO4/C
samples. The samples of LiFePO4/C composites are prepared by sol-gel. Firstly, a carbon
source (ethylene glycol), a lithium source (lithium hydroxide monohydrate), a phosphorus
source (ammonium dihydrogen phosphate) and an iron source (ferric nitrate nine hydrate)
are added with an appropriate amount of distilled water according to the material ratio
of 1:1:1:1, mixed and dissolved in the beaker, sealed with fresh-keeping film and aged at
room temperature for 20 h, and then the mixed solution is stirred in a 60 ◦C water bath
until dry, placed in an 80 ◦C drying oven for full drying, and then ground with a mortar.
Finally, LiFePO4/C composites were obtained by calcining in a muffle furnace at 850 ◦C for
15 h under the protection of activated carbon powder.

The second part is synthesizing AO-type metal oxides (MgO, ZnO) and LiFePO4/C
composites with different mass ratios. The detailed steps are as follows:

(1) Weigh the mass of corresponding drugs (lithium iron phosphate, magnesium
nitrate, zinc nitrate and ethylene glycol) according to the set proportion, in which the set
mass ratio x of magnesium oxide and lithium iron phosphate is 0.00, 0.03, 0.06, 0.09, 0.12
and 0.15, respectively; the mass ratio of ethylene glycol to magnesium nitrate is 0.2482,
and the mass ratio x of zinc oxide to lithium iron phosphate is 0.00, 0.05, 0.10, 0.16, 0.21
and 0.27, respectively; and the mass ratio of ethylene glycol to zinc nitrate is 0.4341. Then,
dissolve the ethylene glycol solution in an appropriate amount of distilled water to obtain
solution A, metal nitrate (magnesium nitrate or zinc nitrate) in an appropriate amount of
distilled water to obtain solution B, lithium iron phosphate in an appropriate amount of
distilled water to obtain solution C, and then drop ethylene glycol solution A into metal
nitrate (magnesium nitrate or zinc nitrate) solution B and continuously stir with a glass rod
to obtain the mixed solution D.

(2) Drop solution C into mixture D and stir it continuously with a glass rod to obtain
mixture E.

(3) Use the agitator to stir mixture E in a 40 ◦C water bath until the wet gel is obtained,
stirring for about 5 h.

(4) Use a large beaker to cover the sample beaker, then put it into a drying oven and
dry gel at 40°C. The average drying time is 10 h.

(5) Grind the sample with a mortar to obtain the powder.
(6) Put the powder into a three-layer ceramic crucible protected by carbon.
(7) Calcine the sample in a three-layer ceramic crucible protected by carbon in a muffle

furnace.
(8) After calcination, grind the sample with a mortar again to obtain the final sample

powder.

3.2. Characterization of Material Properties

For the phase structure analysis of AO-type metal oxides (MgO, ZnO) and LiFePO4/C
composites with different contents, the crystal structure of the materials was characterized
by X-ray diffractometer (D/max-2500v/pc, Rigaku, Tokyo, Japan), and Cu-Kα was used
as target radiation. The scanning speed was set to 10◦/min, and the scanning angle range
was set to 2θ = 10~80◦. For the Fourier infrared spectrum analysis of AO-type metal
oxides (MgO, ZnO) and LiFePO4/C composites with different contents, the Spectrum Two
(PerkinElmer) infrared spectrum analyzer (FT-IR) (PerkinElmer, Waltham, MA, USA) was
used to test and analyze the possible functional groups and internal chemical bonds in
the samples prepared by the experiment. The area of the infrared spectrum test was set
as 400~4000 cm−1. For the microstructure, particle size, degree of uniform dispersion
and agglomeration of AO-type metal oxide (MgO, ZnO) and LiFePO4/C composites with
different contents, ZEISS EVO18 (ZEISS, Jena, Germany) was used to analysis the micro
morphology, and a Nano Measurer 1.2 w (Fudan University, Shanghai, China) used to
statistically analyze the particle size of the material. The magnetic properties of AO-type
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metal oxides (MgO, ZnO) and LiFePO4/C composites with different contents were tested
by a VSM-100 vibrating sample magnetometer (YINGPU MAGNETOELECTRIC company,
Changchun, China). During the analysis, the maximum magnetic field was H = 8000 Oe (0.8
T), the field increasing step moment was 4, and the maximum sensitivity of the instrument
was 5 × 10−5 emu. The hysteresis loop of the sample was analyzed at room temperature,
and various magnetic performance parameters of the sample, including area of hysteresis
loop, residual magnetization (Mr), coercivity (Hc) and saturation magnetization (Ms), could
be obtained.

4. Conclusions

In this paper, AO-type metal oxides (MgO and ZnO) and LiFePO4/C composites
were successfully prepared by a two-step method. The effect of AO-type metal oxides
(MgO and ZnO) on LiFePO4/C composites was studied. MgO and LiFePO4/C composites
were prepared by a two-step sol-gel method. The thermal properties, phase structure,
functional groups, chemical bonds, micro surface morphology and magnetic properties
of the samples during the synthesis of MgO and LiFePO4/C composites with different
mass ratios were studied by TG, XRD, FTIR, SEM and VSM. The research shows that
there are three obvious mass change platforms for the decrease of the heating mass of the
composite precursor. After 400 ◦C, the mass of the precursor remains basically unchanged,
and composite materials may begin to be synthesized. The final composite material is about
70.5% of the total mass of the precursor. The main peaks of lithium iron phosphate and
magnesium oxide appeared in the phase structure analysis of the MgO and LiFePO4/C
composites, and there was no obvious impurity peak. Infrared spectrum analysis shows
that the composites have infrared vibration absorption peaks of lithium iron phosphate
and magnesium oxide. SEM analysis of micro morphology shows that the composite
has obvious particles and good dispersion, and the particle size is mainly 300 nm. The
hysteresis loop analysis at room temperature shows that the saturation magnetization (Ms,
emu/g), residual magnetization (Mr, emu/g) and area of hysteresis loop of the composites
increase with the increase of magnesium oxide, while the coercivity (Hc, Oe) first increases
slightly and then decreases, and the maximum Ms is 11.11 emu/g. ZnO and LiFePO4/C
composites were synthesized by a two-step sol-gel method and analyzed by TG, XRD, FTIR,
SEM and VSM. The TG analysis shows that there are three obvious mass change platforms
for the decrease of the heating mass of the composite precursor. After 410 °C, the mass of
the precursor remains basically unchanged, and the composite may begin to be synthesized.
The final composite is about 69% of the total mass of the precursor. The phase structure
analysis of ZnO and LiFePO4/C composites showed that the main peaks of lithium iron
phosphate and zinc oxide are found in the XRD figure. Infrared spectrum analysis shows
that infrared vibration absorption peaks of lithium iron phosphate and zinc oxide are found
in the FTIR figure of composites. SEM analysis shows that there are obvious particles and
good dispersion, and the particle size is mainly 400 nm. The hysteresis loop measurement
at room temperature shows that the introduction of zinc oxide makes the Ms and Mr of the
composite basically increase with the increase of zinc oxide, while the area of the hysteresis
loop remains stable after a slight increase. The Hc first increases slightly and then decreases
with the increase of zinc oxide.
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