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Abstract: (E)-7-Phenyl-2-hepten-4,6-diyn-1-ol (1) and (Z)-7-Phenyl-2-hepten-4,6-diyn-1-ol (2) are
isomeric natural polyacetylenes isolated from the Chinese medicinal plant Bidens pilosa L. This
study first revealed the excellent anti-metastasis potential of these two polyacetylenes on human
gastric cancer HGC-27 cells and the distinctive molecular mechanisms underlying their activities.
Polyacetylenes 1 and 2 significantly inhibited the migration, invasion, and adhesion of HGC-27 cells
at their non-toxic concentrations in a dose-dependent manner. The results of a further mechanism
investigation showed that polyacetylene 1 inhibited the expressions of Vimentin, Snail, β-catenin,
GSK3β, MST1, YAP, YAP/TAZ, and their phosphorylation, and upregulated the expression of E-
cadherin and p-LATS1. In addition, the expressions of various downstream metastasis-related
proteins, such as MMP2/7/9/14, c-Myc, ICAM-1, VCAM-1, MAPK, p-MAPK, Sox2, Cox2, and Cyr61,
were also suppressed in a dose-dependent manner. These findings suggested that polyacetylene 1
exhibited its anti-metastasis activities on HGC-27 cells through the reversal of the EMT process and
the suppression of the Wnt/β-catenin and Hippo/YAP signaling pathways.

Keywords: polyacetylene isomers; migration; invasion; Wnt/β-catenin; Hippo/YAP

1. Introduction

Gastric cancer (GC) is the third leading cause of cancer-associated mortality in the
world [1]. With the development of new treatment strategies, the long-term survival
outcome of patients with GC has significantly improved, especially for pre-metastatic early
patients, where the 5-year survival rate can exceed 95% [2]. Unfortunately, due to the lack
of early clinical signs, GC is difficult to observe in the beginning and about 80% of patients
have advanced-stage GC at the initial diagnosis; this diagnosis is usually accompanied by
lymph node or even distant organ metastasis, which leads to the loss of the best surgical
window and a serious restriction of the prognosis and the survival of patients [3]. Therefore,
it is critical to find safe and effective candidate drugs that inhibit the metastasis of GC cells.

Tumor metastasis is a complex, multifactorial dynamic process that mainly depends
on the potential of tumor cell migration and invasion [4]. The canonical Wnt/β-catenin
signaling pathway is mostly considered to be closely related to tumor cell migration and
invasion [5]. The activation of the Wnt/β-catenin signaling pathway can promote tumor cell
adhesion by forming a cadherin–catenin complex, enhancing the epithelial–mesenchymal
transition (EMT) process, promoting clone initiation and invasion, and thus, aggravating
tumor metastasis [6]. In addition, the Hippo/YAP signaling pathway was also revealed to
be intricately related to tumor invasion and metastasis in recent years, especially in gastric
cancer [7–9]. The expression and nuclear localization proportion of YAP/TAZ, which is
the core protein of the Hippo/YAP signaling pathway, were both abnormally elevated in
GC cells, indicating the special interlinkage between this pathway and the physiological
and pathological processes of GC metastasis [10]. Interestingly, these two pathways are
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both activated by promoting the translocation of their core signal molecules (β-catenin
and YAP/TAZ) to the nucleus, binding with transcription factors, and then transcribing
downstream target genes [11]. Furthermore, frequent cross-talk occurs between Wnt/β-
catenin and Hippo/YAP signaling pathways. Phosphorylation YAP/TAZ can integrate
with β-catenin, causing β-catenin to be retained in the cytoplasm, thus inhibiting the
transcriptional activity of β-catenin [12,13]. YAP can induce the inactivation of GSK3β,
which, in turn, stabilizes cytosolic β-catenin and promoted its nuclear translocation of
β-catenin [14]. Given this, some scholars pointed out that the creation of innovative anti-
metastasis medications based on the intracellular microenvironment of Wnt/β-catenin and
Hippo/YAP signaling pathways may be the key to producing promising results in the field
of tumor control.

(E)-7-Phenyl-2-hepten-4,6-diyn-1-ol (polyacetylene 1) and (Z)-7-Phenyl-2-hepten-4,6-
diyn-1-ol (polyacetylene 2) (Figure 1) are a pair of natural polyacetylene isomers isolated
from the Chinese traditional herb Bidens pilosa L. by our research group. These two com-
pounds are characterized by the presence of a conjugated system of two carbon–carbon
triple bonds and a double bond. Extensive natural polyacetylenes were isolated from
different plants, fungi, and marine organisms in recent decades and extensive attention
was paid owing to their unique chemical structures and diverse bioactivities, including
tumor suppression, immunity regulation, depression resistance, and neural protection [15].
For example, phenyl-1,3,5-heptatriyne showed significant cytotoxicity against human hep-
atoma HepG2 cells and human colon cancer CaCO-2 cells with IC50 values of 0.49 and
0.7 µg/mL, respectively [16]. In addition, four falcarindiol-type polyacetylenes isolated
from E. tricuspidatum exhibited significant inhibition of cell proliferation on human malig-
nant melanoma SK-MEL-28 cells, human pulmonary carcinoma A549 cells, and human
breast cancer MCF-7 cells with IC50 values ranging from 0.3 to 29 µM [17]. It is worth
mentioning that these polyacetylenes with anti-tumor activity in vitro shared a conjugated
system of two carbon–carbon triple bonds and a double bond. However, there is no report
on the inhibitory activity and possible mechanism of polyacetylene compounds on tumor
cell migration and invasion.
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Figure 1. Structures of polyacetylenes 1 and 2.

Therefore, this study focused on the influence of two polyacetylene isomers on tu-
mor metastasis, as well as the Wnt/β-catenin and Hippo/YAP signaling pathways to
deeply understand the molecular mechanisms. Overall, our research provided new in-
sight for developing novel, secure, and effective anti-GC metastasis drugs from natural
polyacetylenes compounds.

2. Results
2.1. Effects of Polyacetylenes 1 and 2 on Cell Viability

As shown in Table 1, polyacetylene 1 displayed relatively obvious proliferation in-
hibitory activity against undifferentiated gastric cancer HGC-27 cells with an IC50 value
of 52.83 µM, followed by human breast cancer MDA-MB-231 cells with an IC50 value
of 73.92 µM. While other tested cells were all insensitive to polyacetylene 1 (IC50 values
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more than 100 µM). In addition, polyacetylene 2 was inactive in all tested cells (IC50 value
more than 200 µM), including HepG2 cells, NCI-N87 cells, GES-1 cells, and MDCK cells.
Based on the above results, the HGC-27 cells were used for further investigation in the
anti-migration and invasion activities of polyacetylenes 1 and 2.

Table 1. The cytotoxic activity of polyacetylene 1 against tumor cell lines and normal cell lines.

Cell Line HGC-27 MDA-MB-231 HepG2 BGC-823 HCT-116 Ca Ski

IC50 (µM) 52.83 81.88 108.7 126.5 164.1 166.6

Cell line PANC-1 A549 NCI-N87 AML12 GES-1 MDCK

IC50 (µM) 171.4 >200 >200 73.92 160.6 171.9
Polyacetylene 1 displayed relatively obvious proliferation inhibitory activity against HGC-27 cells, with an IC50
value of 52.83 µM, while polyacetylene 2 was inactive in all tested cells, with IC50 values greater than 200 µM.

2.2. Determination of Non-Cytotoxic Concentrations

Conventional drugs that inhibit the migration and invasion of cells are often achieved
by restraining proliferation, which cannot purely reflect the anti-migration and invasion
activity of drugs [18,19]. Therefore, this study evaluated the effects of polyacetylenes 1 and
2 on the viability and proliferative capacity of HGC-27 cells and tried to find suitable non-
cytotoxic concentrations for subsequent experiments. The viability of HGC-27 cells was
analyzed using an MTT assay, as shown in Figure 2A; despite being exposed to 6.25–25 µM
of polyacetylenes 1 or 2 for 48 h, no significant difference (p > 0.05) in cell viability was
observed compared with the control group. Furthermore, the proliferative potential of
HGC-27 cells was evaluated by a colony formation assay, as shown in Figure 2B,C; the
colony formation rate of HGC-27 cells following polyacetylene 1 or 2 treatment also had no
substantial difference (p > 0.05) from that of the control group. These results indicated that
25 µM and below could be the non-cytotoxic concentrations of polyacetylenes 1 and 2 and
were used in the following experiments.
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Figure 2. Determination of non-cytotoxic concentrations. (A) Cell viability of HGC-27 cells treated
with 25, 12.5, and 6.25 µM polyacetylenes 1 and 2 for 48 h as determined using an MTT assay. (B) Rep-
resentative stained colony plates of HGC-27 cells treated with polyacetylenes 1 and 2. (C) Colony
formation rate of HGC-27 cells treated with polyacetylenes 1 and 2. Results were expressed as the
mean ± SEM (n = 3). No significant difference compared with the control group.
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2.3. Effect of Treatment on the Wound-Healing Capacity of HGC-27 Cells

A wound-healing assay is a simple and highly reproducible method to appraise the
mass movement of cancer cells. In this study, the effects of polyacetylenes 1 and 2 on the
migratory viability of HGC-27 cells in vitro were evaluated using a wound-healing assay.
As shown in Figure 3, HGC-27 cells were treated with polyacetylene 1 or 2 at 6.25, 12.5,
and 25 µM for 24 h. Compared with the original (0 h) wound width, both polyacetylenes 1
and 2 could significantly inhibit the motility of HGC-27 cells in a concentration-dependent
manner, while polyacetylene 1 demonstrated a greater potential for inhibiting cell migration
(p < 0.05).
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HGC-27 cells were treated with 25, 12.5, and 6.25 µM polyacetylene 1 or 2 for 24 h (magnification:
100×). Compared with the control group, polyacetylenes 1 and 2 inhibited the wound-healing ability
of HGC-27 in a dose-dependent manner, in which the inhibition ability of polyacetylene 1 was more
significant. Significant differences compared with the control group are designated as *** p < 0.001.
Results are expressed as the mean ± SEM (n = 3).

2.4. Effect of Treatment on the Migration and Invasion of HGC-27 Cells

Cell migration and invasion are pivotal steps in tumor cells as they disseminate from
the primary tumor, invade across the basement membranes and endothelial walls, and,
finally, colonize distant organs [20]. A transwell assay is the most common method used
to detect the migration and invasion of tumor cells. In a transwell migration assay, the
migration ability of tumor cells is reflected by the attraction of FBS or certain chemokines
to cells. However, in a transwell invasion assay, Matrigel simulates the extracellular matrix
in vivo, and only cells that secrete matrix metalloproteinases to degrade the matrix glue
can penetrate the lower chamber. Thus, transwell migration assays and Matrigel transwell
invasion assays were conducted to analyze the inhibitory effects of polyacetylenes 1 and
2 on the migration and invasiveness of HGC-27 cells. The results demonstrated that
polyacetylenes 1 and 2 could inhibit the migration and invasiveness of HGC-27 cells in
a dose-dependent manner (Figure 4) (p < 0.05). Furthermore, the inhibitory effect of the
trans structure polyacetylene 1 was even better.
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Figure 4. Effects of polyacetylenes 1 and 2 on the migration and invasion capabilities of HGC-27
cells. The HGC-27 cells were treated with 25, 12.5, and 6.25 µM polyacetylenes 1 and 2 for 24 h
(magnification: 400×). Compared with the control group, polyacetylenes 1 and 2 inhibited the
wound-healing ability of HGC-27 in a dose-dependent manner, in which the inhibition ability of
polyacetylene 1 was more significant. Significant differences compared with the control group are
designated as *** p < 0.001. Results are expressed as the mean ± SEM (n = 3).

2.5. Effect of Treatment on the Adhesion Ability of HGC-27 Cells

Collective cell migration requires cell–cell and cell–ECM adhesions. A cell adhesion
assay was used for assessing the adhesion ability of the external environment of cells.
Compared with the control, polyacetylenes 1 and 2 significantly decreased the number
of adherent cells (p < 0.05), while the inhibition effect of polyacetylene 1 visibly exceeded
that of polyacetylene 2 (Figure 5). Since polyacetylene 1 had a more prominent effect on
inhibiting the migration, invasion, and adhesion of HGC-27 cells, it was selected for the
subsequent mechanistic investigation.

Molecules 2023, 28, x FOR PEER REVIEW 5 of 15 
 

 

 
Figure 4. Effects of polyacetylenes 1 and 2 on the migration and invasion capabilities of HGC-27 
cells. The HGC-27 cells were treated with 25, 12.5, and 6.25 µM polyacetylenes 1 and 2 for 24 h 
(magnification: 400×). Compared with the control group, polyacetylenes 1 and 2 inhibited the 
wound-healing ability of HGC-27 in a dose-dependent manner, in which the inhibition ability of 
polyacetylene 1 was more significant. Significant differences compared with the control group are 
designated as *** p < 0.001. Results are expressed as the mean ± SEM (n = 3). 

2.5. Effect of Treatment on the Adhesion Ability of HGC-27 Cells 
Collective cell migration requires cell–cell and cell–ECM adhesions. A cell adhesion 

assay was used for assessing the adhesion ability of the external environment of cells. 
Compared with the control, polyacetylenes 1 and 2 significantly decreased the number of 
adherent cells (p < 0.05), while the inhibition effect of polyacetylene 1 visibly exceeded that 
of polyacetylene 2 (Figure 5). Since polyacetylene 1 had a more prominent effect on inhib-
iting the migration, invasion, and adhesion of HGC-27 cells, it was selected for the subse-
quent mechanistic investigation. 

 
Figure 5. Effects of polyacetylenes 1 and 2 on the cell adhesion matrix capability of HGC-27 cells. 
Cells were treated with 25, 12.5, and 6.25 µM of polyacetylenes 1 and 2 for 24 h. The results are 
shown at 100× magnification. Compared with the control group, polyacetylenes 1 and 2 inhibited 
the wound-healing ability of HGC-27 in a dose-dependent manner, in which the inhibition ability 
of polyacetylene 1 was more significant. Significant differences compared with the control group 
are designated as *** p < 0.001. Results are expressed as the mean ± SEM (n = 3). 

2.6. Polyacetylene 1 Treatment Reversed the EMT in HGC-27 Cells 
EMT was shown to be closely related to tumor initiation, invasion, metastasis, and 

resistance to therapy. EMT dynamics could mediate its biological impact on tumor metas-
tasis by inhibiting the expression of epithelial markers (e.g., E-cadherin) and upregulating 
the expression of mesenchymal markers (e.g., Vimentin and Snail), thereby remolding the 
cytoskeleton and cell membrane, endowing cancer cells with increased motility and inva-

Figure 5. Effects of polyacetylenes 1 and 2 on the cell adhesion matrix capability of HGC-27 cells.
Cells were treated with 25, 12.5, and 6.25 µM of polyacetylenes 1 and 2 for 24 h. The results are
shown at 100× magnification. Compared with the control group, polyacetylenes 1 and 2 inhibited
the wound-healing ability of HGC-27 in a dose-dependent manner, in which the inhibition ability of
polyacetylene 1 was more significant. Significant differences compared with the control group are
designated as *** p < 0.001. Results are expressed as the mean ± SEM (n = 3).
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2.6. Polyacetylene 1 Treatment Reversed the EMT in HGC-27 Cells

EMT was shown to be closely related to tumor initiation, invasion, metastasis, and
resistance to therapy. EMT dynamics could mediate its biological impact on tumor metasta-
sis by inhibiting the expression of epithelial markers (e.g., E-cadherin) and upregulating
the expression of mesenchymal markers (e.g., Vimentin and Snail), thereby remolding
the cytoskeleton and cell membrane, endowing cancer cells with increased motility and
invasiveness, and causing the metastasis and spread of lesions [21]. Therefore, immunoflu-
orescence assays and Western blot analysis were conducted in this study to examine the
effect of polyacetylene 1 on EMT markers in HGC-27 cells. Immunofluorescence staining
revealed that E-cadherin expression was increased and Vimentin expression was decreased
in the HGC-27 cells treated with polyacetylene 1 (Figure 6). Simultaneously, the Western
blot outcome further verified this point and displayed a significant decrease in Snail. These
findings indicated that polyacetylene 1 inhibited the EMT process in HGC-27 cells.
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Figure 6. Effects of polyacetylene 1 on the EMT marker molecule protein in HGC-27 cells. (A) Effects
on the expression of E-cadherin, Vimentin, and Snail in HGC-27 cells treated with 25, 12.5, and 6.25 µM
of polyacetylene 1 for 24 h. E-cadherin, Vimentin, and Snail were measured using the Western blotting
method. GAPDH was used to ensure an equal amount of loaded protein. (B) Immunofluorescence
images of E-cadherin and Vimentin in HGC-27 cells treated with 25, 12.5, and 6.25 µM of polyacetylene
1 for 24 h. Nuclear counterstaining with DAPI is shown separately. Scale bars: 200 µm. Significant
differences compared with the control group are designated as * p < 0.05 and *** p < 0.001. Results are
expressed as the mean ± SEM (n = 3).

2.7. Polyacetylene 1 Treatment Suppressed the Wnt/β-Catenin Signaling Pathway in
HGC-27 Cells

The Wnt/β-catenin signaling pathway plays a vital role in regulating the migration
and invasion of tumor cells. The key molecule of the Wnt signaling pathway β-catenin
is involved in cell adhesion through forming cadherin–catenin complexes, as well as in
gene transcription through interacting with transcription factors. The nuclear accumulation
of β-catenin, which is a hallmark of Wnt signaling activation, is found in more than 50%
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of GC [22,23]. Consequently, immunofluorescence assays and Western blot analysis were
employed to detect the effect of polyacetylene 1 on the nuclear localization proportion of β-
catenin and the expression of Wnt signaling pathway molecules. Compared with the control
group, the expression of β-catenin, p-β-catenin, GSK3β, and p-GSK3β in the polyacetylene
1 treatment groups was obviously decreased in a dose-dependent manner (Figure 7A). The
expressions of the β-catenin target genes c-Myc, ICAM-1, VCAM-1, cyclin D1, MMP-2,
MMP-7, MMP-9, and MMP-14 were also significantly decreased (Figure 7A). In addition,
the expression of nuclear β-catenin of the treatment group was significantly lower than that
of the control group, which was also verified by the Western blot and immunofluorescence
results (Figure 7B). The above results confirmed that polyacetylene 1 could inhibit the
activation of β-catenin, promote its degradation, and block the Wnt/β-catenin signaling
pathway in HGC-27 cells.
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Figure 7. Effects of polyacetylene 1 on the Wnt/β-catenin signaling pathway in HGC-27 cells.
(A) Western blot results of Wnt/β-catenin signaling pathway-related proteins in total lysates of HGC-27
cells treated with 25, 12.5, and 6.25 µM of polyacetylene 1 for 24 h. GAPDH was used to ensure
an equal amount of loaded protein. (B) Immunofluorescence images and Western blot results of
nuclear β-catenin in HGC-27 cells treated with 25, 12.5, and 6.25 µM of polyacetylene 1 for 24 h.
Nuclear counterstaining with DAPI was shown separately. Scale bars: 200 µm. Histone-H3 was used
to ensure an equal amount of loaded protein. Significant differences compared with the control group
are designated as ** p < 0.01 and *** p < 0.001. Results are expressed as the mean ± SEM (n = 3).
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2.8. Polyacetylene 1 Treatment Suppressed the Hippo–YAP Signaling Pathway in HGC-27 Cells

The Hippo–YAP signaling pathway was found to be bound up with EMT and tumor
metastasis in GC. Dephosphorylation of YAP/TAZ can induce the expression of target genes
through nuclear translocation and cooperates with target factors to activate multiple onco-
genes, promoting tumor progression, migration, anti-apoptosis, and metastasis [24–27].
The expression of LATS1 is downregulated and negatively associated with YAP in GC tis-
sues, whereas the silencing of YAP reduces the growth and invasion in HGC-27 cells [28,29].
Accordingly, immunofluorescence assays and Western blot analysis were employed to
detect the effect of polyacetylene 1 on the nuclear localization proportion of YAP/TAZ and
the expression of Hippo–YAP signaling pathway molecules. The Western blotting analysis
suggested that polyacetylene 1 significantly decreased the expression of MST1, p-MST1,
YAP, p-YAP, LAST1, YAP/TAZ, MAPK, Cyr61, Cox2, and Sox2 while simultaneously in-
creasing the expression of p-LATS1 (Figure 8A). In addition, the expression of nuclear
YAP/TAZ of the treatment group was significantly lower than that of the control group,
which was also confirmed by the Western blot and immunofluorescence results (Figure 8B).
The above results confirmed that polyacetylene 1 can inhibit the activation of YAP/TAZ,
promote its degradation, and block the Hippo/YAP signaling pathway in HGC-27 cells.
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with 25, 12.5, and 6.25 µM of polyacetylene 1 for 24 h. GAPDH was used to ensure an equal amount
of loaded protein. (B) Immunofluorescence images and Western blot results of nuclear YAP/TAZ in
HGC-27 cells treated with 25, 12.5, and 6.25 µM of polyacetylene 1 for 24 h. Nuclear counterstaining
with DAPI is shown separately. Scale bars: 200 µm. Histone-H3 was used to ensure an equal amount
of loaded protein. Significant differences compared with the control group are designated as * p < 0.05
and *** p < 0.001. Results are expressed as the mean ± SEM (n = 3).

3. Discussion

Invasion and metastasis are the most defining features of gastric cancer malignancy
and the leading causes of patient mortality. Blocking the acquisition of invasiveness and
migration capability with small molecules represents a novel and promising treatment
strategy for advanced gastric cancer. Natural-product-derived compounds have since long
been recognized as important sources of anticancer drugs, some of which have been shown
to exhibit promising anti-metastasis activities by suppressing key molecular features that
uphold tumor cell aggressiveness. For example, matrine, which is a major compound
isolated from Sophora flavescens Ait, exhibits strong anti-invasive activity against breast
cancer cells [30]. Gigantol, which is a bibenzyl compound obtained from Dendrobium
draconis, was demonstrated to suppress the migration and invasion of lung cancer cells [31].

Naturally occurring polyacetylenes are characterized by the presence of two or more
carbon–carbon triple bonds in their carbonic skeleton and are considered important active
ingredients in many medicinal and edible plants, such as Bidens pilosa L., Atractylodes lancea
(Thunb.) DC., and Carthamus tinctorius L. Polyacetylene analogs have an alkyne-conjugated
macrocyclic structure, which, upon activation, can form benzene-type free radicals that can
easily enter the interior of tumor tissues, and upon targeting in tumor cells, rapidly seize
the hydrogen atoms of DNA, cracking the DNA strands, and thus, producing remarkable
anti-tumor activity. In addition, due to the carbon–carbon double bond and triple bond,
polyacetylene compounds possess structural diversity and are easy-to-form isomers, which
may exert different pharmacological effects. In the present study, we first revealed the
excellent anti-metastasis potential of polyacetylenes 1 and 2 on human undifferentiated
gastric cancer HGC-27 cells in vitro. Meanwhile, these two compounds also have other
unique properties, such as low toxicity for normal gastric mucosal cells and kidney cells,
small molecular weight for entering solid tumors expediently, and a succinct structure for
easy chemical synthesis. With these characteristics, polyacetylenes 1 and 2 would be the
high-potential candidate drugs for anti-gastric cancer metastasis.

As shown in Figure 9, the potential molecular mechanisms underlying the anti-
migration and invasion effects of HGC-27 cells were deeply clarified by focusing on the
process of EMT and related signaling pathways. The treatment of gastric cancer HGC-27
cells with non-toxic concentrations of polyacetylene 1 significantly suppressed EMT mark-
ers, namely, Vimentin and Snail, while it enhanced the level of E-cadherin, indicating that
polyacetylene 1 could reverse the EMT process. At the advanced stage of tumorigenesis, the
expression of EMT-related transcription factor Snail is upregulated, which, in turn, inhibits
the expression of E-cadherin and increases the expression of Vimentin [32]. Changes in the
expressions of these epithelial and mesenchymal markers result in the downgrade of cell
polarity, reduce the adhesion between transitional cells and adjacent epithelial cells, and
increase the secretion of enzymes that degrade the extracellular matrix, thereby facilitating
the shedding of tumor cells from their primary site and stimulating metastasis [33].

Wnt/β-catenin signaling is considered a regulator of EMT. Hence, the effects of poly-
acetylene 1 on the Wnt/β-catenin signaling pathway were subsequently revealed. The
results showed that polyacetylene 1 inhibited β-catenin entry into the nucleus through
two pathways: the inhibition of GSK3β expression and phosphorylation, and the promotion
of ubiquitinated degradation of β-catenin phosphorylation, which, in turn, inhibited down-
stream transcriptional expressions of c-Myc, ICAM-1, VCAM-1, MMPs, etc. Our results
suggested that polyacetylene 1 not only inhibits the Wnt/β-catenin signaling pathway but
also accelerates the ubiquitination and degradation of β-catenin, thereby inhibiting EMT
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and metastasis of HGC-27 cells. In the cytoplasm, β-catenin binds to intracellular peptides
in the cytoplasmic domain of E-cadherin to form the E-Cad/Cat complex, which mediates
cell junctions and maintains cell polarity, while the phosphorylation of β-catenin inhibits the
adhesion function of E-cadherin, resulting in unstable intercellular adhesion [34]. Wnt/β-
catenin signaling plays a critical role in EMT regulation by downregulating the expression
of E-cadherin, which subsequently leads to the release and activation of β-catenin. Wnt
signaling enhances the expression of Snail by inhibiting its phosphorylation, thus inducing
EMT in cancer cells [35].
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The Hippo–YAP pathway is also involved in the EMT process of gastric cancer cells.
Several molecules were reported to promote EMT or enhance tumor metastasis via the
Hippo–YAP pathway in gastric cancer [36]. The growth, migration, and invasion of gastric
cancer cells can be reduced by silencing YAP, while the ectopic expression of YAP promotes
these [37]. Simultaneously, the Hippo–YAP pathway is inseparably associated with Wnt/β-
catenin. The overlaps between the biological processes controlled by YAP/TAZ and
Wnt/β-catenin suggest that these factors do not act in isolation, but may interact with
each other. Phosphorylated-β-catenin promotes TAZ degradation by acting as TAZ to
b-TrCP presenters [12]. By controlling the stability of β-catenin, Wnt also induces TAZ
stabilization and TAZ nuclear entry in a manner that is independent of Hippo signaling.
YAP and TAZ are integral components of the β-catenin destruction complex that serves as
a cytoplasmic sink for YAP/TAZ. In addition, YAP can induce the inactivation of GSK3β,
which, in turn, stabilizes cytoplasmic β-catenin and promotes the nuclear translocation
of β-catenin [38]. Phosphorylated YAP/TAZ binds to β-catenin, resulting in β-catenin
retention in the cytoplasm, thereby inhibiting the transcriptional activity of β-catenin [39].
In this study, polyacetylene 1 prevented YAP/TAZ from entering the nucleus through
multiple pathways, including the inhibition of MST1 phosphorylation, enhancement of
LATS1 phosphorylation, and reduction of YAP expression. The reduction in YAP/TAZ in
the nucleus leads to decreases in ICAM-1, VCAM-1, Cyr61, and Sox2. Then, the migration
and invasion abilities of HGC-27 cells were significantly inhibited. This was the first report
that demonstrated that polyacetylene 1 can regulate the Hippo–YAP signaling pathway.

In conclusion, polyacetylenes 1 and 2 exhibited anti-migration, invasion, and adhesion
activity on HGC-27 cells at their nontoxic concentrations by reversing the EMT process and
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inhibiting Wnt/β-catenin and Hippo/YAP signaling pathways. Future research involving
animal experiments is needed to comprehensively elucidate the stability, bioavailability,
and metabolism of polyacetylenes 1 and 2. These findings will be helpful for the future
applications of polyacetylenes 1 and 2 as promising therapeutic agents for gastric cancer.

4. Materials and Methods
4.1. Cells and In Vitro Treatments

Human gastric carcinoma HGC-27 cells, human gastric carcinoma BGC-823 cells,
human gastric carcinoma NCI-N87 cells, human breast cancer MDA-MB-231 cells, human
hepatocellular carcinoma HepG2 cells, human colon cancer HCT-116 cells, human cervical
cancer Ca Ski cells, human pancreatic cancer PANC-1 cell, human lung cancer A549 cells,
human nasopharyngeal carcinoma CNE-2 cells, human gastric epithelial GES-1 cells, and
Madin–Darby canine kidney MDCK cells were purchased from the cell bank of the Shanghai
Institute for Biological Sciences, Chinese Academy of Sciences (Shanghai, China) and
maintained in RPMI-1640 (Gibco BRL Life Technologies, Grand Island, NY, USA) or DMEM
(Gibco BRL Life Technologies, Grand Island, NY, USA) culture medium supplemented
with suitable fetal bovine serum (FBS, Zhejiang Tianhang Biological Technology Co., Ltd.,
Hangzhou, Zhejiang, China) at 37 ◦C with 5% CO2 in a humidified incubator.

4.2. Chemical and Reagents

The roots of Bidens pilosa L. were extracted three times in 95% ethanol for 7 d per
extraction, then extracted with petroleum ether, ethyl acetate, and n-butanol in turn. The
extraction solutions of different polarities were combined and concentrated under reduced
pressure to obtain the petroleum ether extraction part, the ethyl acetate extraction part,
and the n-butanol extraction part. The petroleum ether extraction site was separated into
17 sub-streams (Fr. A–Q) via column chromatography using a step-gradient eluent mixture
of petroleum ether-ethyl acetate (from 100:0 to 0:100), of which Fr. A, Fr. B, Fr. F, Fr. H,
Fr. I, Fr. K, Fr. N, and Fr. O had obvious characteristic absorption peaks of polyacetylene,
and were the main peaks. The fragment Fr.F (357 mg) was purified using semi-preparative
HPLC (acetonitrile:water = 55:45) to obtain the compound polyacetylene 2 (5.3 mg). Fr.
H was purified using semi-preparative HPLC (acetonitrile:water = 55:45) to obtain the
compound polyacetylene 1 (125.3 mg). To view the polyacetylenes 1 and 2 1H and 13C
NMR data, see the Supplementary Materials.

Rabbit monoclonal antibodies against E-cadherin (24E10), Vimentin (D21H3), Snail
(C15D3), β-catenin (D10A8), p-β-catenin (D2F1), GSK-3β (D5C5Z), p-GSK3β (D3A4), MST1
(D8B9Q), p-MST1 (E7U1D), LATS1 (C66B5), p-LATS1 (D57D3), YAP (D8H1X), p-YAP
(D9W2I), YAP/TAZ (D24E4), MMP2 (D4M2N), MMP7 (D4H5), MMP9 (D6O3H), MMP14
(D1E4), c-Myc (D3N8F), ICAM-1 (E3Q9N), VCAM-1 (D8U5V), MAPK (137F5), p-MAPK
(D13.14.4E), Sox2 (D6D9), Cox2 (D5H5), Cyr61 (D4H5D), GAPDH (D16H11), and Histone-
H3 (D1H2) were used at a dilution of 1:1000. HRP-conjugated goat anti-rabbit IgG sec-
ondary antibody (98164) and FITC-conjugated goat anti-rabbit IgG secondary antibody
(17A2) were used at dilutions of 1:5000 and 1:100, respectively. All of these were purchased
from Cell Signaling Technology (Dancer, MA, USA). Matrigel was purchased from BD
Biosciences (Franklin Lakes, NJ, USA).

4.3. Cytotoxicity Evaluation

The MTT method was used for the cytotoxicity evaluation of polyacetylenes 1 and 2. Cells
in the logarithmic growth phase were inoculated into the 96-well plate at 1 × 105 cells/mL
and treated with polyacetylene 1 or 2 at different concentrations for 48 h. Then, 20 µL
5 mg/mL MTT (BS0328; Amersco, Spokane, WA, USA) was added to each well and the
cells were incubated for 4 h. Then, 150 µL DMSO (Sigma-Aldrich, St. Louis, MO, USA) was
used to dissolve formazan. The absorbance of each well was measured using a microplate
reader at 490 nm. Cytotoxicity was expressed as a 50% inhibition concentration (IC50).
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4.4. Clone Formation Assay

HGC-27 cells in the logarithmic growth phase were inoculated into a 6-well plate at
400 cells per well and then incubated with polyacetylene 1 or 2 for 24 h. The medium
was replaced with fresh medium every 2 days. After 14 days of incubation, the colonies
were fixed in 4% paraformaldehyde and stained in 0.1% crystal violet solution. Images
were captured, colonies consisting of more than 50 cells were counted, and data analysis
was performed.

4.5. Wound-Healing Assay

HGC-27 cells in the logarithmic growth phase were inoculated into a 6-well plate at
5 × 105 cells/mL. A 200 µL pipette tip was used to draw a vertical line in the direction
perpendicular to the parallel lines when HGC-27 cells were adherent to 90%. The cells
were treated with polyacetylene 1 or 2 for 24 h separately. Migration and cell movement
throughout the wound area was observed with an inverted optical microscope (Olympus,
Tokyo, Japan) and imaged using a camera attached to the microscope at 100× magnification
at 6, 12, and 24 h. The percentage of wound closure was analyzed using ImageJ.

4.6. Cell Adhesion Matrix Capability Assay

HGC-27 cells were seeded into a 96-well plate at 1 × 105 cells/mL and treated with
polyacetylene 1 or 2 for 24 h separately. The 96-well plates were precoated with PBS-diluted
Matrigel and blocked in advance. The cells were inoculated into the Matrigel-coated wells
for 2 h. After incubation, the cells were fixed and stained in DAPI staining solution. The
average number of adhered cells in five fields was counted using a fluorescence microscope
(Olympus, Tokyo, Japan).

4.7. Transwell Migration/Invasion Assay

The HGC-27 cell line possessed a high degree of metastatic potential. Cell migration
and invasion treated with polyacetylenes 1 and 2 were assessed by using the Matrigel
invasion system. Transwell chambers (8 µm pore size, polycarbonate filters, 6.5 mm
diameter; Corning Costar) in 24-well plates were coated with polymerized Matrigel (BD
Biosciences, Franklin Lakes, NJ, USA). A total of 600 µL starved treated cells were placed in
the upper chamber at 5 × 105 cells/mL. Medium containing 20% FBS and polyacetylene 1
or 2 were added to the lower chamber as the chemoattractant. After incubation for 24 h, the
invaded and migrated cells in the lower chamber were obtained via staining and counted.

4.8. Immunofluorescence Assays

Cells were inoculated on the chamber slides of 24-well culture plates and then treated
with polyacetylene 1 for 24 h. After incubation, the cells were fixed, permeated, blocked,
and incubated with a specific primary antibody and a secondary antibody. The nuclei were
counter-stained with DAPI staining solution. After mounting with an anti-fluorescence
quencher, images were captured using a fluorescence microscope (Olympus, Tokyo, Japan).

4.9. Western Blot Analysis

To determine the effect of polyacetylene 1 treatment on protein expression in HGC-27
cells, total protein was extracted after treating the cells with polyacetylene 1 for 24 h. Total
protein was separated using SDS-PAGE gel electrophoresis and transferred to PVDF mem-
branes according to their molecular weight. After blocking and incubating with a specific
primary antibody and a secondary antibody, the signal detection was performed using ECL
(Beyotime Biotechnology, Shanghai, China) and observed with a Tanon 5200 luminescence
imaging system (Tanon Technology Co., Ltd., Xinjiang, China). Grayscale analysis was
performed using Image J, and the experiments were performed three times in parallel.
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4.10. Statistical Analysis

All the quantitative data were presented as mean ± SD and analyzed using ImageJ
version 2.1 (National Institutes of Health) and SPSS standard version 20.0 software (SPSS,
Inc., Chicago, IL, USA). The comparison of different experimental groups was performed
using a t-test or one-way ANOVA analysis. p < 0.05 was considered statistically significant.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules28041837/s1, File S1: NMR Spectra.
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