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Abstract: Self-supporting electrode materials with the advantages of a simple operation process and
the avoidance of the use any binders are promising candidates for supercapacitors. In this work,
carbon-based self-supporting electrode materials with nanosheets grown on Al foil were prepared by
combining hydrothermal reaction and the one-step chemical vapor deposition method. The effect of
the concentration of the reaction solution on the structures as well as the electrochemical performance
of the prepared samples were studied. With the increase in concentration, the nanosheets of the
samples became dense and compact. The CNS-120 obtained from a 120 mmol zinc nitrate aqueous
solution exhibited excellent electrochemical performance. The CNS-120 displayed the highest areal
capacitance of 6.82 mF cm−2 at the current density of 0.01 mA cm−2. Moreover, the CNS-120
exhibited outstanding rate performance with an areal capacitance of 3.07 mF cm−2 at 2 mA cm−2 and
good cyclic stability with a capacitance retention of 96.35% after 5000 cycles. Besides, the CNS-120
possessed an energy density of 5.9 µWh cm−2 at a power density of 25 µW cm−2 and still achieved
0.3 µWh cm−2 at 4204 µW cm−2. This work provides simple methods to prepared carbon-based self-
supporting materials with low-cost Al foil and demonstrates their potential for realistic application
of supercapacitors.

Keywords: self-supporting electrode; carbon nanosheets; hydrothermal reaction; chemical vapor
deposition; areal capacitance; supercapacitors

1. Introduction

With the sustaining consumption of fossil fuels, the energy shortage crisis has been
considered as an issue that cannot be neglected. To relieve this problem, new energy
conversion and storage technologies have been developed, such as supercapacitors and
batteries. In comparison with traditional capacitors and batteries, supercapacitors possess
higher power density, longer cycle life, higher charging/discharging efficiency, higher and
safety performance, as well as produce less environmental pollution [1–4]. However, the
large-scale practical application of supercapacitors is still hindered by the high capital
cost of active materials and the relatively low energy density [5,6]. To overcome such
challenges, much effort has been undertaken to develop novel electrode materials with
special nanostructures and high performance [7–9].

Self-supporting electrode materials are promising candidates with novel nanostruc-
tures and an active substance for high performance supercapacitors [10,11]. Recently,
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self-supporting electrode materials have attracted a lot of attention because they do not
need extra current collectors and any additional binders as well as conductive additives,
which promotes the utilization efficiency of not only the active substance, but also the
electron transmission rate [9,12,13]. There are two main methods to prepare self-supporting
electrode materials: bottom up and top down. The former method usually assembles
the nanostructured materials, such as graphene nanosheets, carbon quantum dots, car-
bon nanotubes, and so on, into free-standing structures by filtering, wet spinning, and
hydrothermal reactions, as well as electrostatic spinning, while the latter method takes the
three-dimensional substrates as the base to grow the secondary nanostructures on their
surface by hydrothermal/solvothermal reactions, chemical vapor deposition (CVD), atomic
layer deposition (ALD), and so on [14,15].

Compared to the bottom-up methods, the top-down methods are more convenient. At
present, the top-down methods mainly grow active materials on non-metallic substrates
with self-supporting structures (carbon cloth [16], carbon paper [17], carbon foam [7],
carbon sponge [18], and so on) and metal substrates as electrode materials. The metal
substrates possess the merits of excellent electrical conductivity, outstanding mechan-
ical strength, superior flexibility, high stability, and cost-effectiveness, thus many self-
supporting electrode materials based on metal substrates have been designed and opti-
mized in the past decade [19].

In the reported literature works, the metal substrates commonly used for the prepa-
ration of self-supporting electrode materials are gold (Au) [20], silver (Ag) [21], copper
(Cu) [22], nickel (Ni) [23], iron (Fe) [24], and aluminum (Al) [25,26], among others. An
ideal metal substrate used to prepare a self-supporting electrode is supposed to have the
advantages of high electrical conductivity, low cost, and a simple synthesis processes. The
substrates of Au, Ag, Cu, and Al possess high direct current electrical conductivity values
of 4.10 × 107, 6.30 × 107, 5.96 × 107, and 3.50 × 107 S m−1, respectively, which are higher
than those of the substrates of Ni, Pt, and Pd [19]. Considering the cost of the substrates,
the noble metal substrates are very low-cost in nature. Although Cu substrates exhibit
high electrical conductivity, the prices of Cu substrates are relatively high and the content
of Cu in the earth is relatively low. Al is not only the richest metal in the crust, but also
possesses a much lower cost compared with Cu and other substrates. Moreover, the density
of Al is much lower than that of other metal substrates, which is beneficial to decrease the
total mass of the energy storage devices. In recent years, many Al-based self-supporting
electrode materials have been prepared by hydrothermal reactions [15], CVD [25,27], wet
chemical methods [28], and so on, and possess high electrochemical performance. There-
fore, Al substrates are promising candidates to prepare self-supporting electrode materials
for the application of supercapacitors.

In this work, novel self-supporting electrode materials with carbon nanosheets de-
posited on Al foil were prepared by combining hydrothermal reaction and the CVD method.
The highlight of this work is the construction of hierarchical nanostructures on the Al foil to
increase the load of active material. To begin with, zinc compound nanosheets were grown
on the Al foil substrate by the hydrothermal method. Subsequently, carbon was coated
on the as-prepared Al foil substrate by the CVD method with acetonitrile serving as the
carbon source. When applied to the coin-type symmetric supercapacitors, the optimized
sample of CNS-120 exhibits an areal capacitance of 6.82 mF cm−2 at a current density of
0.01 mA cm−2. It also displayed ultrahigh rate performance with an areal capacitance of
3.07 mF cm−2 at 2 mA cm−2 and high energy density of 5.9 µWh cm−2 at a power density of
25 µW cm−2. Moreover, the coin-type supercapacitors of CNS-120 can power light-emitting
diodes and digital watches, demonstrating the promising application of supercapacitors in
practice.
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2. Results and Discussion
2.1. Morphology and Characterization of Samples
2.1.1. Diagram of the Preparation of Electrode Materials

The synthesis process of the self-supporting Al/ZnO/C electrode combining hy-
drothermal reaction and the chemical vapor deposition (CVD) method is illustrated in
Figure 1. The zinc compound nanosheets were grown on the Al foil substrate directly via
a facile hydrothermal method. Subsequently, the carbon was coated on the as-prepared
Al foil substrate by the CVD method with acetonitrile serving as the carbon source (about
0.21 mL min−1). As shown in Figure S1a, the surface of Al foil became off-white after
hydrothermal treatment, which turned to black when the CVD process finished. It proved
that carbon was coated on the Al foil successfully. What is more, the CNS-120 electrode
exhibited excellent mechanical capacity and superior flexibility in Figure S1b–d.
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Figure 1. Diagram of the preparation of the self-supporting Al/ZnO/C electrode materials.

The masses of CNS-30, CNS-60, and CNS-120 were measured in six samples. The
average values of their mass per unit area were 8.5, 8.2, and 7.8 mg cm−2, respectively.
In order to estimate the active material content of CNS-30, CNS-60, and CNS-120, their
thermal decomposition behaviors were investigated the thermogravimetric analyses (TGA).
As shown in Figure S2, the weight loss of the samples before 50 ◦C was caused by the
loss of the inherent free water. With the increase in temperature (50 to 100 ◦C), the slight
increase in mass is due to the fresh Al being oxidized to Al2O3 when exposed to the air
atmosphere. The weight loss of the samples from 100 to 500 ◦C was attributed to the carbon
materials being oxidized to CO2. The residual amounts of CNS-30, CNS-60, and CNS-120
were 96.20%, 95.90%, and 96.90%, respectively. The peak values of CNS-30, CNS-60, and
CNS-120 were 100.22%, 100.16%, and 100.50%, respectively. Therefore, the carbon yields
of CNS-30, CNS-60, and CNS-120 were 4.02%, 4.26%, and 3.60%, respectively. The active
materials of the single electrode used in the coin-type symmetric supercapacitors of CNS-30,
CNS-60, and CNS-120 were 0.34, 0.35, and 0.28 mg cm−2, respectively.

2.1.2. SEM

The SEM images in Figure 2 display the morphology of all samples after hydrothermal
and CVD treatment. The zinc compound precursors exhibit the ordered thin nanosheets
grown on the surface of Al foil substrate in Figure 2a,c,e. With the increase in concentration,
the nanosheets of NS-30, NS-60, and NS-120 became increasingly compact. After CVD
and the carbonization process, as shown in Figure 2b,d,f, the nanosheets of the composites
became more compact and thinner as a result of the action of mechanical stress and strain.
Significantly, CNS-120 is composed of composite nanosheets and cracks, which is because
the expansion rate of composite nanosheets is different from that of the Al foil substrate.
This result is in accordance with the digital photo of CNS-120 shown in Figure S1a, whose
size is a little smaller than that of NS-120. The cracks on the surface of CNS-120 may be
beneficial to the electrolyte storage and ion transport.
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2.1.3. XRD, Raman, and TEM

To further study the composition of the nanosheets grown on the surface of the Al
foil substrate, XRD, Raman spectroscopy, and TEM were performed, and the results are
elucidated in Figure 3. Figure 3a exhibits the XRD patterns of Al foil, NS-120, and CNS-120.
It is obvious that the Al foil without any treatment possesses four peaks ((111), (200),
(220), and (311)), with the 2θ located at 38.3◦, 44.5◦, 64.9◦, and 78.1◦, respectively, which
is consistent with the standard Al diffraction lines (JCPDS data: PDF#85-1327) [15,29].
All four peaks are also observed in NS-120 and CNS-120 because of the Al foil substrate.
As displayed in the XRD patterns, NS-120 possesses diffraction peaks of Zn-Al-LDH
(Zn6Al2(OH)16CO3·4H2O) located at 9.6◦, 19.5◦, 34.0◦, and 59.9◦, which are the diffraction
at (003), (006), (009), and (110), respectively, in accordance with the LDH database (JCPDS
data: PDF# 38-0486) [30]. Besides, there also are four peaks of NS-120 located at 31.5◦,
34.2◦, 36.1◦, and 56.4◦. According to the JCPDS data (PDF#80-0074), they are the diffraction
peaks at (100), (002), (101), and (110), respectively, of ZnO [31,32]. Therefore, after the
hydrothermal reaction, the nanosheets on the surface of CNS-120 are composed of ZnO and
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Zn-Al-LDH. The mechanisms of reactions during the hydrothermal treatment are listed as
follows [15,33,34]:

(CH2)6N4 + 6H2O→ 6HCHO + 4NH3, (1)

NH3 + H2O→ NH4
+ + OH−, (2)

HCHO + 2OH− → CO3
2− + 2H2, (3)

Zn2+ + 4NH3 → [Zn(NH3)4]2+, (4)

[Zn(NH3)4]2+ + 4OH− → [Zn(OH)4]2− + 4NH3, (5)

Zn2+ + 4OH− → [Zn(OH)4]2−, (6)

[Zn(OH)4]2− → ZnO + H2O + 2OH−, (7)

2Al + 2OH− + 6H2O→ 2[Al(OH)4]− + 3H2, (8)

2[Al(OH)4]− + 6[Zn(OH)4]2− + CO3
2− + 4H2O→ Zn6Al2(OH)16CO3·4H2O + 16OH−, (9)
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Apparently, after the CVD process, there is a new diffraction peak at 24.0◦ in CNS-120,
which is related to the (002) amorphous graphite reflection [35–37]. The d002 of the carbon on
CNS-120 is 0.37 nm, calculated using Bragg’s equation. This demonstrates that the carbon
was coated on the Al substrate successfully. What is more, the diffraction peaks of Zn-Al-
LDH disappear in the XRD pattern of CNS-120, which is related to the decomposition of Zn-
Al-LDH at a high temperature. During the process, LDH was decomposed into ZnO, Al2O3,
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and CO2, as well as H2O, and Al2O3 was reduced to Al through the carbon and hydrogen
decomposed from acetonitrile. The reaction processes are shown as follows [15,38]:

2CH3CN→ 4C + N2 (g) + 3H2 (g), (10)

Zn6Al2(OH)16CO3·4H2O→ Zn6Al2(OH)16CO3 + 4H2O (g), (11)

Zn6Al2(OH)16CO3 → 6ZnO + Al2O3 + CO2 (g) + 8H2O (g), (12)

2C + Al2O3 → 2Al + CO2 (g) + CO (g), (13)

3H2 + Al2O3 → 2Al + 3H2O (g), (14)

The Al foil substrate without any treatment has no peaks in the spectrum. After the
hydrothermal process, NS-120 possesses two peaks located at 547 cm−1 and 484 cm−1,
which correspond to the stretching vibration of Zn-O-Al and Al-O-Al, respectively [39].
According to the previous studies, the peak located at 713 cm−1 accounts for the absorption
of CO2 when NS-120 was exposed to air [30,40]. The peak located at 1051 cm−1 may be
caused by the stretching vibration of nitrate [30,39]. As displayed in Figure 3b, the peaks
of Zn-Al-LDH disappeared in the spectrum of CNS-120 when the CVD process finished.
Instead, there are two new peaks located at 1345 and 1594 cm−1 in the Raman spectrum
of CNS-120, which are the D-band (sp3-hybridized, reflecting the defects and disorder of
carbon material) and G-band peaks (the graphitic sp2-hybridized) [41,42]. The relative
intensity ratio of the D band and G band (ID/IG) can reflect the defect and disorder level of
the carbon materials [41,43,44]. The ID/IG value of CNS-120 is 1.21, which demonstrates
that the carbon deposited on CNS-120 is amorphous. It also confirms that the carbon was
deposited on the surface of the Al foil substrate successfully. The big peak observed at
332 cm−1 was related to the transverse optical mode (A1(TO)) of ZnO [45]. The whole
analysis of Raman spectra is in line with the XRD results.

The structure of CNS-120 was further investigated using TEM at different magni-
fications (Figure 3c,d). CNS-120 possesses two obvious lattice fringes with distances of
0.25 and 0.28 nm in the high-resolution TEM image (Figure 3d), which correspond to
the (101) and (100) plane of ZnO, respectively [32,46]. Moreover, there is a phase with
a spacing of 0.37 nm in CNS-120. It is considered as the amorphous carbon, which has
relatively ordered microcrystallites [47]. The TEM results confirm the XRD and Raman
results as well. Considering the above analysis, the possible microstructure of the electrode
is shown in Figure S3. The surface area of the electrode can be enhanced by the coaxial
Al/ZnO core/shell nanosheets, providing more space for loading carbon materials. After
the deposition of the carbon on the surface of nanosheets, more active sites can be pro-
vided for reversible redox reactions, which benefits the enhancement of the electrochemical
performance of the electrode.

2.1.4. XPS

The elemental composition on the surface of CNS-120 was analyzed by XPS (Figure 4).
The Zn, Al, C, N, and O elements can be detected in the full spectrum of XPS (Figure 4a),
where the contents of C, N, and O are 3.7, 0.21, and 2.56 at.%, respectively (Table S1). Two
peaks at a binding energy (BE) of 1021.9 and 1044.9 eV are considered as Zn 2p3/2 and Zn
2p1/2, respectively, indicating that Zn2+ presents in CNS-120 [32,48]. There are also three
peaks located at about 10.9, 89.5, and 140.0 eV, corresponding to Zn 3d, Zn 3p, and Zn 3s,
respectively. Furthermore, there are two peaks originating from Al 2p and Al 2s at 74.3
and 119.3 eV, respectively, indicating the presence of Al3+ in CNS-120 [39]. Apparently,
CNS-120 possesses three peaks located at about 285, 400, and 531 eV, which correspond to
C 1s, N 1s, and O 1s, respectively [49]. The contents of C 1s, N 1s, and O 1s in CNS-120 are
3.7 at.%, 0.21 at.%, and 2.56 at.%, respectively (Table S1). The presence of N and O atoms
may contribute to the enhancement of the capacitance of electrode materials because of
the Faraday reaction [49]. As presented in Figure 4b, the high-resolution C 1s spectrum is
fitted into three peaks at 284.8, 286.2, and 289.4 eV, which correspond to C=C (73.4%), C-O
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(19.0%), and O=C-O (7.6%) bonds, respectively [50]. N 1s can be divided into three peaks
(Figure 4c), corresponding to pyridinic nitrogen (N-6, 398.4 eV, 29.2%), pyrrolic nitrogen
(N-5, 400.3 eV, 58.9%), and pyridine-N-oxide (N-O, 403.9 eV, 11.9%) [51,52]. O 1s of CNS-120
can be assigned to three peaks at 530.8, 532.2, and 533.4 eV, which represent Zn-O (59.9%),
C=O (33.5%), and C-O (6.6%), respectively [36,46].
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Figure 4. XPS spectra of CNS-120. (a) XPS survey spectrum of CNS-120. (b) C 1s and (c) N 1 and (d) O
1s high-resolution XPS spectra of CNS-120.

2.2. Electrochemical Performance of Coin-Type Supercapacitors

To investigate the electrochemical performance of the as-prepared electrode materials,
symmetric coin-type supercapacitors were assembled with 1 M Et4NBF4/PC as the organic
electrolyte as well as NKK-TF4030 as the membrane, and the test results are depicted in
Figure 5 and Figure S4. Figure 5a presents the CV curves of CNS-30, CNS-60, and CNS-120
at the scan rate of 50 mV s−1, which exhibit quasi-rectangular shapes, indicating the double-
layer capacitive behavior [53]. Meanwhile, the CV curve of CNS-120 possesses a larger
integrated area than that of CNS-30 and CNS-60, indicating the largest areal capacitance of
CNS-120 [54]. As displayed in Figure S4a, with the increasing scan rate (10~300 mV s−1),
the CV curves of CNS-30 turn into the shuttle shape, which is related to the enhancive ion
transport resistance. At the scan rate of 10~300 mV s−1, CNS-60 and CNS-120 maintain
a quasi-rectangular shape (Figure S4b,c)). The rapid diffusion of electrolytes and charge
transfer are demonstrated [55]. When the scan rate increased from 400 mV s−1 to 1 V s−1,
the CV curves of CNS-120 gradually became the shuttle shape, demonstrating the best rate
performance among the three electrodes (Figure 5b). The areal capacitances (CS) of CNS-30,
CNS-60, and CNS-120 were calculated from the CV results at different scan rates. The CS of
CNS-30, CNS-60, and CNS-120 was 2.42, 2.83, and 3.24 mF cm−2, respectively, at the scan
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rate of 10 mV s−1 (Figure S5). When the scan rate was increased to 300 mV s−1, the CS of
CNS-30, CNS-60, and CNS-120 was 0.29, 1.58, and 1.85 mF cm−2, respectively.
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Figure 5. Electrochemical performance of the samples in the two-electrode system. (a) CV curves
of CNS-30, CNS-60, and CNS-120 at a scan rate of 50 mV s−1. (b) CV curves of CNS-120 at scan
rates from 400 mV s−1 to 1 V s−1. (c) GCD curves of CNS-30, CNS-60, and CNS-120 at a current
density of 0.01 mA cm−2. (d) GCD curves of CNS-120 at current densities from 0.01 to 0.1 mA cm−2.
(e) Areal capacitance of CNS-30, CNS-60, and CNS-120 at different current densities. (f) Ragone
plot of CNS-120 in comparison with reported materials: (1) PC-IA-MSC [54], (2) 3D FC-CNT@P [51],
(3) Mn/V oxide @MWCNT [56], (4) graphene microspheres [57], (5) laser-induced graphene [58],
(6) G-CNT-5 [59], and (7) laser-induced graphene [60].

As displayed in Figure 5c, the GCD curves of CNS-30, CNS-60, and CNS-120 exhibit a
nearly symmetric triangular shape at a current density of 0.01 mA cm−2, which suggests the
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outstanding capacitive performance [54]. What is more, the GCD curve of CNS-120 shows
a longer discharging time than that of CNS-30 and CNS-60, which confirms that CNS-120
has a larger areal specific capacitance. When the current density reached 0.1 mA cm−2,
the GCD curves of CNS-60 and CNS-120 maintained the triangular symmetric shape
with a slight IR drop (Figure S4d). However, the charge/discharge segment of CNS-30
deviates from a straight line and displays a large IR drop. These demonstrate that CNS-120
possesses better capacitive performance than CNS-30 and CNS-60. At current densities
from 0.01 mA cm−2 to 1 mA cm−2, the GCD curves of CNS-120 and CNS-60 maintain a
nearly symmetric triangular shape, while that of CNS-30 possesses a distorted triangular
shape with a large IR drop (Figure S4e–i). The results suggest that CNS-60 and CNS-120
possess better electrochemical and rate performance than CNS-30.

The areal capacitances (CA) of CNS-30, CNS-60, and CNS-120 were also calculated
based on the GCD results at different current densities. As shown in Figure 5e, the CA
of CNS-120 was 6.82 mF cm−2 at a current density of 0.01 mA cm−2 and decreased to
3.07 mF cm−2 at 2 mA cm−2, while the CA of CNS-60 was 6.04 mF cm−2 at 0.01 mA cm−2

and decreased to 2.37 mF cm−2 at 2 mA cm−2. Besides, the CA of CNS-30 was 5.36 mF cm−2

at 0.01 mA cm−2. When the current density was increased to 1 mA cm−2, the CA of CNS-30
was decreased to nearly 0 mF cm−2. The CNS-120 exhibits a higher areal capacitance
than CNS-30 and CNS-60, which is consistent with the CV test results. The areal capac-
itance obtained from GCD is higher than that obtained from CV, attributed to a longer
charge/discharge time for GCD, which ensures more time for generating pseudocapaci-
tance. The maximum areal capacitance of CNS-120 is superior to some previously reported
electrode materials, such as MPC (6.3 mF cm−2 at 0.8 mA cm−2) [61], HCSs (6.1 mF cm−2 at
0.5 mA cm−2) [62], 3D FC-CNT@P (5.53 mF cm−2 at 0.1 mA cm−2), and N-doped sucrose
carbon (3.9 mF cm−2 at 5 mV s−1) [63], as well as laser-induced graphene (4 mF cm−2 at
0.01 mA cm−2) [58]. More details of the comparisons between CNS-120 and the previously
reported material electrodes are summarized in Table S2 [64,65]. What is more, CNS-120
also showed the best rate performance among the electrode materials. With the increasing
concentration of the hydrothermal solution, the electrode materials possess better electro-
chemical performance. This is due to the increasing number of nanosheets on the electrode,
which can provide more active sites. During the charging and discharging process, the
charge storage mechanism of the electrode is the coexistence of the electric double layer
capacitance and pseudocapacitance. As shown in the rate performance results, the ca-
pacitance decreases with the increases in current density. On the one hand, owing to the
increase in current density, the charge/discharge rate was too fast and the redox reaction of
N and O functional groups in active materials could only partially occur, leading to the
reduction in the contribution of pseudocapacitance. On the other hand, the acceleration of
the charge/discharge rate also led to the decrease in the micropore utilization rate of the
porous carbon layer on the electrode surface, resulting in the reduction in the contribution
of the electric double layer capacitance.

The symmetric coin-type supercapacitor of CNS-120 delivers the maximum energy
density of 5.9 µWh cm−2 at a power density of 25 µW cm−2 and still achieves 0.3 µWh cm−2

at a high power density of 4204 µW cm−2 (Figure 5f). Such superb electrochemical per-
formance exceeds that of some previously reported electrode materials, such as 3D FC-
CNT@P (0.49 µWh cm−2 at 40 µW cm−2) [55], laser-induced graphene (4.5 µWh cm−2 at
905 µW cm−2; 0.256 µWh cm−2 at 110 µW cm−2) [58,60], and G-CNT-5 (1.36 µWh cm−2 at
26 µW cm−2) [59].

The Nyquist plots of CNS-30, CNS-60, and CNS-120 are shown in Figure 6, which is
beneficial to understanding the capacitive behaviors of all of the samples. All of the plots
contain a semicircle in the high-frequency region and a line perpendicular to the real axis
in the low-frequency region, which reflect the charge transfer resistance (Rct, the diameter
of semicircle) and the diffusion resistance (Rd) [25,66,67], respectively. The equivalent
series resistance (ESR), the real axis intercept of the semicircle in the high-frequency region,
reflects the inner resistance of materials, the interface contact resistance of the electrode
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and electrolyte, as well as the electrolyte ionic resistance [68,69]. The ESR values of CNS-30,
CNS-60, and CNS-120 are 1.04, 1.17, and 1.16 Ω, respectively (Table S3). In addition, the Rct
values of CNS-30, CNS-60, and CNS-120 are 1533, 15.24, and 149.3 Ω, respectively. The trend
of the Rct values is to first decrease and then increase with the increase in concentration,
which is related to the surface structures of the samples. As demonstrated in the SEM
images, with the increase in concentration, the nanosheets of NS-30, NS-60, and NS-120
became increasingly compact (Figure 2a,c,e). This means that, under the same conditions,
the more nanosheets that grew on the surface of the Al foil, the higher the carbon content
coated on the surface, which is helpful for the enhancement of conductivity. Therefore,
the Rct values of CNS-60 and CNS-120 are much lower than that of CNS-30. However, the
nanosheets on the surface of CNS-120 are too close (Figure 2f), which may make it difficult
for electrolyte ions to enter the gaps. Thus, the Rct value of CNS-120 is higher than that
of CNS-60. As shown in Figure 6a, in comparison with CNS-30 and CNS-60, CNS-120
displayed a more vertical line at a low frequency. This indicates that CNS-120 exhibits more
outstanding capacitive behavior and higher areal capacitance, which is in line with the CV
and GCD results.
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respectively.

To characterize the electrode cycling behaviors, the durability of CNS-30, CNS-60,
and CNS-120 was investigated by GCD tests at 0.1 mA cm−2 (Figure 7). After 5000 cycles,
the areal capacitances of CNS-30, CNS-60, and CNS-120 remained at 86.79%, 96.95%, and
96.35% of initial capacitance, respectively. The results demonstrate that CNS-120 possesses
outstanding stability.
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Figure 7. Cycle stability at a current density of 0.1 mA cm−2 for 5000 cycles.

As displayed in Figure 8, the devices composed of three coin-type supercapacitors
of CNS-120 can light up an ‘NJFU’ logo consisting of 35 parallel light-emitting diodes
(LEDs) after charging at 2.5 V. What is more, the three parallel devices can power the digital
watch for 40 min after charging at 2 V (Figure 8b,c). Thus, the coin-type supercapacitors of
CNS-120 are promising candidates to apply for energy conversion and storage in practice.
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3. Materials and Methods
3.1. Materials

Al foil (Al-1235, thickness: 20 µm) was obtained from Foshan Zhongji ximi New
Material Co., Ltd. Zinc nitrate (Zn(NO3)2·6H2O) and hexamethylenetetramine (HMT)
were purchased from Nanjing Chemical Reagent Co., Ltd. Acetonitrile was available from
Macklin Co., Ltd. The organic electrolyte with 1 M Et4NBF4 in PC (propylene carbonate)
and the cellulose membrane (NKK-TF4030) were supplied by Canrd Co., Ltd. The deionized
water was homemade. All agents were of analytical grade, without any purification.

3.2. Preparation of Zinc Compound Nanosheets

Typically, zinc compound nanosheets were prepared by the hydrothermal method.
Herein, 30 mL of HMT solution was added to 30 mL of zinc nitrate aqueous (30, 60, and
120 mmol) drop-by-drop by stirring. The molar ratio of HMT and Zn(NO3)2·6H2O was 1:1.
Then, the homogeneous solution and Al foil substrates (4.1 cm × 6.6 cm) were transferred
into the Teflon-lined vessel, which was sealed in a stainless steel autoclave and kept in an
oven at 70 ◦C for 12 h. After cooling to room temperature, the Al foil substrates were taken
out and washed with deionized water. Finally, the treated Al foil substrates were dried at
60 ◦C overnight. The obtained treated Al foil substrates with zinc compound nanosheets
were named NS-x, where x means the concentration of zinc nitrite solution.

3.3. Preparation of Al/ZnO/C Nanosheets

To prepare carbon nanosheets on the samples’ surface, Al foil substrates with zinc com-
pound nanosheets were placed at the center of the tube furnace. Before heating, nitrogen
(N2) was introduced into the tube furnace to remove the air at a speed of 200 mL min−1.
Then, 15 min later, N2 was used as the carrier gas as well. The acetonitrile serving as
the carbon source was introduced into the tube furnace at a rate of about 0.21 mL min−1

when the temperature reached 600 ◦C (the heating rate: 5 ◦C min−1). Then, 1 h later, the
acetonitrile was turned off while the furnace was kept at 600 ◦C for 1 h. When the furnace
cooled to the room temperature, the samples were taken out and named CNS-30, CNS-60,
and CNS-120.

3.4. Characterization Methods

All of the samples were characterized at an acceleration voltage of 15 kV with scanning
electron microscopy (SEM, Phenom XLG2). The morphology of CNS-120 was observed by
transmission electron microscopy (TEM, JEM-2100 UHR). The thermal decomposition be-
haviors of CNS-30, CNS-60, and CNS-120 were investigated by thermogravimetric analyses
(TGA, NETZSCH TG 209F3) in an air atmosphere with a heating rate of 10 ◦C min−1. The
X-ray diffraction (XRD, Ultima IV) patterns of CNS-120 were achieved from 10 to 80◦ at a
sweep speed of 10◦ min−1 at 30 mA and 40 kV. Raman spectroscopy (DXR523) was utilized
to characterize the sample with a wavelength of 523 nm laser. The chemical compositions
of CNS-120 were measured by X-ray photoelectron spectra (XPS, Thermo Fisher Nexsa).

The interlayer spacing of carbon materials (d002 (nm)) was obtained from Bragg’s law
(Equation (15)) based on the XRD results.

2d002 sinθ = λ, (15)

where θ (◦) is the diffraction angle and λ (0.15418 nm) is the wavelength of X-ray with
copper Kα radiation.

3.5. Electrochemical Performance Measurements

The electrochemical performance of as-prepared CNS-x was tested on the CHI 760E
electrochemical workstations (Shanghai ChenHua, Shanghai, China) at room temperature.
CNS-30, CNS-60, and CNS-120 were assembled into coin-type symmetric two-electrode
supercapacitors with 1 M Et4NBF4/PC serving as the organic electrolyte. The electrode
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was cut into a wafer with a diameter of 12 mm. Two pieces of electrode were separated by
a piece of cellulose membrane (NKK-TF4030, d = 16 mm). Cyclic voltammetry (CV) as well
as galvanostatic charge/discharge (GCD) were conducted at the potential window of 0 to
2.5 V and current density of 0.01 to 2 mA cm−2 (0.029 to 0.714 mA mg−1). Electrochemical
impedance spectroscopy (EIS) was obtained at the frequency varying from 10−2 to 105. The
areal specific capacitance of the electrode was calculated by Equations (16) and (17):

CA = 2I × ∆t/(S × ∆V), (16)

CS = SCV/2Sk∆VCV (17)

where CA (mF cm−2) is the area-specific capacitance of the electrode, I (A) is the discharge
current, ∆t (s) is the discharge time, S (cm2) is the area of a single electrode, ∆V (V) is the
potential window excluding the IR drop, CS (mF cm−2) is the area specific capacitance of
the electrode calculated from the CV results, SCV (AV) is the integral area of the CV curve, k
(mV s−1) is the scan rate of the CV test, and ∆VCV (V) is the potential window of CV (total
voltage range).

The power density and energy density of the assembled supercapacitors were calcu-
lated by the following equation:

E = CA × ∆V2/(2 × 3.6), (18)

P = 3600 × E/∆t, (19)

where E (µWh cm−2) and P (µW cm−2) are the energy density and power density, re-
spectively, of the assembled coin-type symmetric supercapacitors; CA (mF cm−2) is the
area-specific capacitance; ∆V (V) is the potential window excluding the IR drop; and ∆t (s)
is the discharge time.

4. Conclusions

In conclusion, self-supporting electrode materials with carbon nanosheets grown on Al
foil were prepared successfully by combining hydrothermal reaction and the one-step CVD
method. In the process, the nanostructures of the self-supporting electrodes were regulated
as well as controlled by adjusting the concentration of the hydrothermal reaction solution
and the acetonitrile serving as the carbon source. The influence of the concentration of the
hydrothermal reaction solution on the nanostructures and electrochemical performance
of all the samples was revealed. It turns out that, with the increase in concentration, the
nanosheets of NS-30, NS-60, and NS-120 became increasingly more compact. After CVD
and carbonization, when used as coin-type supercapacitors, CNS-120 exhibited excellent
electrochemical performance among all of the prepared materials. The areal capacitance
of CNS-120 was 6.82 mF cm−2 at a current density of 0.01 mA cm−2 and still maintained
3.07 mF cm−2 at a current density of 2 mA cm−2. It also exhibited an energy density of
5.9 µWh cm−2 at a power density of 25 µW cm−2 and still achieved 0.3 µWh cm−2 at a
high power density of 4204 µW cm−2. Besides, CNS-120 displayed good cyclic stability
with a capacitance retention of 96.35% after 5000 cycles at 0.1 mA cm−2. What is more,
three parallel coin-type supercapacitors of CNS-120 were able to light up 35 LED lamps and
power a digital watch for 40 min, which indicated that self-supporting electrode CNS-120
is a promising candidate for realistic application. In general, carbon-based self-supporting
electrodes based on Al foil prepared by effective hydrothermal reaction and the one-step
CVD method provide a promising candidate for applications in energy conversion and
storage.



Molecules 2023, 28, 1831 14 of 17

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/molecules28041831/s1. Figure S1: (a) digital photos of Al folil, NS-120 and
CNS-120. (b–d) digital photos of CNS-120. Figure S2: The TGA curves of CNS-30, CNS-60 and CNS-
120. Figure S3: Schematic diagram describes the microstructure of the Al/ZnO/C self-supporting
electrode. Table S1: Element content of CNS-120. Figure S4: Electrochemical performance of CNS-30,
CNS-60 and CNS-120. (a–c) CV curves of CNS-30, CNS-60 and CNS-120 at the scan rates from 10 to
300 mV s−1. (d) GCD curves of CNS-30, CNS-60 and CNS-120 at the current density of 0.1 mA cm−2.
(e,f) GCD curves of CNS-30 at the current densities from 0.01 mA cm−2 to 1 mA cm−2. (g,h) GCD
curves of CNS-60 at the current densities from 0.01 mA cm−2 to 2 mA cm−2. (i) GCD curves of
CNS-120 at the current densities from 0.2 mA cm−2 to 2 mA cm−2. Figure S5: Areal capacitance of
CNS-30, CNS-60 and CNS-120 at different scan rates. Table S2: Comparisons of the electrochemical
performance for CNS-120 electrode and previously reported materials electrode for two-electrode
system. Table S3: The ESR and Rct values of all the samples.
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