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Abstract: To solve the slow kinetics of polysulfide conversion reaction in Li-S battery, many transition
metal nitrides were developed for sulfur hosts. Herein, novel polyaniline-coated porous vanadium
nitride (VN) microrods were synthesized via a calcination, washing and polyaniline-coating process,
which served as sulfur host for Li-S battery exhibited high electrochemical performance. The porous
VN microrods with high specific surface area provided enough interspace to overcome the volume
change of the cathode. The outer layer of polyaniline as a conductive shell enhanced the cathode
conductivity, effectively blocked the shuttle effect of polysulfides, thus improving the cycling capacity
of Li-S battery. The cathode exhibited an initial capacity of 1007 mAh g−1 at 0.5 A g−1, and the
reversible capacity remained at 735 mAh g−1 over 150 cycles.

Keywords: VN; microrods; sulfur host; cathode; lithium–sulfur battery

1. Introduction

The lithium–sulfur battery is rapidly developing as a promising rechargeable bat-
tery because of its high energy density, low cost, nontoxicity, and abundance of raw
materials [1,2]. However, due to the shuttle effect of soluble polysulfides, poor conductivity
and volume change of sulfur during the discharge procedure, and corrosion and dendrites
of the lithium anode, the low utilization rate of sulfur and inferior cycling stability have
limited the battery life, the application of the Li-S battery is hindered [3–5]. Therefore, it
is very important to find suitable catalysts to prevent the shuttle effect of polysulfides,
promote redox kinetics, and enhance cycling capacity of the Li-S battery.

To anchor lithium polysulfides (LiPSs), many sulfur hosts such as metal oxides/suldes/
nitrides have been developed in recent years [6,7]. Among these sulfur hosts, polar ma-
terials including vanadium nitride (VN) [8], titanium nitride (TiN) [9], cobalt nitride
(Co4N) [10], and other transition metal nitrides are excellent sulfur hosts because they
can inhibit the diffusion of polysulfides through forming S-M-N bonds, improving the
cycling stability [11,12]. In addition, the d-layer electron orbitals of the metal atoms in the
transition metal nitride lattice overlap each other, exhibiting conductivity similar to that of
metals [13,14]. As a transition metal nitride, VN can trap intermediates and limit the disso-
lution of polysulfides in the electrolytes [15–17], and the porous rod-like microstructure
has a large specific surface area, which possesses a lot of cavities to overcome the volume
expansion during cycling [18].

In recent years, many polymers and carbon-based materials have become hot spots
for lithium–sulfur batteries [19–21]. For example, various S-doped carbon nanomaterials
were developed and served as hosts for sulfur cathode in order to achieve rapid polysulfide
redox reaction [22,23]. Traditional conducting polymers are also well known for their good
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flexibility and good conductivity [24,25]. Furthermore, N-containing groups and conjugated
structures in p-conducting polymer can be used as active sites to anchor polysulfides [26].
As a result, these conductive polymers are commonly used as coatings, conducting agents,
diaphragm modifiers, and binders for lithium–sulfur battery. For instance, poly(allylamine
hydrochloride) and poly(styrene sulfonate sodium salt) were alternately coated on the
sulfur particles, and then a polyaniline (PANI) layer was in situ polymerized on the sulfur
shell, which exhibited a capacity of 641 mAh g−1 over 300 cycles at 1 C [27]. A group
prepared hollow PANI/sulfur/PANI composite via sequentially depositing method using
silicon spheres as templates [28]. In this structure, S particles were wrapped by the PANI
layers, and the PANI layer facilitates ion penetration and inhibits polysulfide diffusion.
Thus, the PANI/sulfur/PANI composite delivered a capacity of 572.2 mAh g−1 over
200 cycles at 0.1 C. Therefore, PANI is an up-and-coming cathode material because of the
high conductivity and good electrochemical activity [29].

In this study, we synthesized novel polyaniline-coated VN porous microrods via a
calcination, washing and polyaniline-coating process. When served as a sulfur host for
Li-S battery, the polyaniline-coated VN porous microrods exhibited high electrochemical
performance. The porous structure of VN microrods with a high specific surface area
provided abundant active sites for electrochemical reaction, enhanced the transfer of
electrons and ions, and supplied large interspace to overcome the volume expansion of
cathode. The outer layer of polyaniline further enhanced the cathode conductivity, and
nitrogen-containing groups in the polymer also prevented the polysulfides from shuttling.

2. Results and Discussion
2.1. Characterization

The fabrication process of porous VN/S@PANI microrods is shown in Figure 1. First,
porous VN microrods were synthesized by one-step calcination at a high temperature of
700 ◦C in tube furnace in an Ar atmosphere. The porous VN/S microrods were synthesized
via a sulfur melt-diffusion process. To promote cycling stability of the cathode, VN/S
microrods were wrapped by PANI layer via an in situ polymerization of aniline.
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Figure 1. Schematic synthesis process of VN/S@PANI composite.

Figure 2 displays the SEM and TEM images of VN microrods, VN/S microrods and
VN/S@PANI microrods. From Figure 2a, the products were mainly composed of porous
rod-like VN with a diameter of ~600 nm and a length of ~15 µm. The high-magnification
SEM image and TEM image of the VN microrods (Figure 2b,c) verify their porous structure.
Figure 2d,f show the SEM and TEM images of the VN/S microrods. Clearly, the VN/S
sample still retained the initial rod-like morphology. However, the surface of the microrods
became smooth and the abundant pores could not be observed due to the sulfur filling.
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The SEM images and TEM image of the VN/S@PANI microrods are shown in Figure 2g–i.
Compared with VN/S microrods, the surface of PANI coated microrods is smoother,
indicating that the PANI layer has wrapped on the VN/S microrods.
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Figure 2. (a) Low-, (b) high-magnification SEM and (c) TEM images of VN. (d) Low-, (e) high-
magnification SEM and (f) TEM images of VN/S composite. (g) Low-, (h) high-magnification SEM
and (i) TEM images of VN/S@PANI composite.

The phase composition of these samples was investigated by XRD. In Figure 3a, the
peaks of the porous VN microrods belong to cubic vanadium nitride (JCPDS No. 35-0768),
and there are no other peaks, indicating that the VN product was pure. In addition, the
diffracted peaks of VN/S composites contain the peaks of VN and sulfur powder (JCPDS
No. 08-0247), indicating that VN was successfully combined with sulfur. Furthermore, the
diffraction peaks of the VN/S@PANI microrods are similar to that of the VN/S microrods.
Figure 3b exhibits the Raman spectrum of pure porous VN microrods, VN/S microrods
and VN/S@PANI microrods. In the Raman spectrum of the VN microrods, characteristic
peaks at 137, 271, 402, 519, 689 and 988 cm−1 were attributed to cubic VN [30]. Compared
with the pure VN microrods, the VN/S microrods presented two additional peaks at 215,
470 cm−1, corresponding to the sulfur, and suggesting successful recombination of sulfur
with the VN microrods [31]. For the Raman spectrum of the VN/S@PANI microrods, a
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peak at 1380 cm−1 is ascribed to the polaron C-N+ vibration, whereas a peak at 1569 cm−1

is due to the tensile vibration of C=C in the quinine ring [32]. The FTIR spectra of VN
microrods, VN/S microrods and VN/S@PANI microrods are exhibited in Figure 3c. For
the FTIR spectrum of VN/S@PANI microrods, two peaks at 1577, 1499 cm−1 correspond to
the basic vibration of the quinine ring and benzene ring, respectively, and the C-N in-plane
vibrations are at 1297 and 1238 cm−1. In addition, a peak at 1129 cm−1 is ascribed to the
C=N stretching vibration [33]. The peaks of VN/S@PANI microrods indicate that aniline
monomer has been polymerized on the surface of the VN/S microrods. Moreover, the EDS
spectrum of VN/S@PANI microrods (Figure 3d) indicates the presence of V, N, C, O, and
S elements. The elemental scan line (Figure S1) shows the proportion of the elements on
the surface.

Molecules 2023, 28, x FOR PEER REVIEW 4 of 17 
 

 

peaks at 137, 271, 402, 519, 689 and 988 cm−1 were attributed to cubic VN [30]. Compared 
with the pure VN microrods, the VN/S microrods presented two additional peaks at 215, 
470 cm−1, corresponding to the sulfur, and suggesting successful recombination of sulfur 
with the VN microrods [31]. For the Raman spectrum of the VN/S@PANI microrods, a 
peak at 1380 cm−1 is ascribed to the polaron C-N+ vibration, whereas a peak at 1569 cm−1 is 
due to the tensile vibration of C=C in the quinine ring [32]. The FTIR spectra of VN micro-
rods, VN/S microrods and VN/S@PANI microrods are exhibited in Figure 3c. For the FTIR 
spectrum of VN/S@PANI microrods, two peaks at 1577, 1499 cm−1 correspond to the basic 
vibration of the quinine ring and benzene ring, respectively, and the C-N in-plane vibra-
tions are at 1297 and 1238 cm−1. In addition, a peak at 1129 cm−1 is ascribed to the C=N 
stretching vibration [33]. The peaks of VN/S@PANI microrods indicate that aniline mon-
omer has been polymerized on the surface of the VN/S microrods. Moreover, the EDS 
spectrum of VN/S@PANI microrods (Figure 3d) indicates the presence of V, N, C, O, and 
S elements. The elemental scan line (Figure S1) shows the proportion of the elements on 
the surface. 

  

  

Molecules 2023, 28, x FOR PEER REVIEW 5 of 17 
 

 

  
Figure 3. (a) XRD patterns, (b) Raman spectra and (c) FTIR spectra of VN microrods, VN/S micro-
rods and VN/S@PANI microrods. (d) EDS analysis of VN/S@PANI microrods. (e) HRTEM image 
and (f) SAED pattern of VN microrods. 

A high-resolution TEM image displayed in Figure 3e indicates its highly crystalline 
nature. A lattice fringe of 0.24 nm matches the (111) plane of cubic VN. Figure 3f shows 
the SAED pattern of VN microrods, which can be ascribed to (111), (200), (220) and (420) 
planes of VN [33]. The elemental mapping images of VN/S@PANI microrods are dis-
played in Figure 4, indicating that V, N, S, C, and O elements are distributed evenly in 
VN/S@PANI composite. 

   

   
Figure 4. (a) SEM image and (b–f) elemental mapping images of VN/S@PANI composite. 

Figure 5 shows the N2 adsorption/desorption isotherms of VN microrods, VN/S mi-
crorods and VN/S@PANI composites. In Figure 5a, the specific surface area of porous VN 
microrods was up to 310.6 m2 g−1, and the pore size was mostly distributed in 0.1–2.5 nm. 
Its ultra-high specific surface area with high porosity is favorable for loading more sulfur 
and provides more active sites for sulfur oxidation and reduction [34]. The specific surface 
areas of VN/S and VN/S@PANI decreased to 4.0 and 6.3 m2 g−1, respectively, demonstrat-
ing that sulfur species were composited with these sulfur hosts. In Figure 5e,f, the disap-
pearance of mesopores indicates that sulfur was impregnated in the mesopores of VN 
microrods. Figure S2 shows the TGA curves of VN/S microrods and VN/S@PANI compo-
site. For the VN/S microrods, the total loss between 100 °C–280 °C is 69.9 wt%, which is 
attributed to sulfur evaporation. For the VN/S@PANI composite, the total loss between 

Figure 3. (a) XRD patterns, (b) Raman spectra and (c) FTIR spectra of VN microrods, VN/S microrods
and VN/S@PANI microrods. (d) EDS analysis of VN/S@PANI microrods. (e) HRTEM image and
(f) SAED pattern of VN microrods.
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A high-resolution TEM image displayed in Figure 3e indicates its highly crystalline
nature. A lattice fringe of 0.24 nm matches the (111) plane of cubic VN. Figure 3f shows
the SAED pattern of VN microrods, which can be ascribed to (111), (200), (220) and (420)
planes of VN [33]. The elemental mapping images of VN/S@PANI microrods are dis-
played in Figure 4, indicating that V, N, S, C, and O elements are distributed evenly in
VN/S@PANI composite.
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Figure 5 shows the N2 adsorption/desorption isotherms of VN microrods, VN/S mi-
crorods and VN/S@PANI composites. In Figure 5a, the specific surface area of porous VN
microrods was up to 310.6 m2 g−1, and the pore size was mostly distributed in 0.1–2.5 nm.
Its ultra-high specific surface area with high porosity is favorable for loading more sulfur
and provides more active sites for sulfur oxidation and reduction [34]. The specific surface
areas of VN/S and VN/S@PANI decreased to 4.0 and 6.3 m2 g−1, respectively, demon-
strating that sulfur species were composited with these sulfur hosts. In Figure 5e,f, the
disappearance of mesopores indicates that sulfur was impregnated in the mesopores of VN
microrods. Figure S2 shows the TGA curves of VN/S microrods and VN/S@PANI compos-
ite. For the VN/S microrods, the total loss between 100 ◦C–280 ◦C is 69.9 wt%, which is
attributed to sulfur evaporation. For the VN/S@PANI composite, the total loss between
100 ◦C–280 ◦C was 81.2 wt%, which was attributed to S volatilization and decomposition
of PANI. The total loss between 280 ◦C–550 ◦C was 4.3 wt%, which was attributed to the
decomposition of PANI.

XPS spectra of the VN/S@PANI composite are exhibited in Figure 6. The XPS survey
spectrum verifies the presence of V, N, C, O and S elements in the sample. Figure 6b
displays the existence of V-N (513.8 eV, 521.5 eV), V-N-O (515.0 eV, 522.8 eV) and V-O
(516.9 eV, 524.4 eV) bonds. Figure 6c exhibits the peaks of N 1s at 397.5, 398.5, 399.5, and
400.9 eV, which are assigned to N-V, -N=, -NH-, and -NH2

+-, respectively [35]. Figure 6d
exhibits four peaks of C 1s at 284.5, 285.3, 286.4, and 288.4 eV, corresponding to the C-C,
C-N, C-O, and C=O, respectively [15]. Figure 6e exhibits three peaks of O 1s at 529.9, 530.9
and 532.1 eV, which are assigned to the V-O, C-O and O-H, respectively [36]. In Figure 6f,
the S 2p spectrum exhibited four peaks at 164.0, 165.0, 168.4, and 169.6 eV, which are
ascribed to S-C, sulfate, S 2p1/2, and S 2p3/2, respectively. The sulfates are attributed to
sulfur oxidation in the air [37].
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2.2. Electrochemical Performance

The specific capacity of the cathode in this work is the mass specific capacity, that
is, the quantity of electricity can be discharged per unit mass of the cathode material. It
can be expressed as the following formula. Sc = Id × t, where Sc is the specific capacity of
the cathode, Id is the current intensity per unit mass, which is also called current density,
and t is the charge and discharge time of the battery. In Figure 7a, the VN/S@PANI
cathode delivered a high initial capacity of 1007 mAh g−1 at 0.5 A g−1, and it maintained at
735 mAh g−1 over 150 cycles, which is higher than that of pristine VN/S microrod cathode
(372 mAh g−1). The charge/discharge curves are displayed in Figure 7b. As for the cycling
performance displayed in Figure 7c, it was maintained at 458 mAh g−1 over 400 cycles,
which was also higher than that (254 mAh g−1) of VN/S microrod cathode. It can be
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seen that the polyaniline coating significantly improved its cycling stability. As shown
in Figure 7d, the rate capacities were 1269, 947, 803, 710, and 561 mAh g−1 at the current
densities of 0.1, 0.2, 0.5, 1, and 2 A g−1, respectively. However, the capacity of VN/S cathode
was only 87 mAh g−1 at 2 A g−1. Table S1 lists the cyclic performance of some sulfur hosts
for Li-S battery. The cyclic performance of VN/S@PANI was superior to those of the VN/S
microflowers [11], PANI@BDC/S [35], S/VN@CNFs [38], VN-NCNFs/S nanofibers [39],
V2O3-VN@NC/S [40], and some other vanadium-based composites [41–44]. In Figure 7e,
VN/S@PANI cathode delivered 338.6 mAh g−1 after 500 cycles at 50 ◦C, and the Coulombic
efficiency remained at 99.9%. Local high temperature can cause uneven electrochemical
reaction in the whole battery, and the dissolution and shuttling of polysulfide in the heat-
increasing region become even more obvious [45]. The good high temperature resistance is
due to the unique microstructure which can effectively inhibit polysulfide shuttling.
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Molecules 2023, 28, 1823 9 of 16

Figure 8a exhibits the initial three CV curves of VN/S@PANI cathode. On the first
curves, reductive peaks at 2.33 and 2.0 V, and one oxidative peak at 2.35 V were observed.
In later cycles, the reduction peaks of 2.34 and 2.05 V were due to the formation of Li2S4
and Li2S2/Li2S, respectively. The oxidation peak of 2.36 V is related to the conversion of
Li2S to Li2S8 and sulfur. Similarly, the VN/S microrod cathode exhibited two reduction
peaks at 2.30 and 2.05 V, and one oxidation peak at 2.39 V on first curves (Figure S3a).
On later curves, the cathode displayed two reduction peaks at 2.30 and 2.06 V and one
oxidation peak at 2.36 V. The shift of redox peak is due to the rearrangement of active sulfur.
Small peak shifts of oxidation and reduction can be observed in VN/S@PANI, proving
admirable reversibility of VN/S@PANI cathodes. Additionally, VN/S@PANI cathode have
two close peaks at 2.31 V, 2.36 V from subsequent cycles, corresponding to the oxidation
of short-chain Li2S/Li2S2 to long-chain Li2Sx and finally to S8, respectively. Only a broad
oxidation peak was found for VN/S cathodes because of the low redox kinetics of LiPSs
and severe polarity [46].
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The electrochemical kinetics were further investigated by the CV test between 0.1 and
1.0 mV s−1, as exhibited in Figure 8b. The CV curves at different rates were skewed due to
the polarization, and the potential drift is mainly caused by the depolarization-calibrated
ohmic resistors [47]. Li+ diffusion rate could be calculated by following formula:

Ip = 2.69 × 105n1.5SDLi +
0.5CLi + ν0.5 (1)

where Ip, n, S, and v are peak current, electron transfer number, cathode area, Li+ transfer
rate, Li+ concentration, and sweep rate, respectively. In Li-S batteries, Ip, n, S, values are
constant [48]. The slope of the slash corresponds to that of the electrochemical process. Dur-
ing each electrochemical reaction, the slope value of the VN/S@PANI cathode (Figure 8c)
was higher than that of the VN/S cathode (Figure S3c), indicating a faster Li+ diffusion rate
and outstanding conversion redox kinetics [38]. It can be ascribed to efficient adsorption
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of polysulfides by conductivity polyaniline which promotes Li+ diffusion and accelerates
the conversion kinetics of LiPSs. Figure 8d is derived from i = k1ν + k2ν1/2, where k1ν
and k2ν1/2 are related to the contributions of capacitance and diffusion, respectively. The
results show that the ratio of capacitance contribution increased with scanning speed. The
capacitance control ratio of VN/S@PANI is obviously higher than that of the VN/S cathode
(Figure S3d).

Galvanostatic intermittent titration technique (GITT) test was carried out when the
battery relaxed for 2 h at 0.2 A g−1. Ten cycles later, the Li-S battery was charged and
discharged for 300 s, as shown in Figure 9a,b. Obviously, compared with the VN/S microrod
(Figure 9b), the VN/S@PANI cathode (Figure 9a) displayed smaller discharge/charge
polarization voltage plateaus (∆E) [49]. The internal resistance at different discharge/charge
procedures could be calculated by following equation [50]:

∆Rinternal (Ω/g) = ∆Uoverpotential/Iappiled m (2)
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The ∆Uoverpotential differs greatly from the quasi-open circuit voltage and closed-circuit
voltage. The Iapplied is the applied current, m is the mass of active material of cathode.
The reaction impedances of VN/S and VN/S@PANI cathodes are shown in Figure 9c,d.
Compared with the VN/S, the VN/S@PANI has higher conductivity, higher electron
and ion transfer efficiency, smaller energy barrier and smaller interfacial resistance, thus
enhancing electrochemical performance [51].

The absorption of VN microrods and VN@PANI composites towards Li2S6 is displayed
in Figure 10a. By observing absorption in real time, Li2S6 solution containing VN turned
to pale yellow after absorbing for 24 h, while the Li2S6 solution containing VN@PANI
became colorless, indicating that the adsorption capacity of the VN@PANI for Li2S6 was
significantly stronger than that of the porous VN microrods. In addition, to further prove
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the adsorption capability of the VN microrods and VN@PANI microrods for polysulfide.
After adsorption for 24 h, the solution was tested by UV-vis spectroscopy (Figure 10b), and
two peaks at 420 nm and 460 nm correspond to S4

2− and S6
2−, respectively [52]. Among

these Li2S6 solutions, the peak intensity of Li2S6 solution containing VN@PANI was the
weakest, indicating that the absorbability of the VN@PANI microrods to polysulfide was
better than that of the porous VN microrods.
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Figure 11 shows the electrochemical impedance spectroscopy (EIS) of VN/S@PANI
and VN/S cathodes before and after 500 cycles. In Figure 11a, a concave semicircle repre-
sented charge transfer resistance between the cathode and the electrolyte, corresponding to
the Rct value in the equivalent circuit [53]. The inclined line corresponds to Li+ diffusion in
the electrolyte, which is described as Warburg impedance (Wo) [53]. The insets in Figure 11
show the equivalent circuit diagram before and after the 500 cycles. In the equivalent circuit
diagram, R1 represents the internal resistance of the electrolyte, R2 represents the internal
resistance of the solid electrolyte interface (SEI) film correlated with insoluble Li2S2/Li2S,
Rct is related to the charge transfer resistance and the electrode chemical kinetics. CPE1
represents the capacitance of the electrode body in the high frequency region, and CPE2
represents the capacitance of the charge transfer process at the sulfur–electrolyte interface,
Wo is the semi-infinite Warburg diffusion impedance of long chain LiPSs [49,53]. The charge
transfer resistance of the VN/S@PANI cathode (45.1 Ω) was obvious smaller than that of
VN/S cathode (136.8 Ω), and the kinetic redox property of the polysulfide conversion was
improved due to the increase in conductivity via polyaniline coating. In Figure 11b, the
VN/S and VN/S@PANI cathodes after 500 cycles have an additional concave semicircle in
the high-frequency region due to the formation of SEI film (RSEI). The Rct of VN/S@PANI
cathode (76.5 Ω) was lower than that of the VN/S cathode (133.5 Ω) after the cycling test,
which may be related to electrolyte permeation and redistribution of polysulfide. The
reduced Rct was mainly ascribed to the unique microstructure in which insulating sulfur is
well encapsulated within the polyaniline layer, thereby accelerating the transfer of electrons
and ions. The SEM and TEM images of VN/S@PANI cathode after 500 cycles are exhibited
in Figure S4. The results showed that the VN/S@PANI composite still maintained the
rod-like morphology during the cycling process, which indicated that the VN/S@PANI
composite had excellent stability to enhance the cycling performance of the cathode.
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3. Materials and Methods
3.1. Preparation of Porous VN Microrods

NaVO3 (0.2 g) and C3H6N6 (0.6 g) were mixed and transferred into a tube furnace in
N2 atmosphere and calcinated at 700 ◦C for 2 h. Finally, the black product was washed and
dried at 90 ◦C for 10 h.

3.2. Preparation of Porous VN/S Microrods

Typically, 0.2 g porous VN microrods and 0.5 g sulfur were mixed evenly in a container
filled with Ar. After that, the vessel was heated at 155 ◦C for 24 h.

3.3. Preparation of VN/S@PANI Microrods

Concentrated sulfuric acid (2 mL) was added into 98 mL deionized water. Then,
0.1 g VN/S microrods and 20 µL of aniline were added into the above dilute sulfuric acid
solution. After that, 0.5705 g ammonium persulfate was put in the solution. The mixture
was stirred in an ice water bath at 0 ◦C for 12 h, and then washed and dried at 60 ◦C for 8 h.

3.4. Study of LiPSs Adsorption Experiment

The Li2S6 solution was compounded through adding S and Li2S (5:1 molar ratio) into
the DME (dioxolane) Dol (1,2-dimethoxyethane) solvent (1:1) in argon atmosphere. The
mixtures were kept at 80 ◦C for 20 h. After that, 8 mg porous VN microrods and porous
VN@PANI microrods were added into 4 mL of Li2S6 solution, respectively.

3.5. Material Characterizations

The crystal structures of samples were determined by X-ray diffraction (XRD, Shi-
madzu XRD-6000) using high-intensity Cu Kα radiation with a wavelength of 1.54178 Å,
and morphologies and element distributions by scanning electron microscopy (SEM), per-
formed using a Hitachi S8100 machine, and energy dispersive X–ray spectroscopy (EDS).
Transmission electron microscopy (TEM, Hitachi HT–7700) and high-resolution trans-
mission electron microscopy (HRTEM, JEOL-2010 TEM) were used to determine sample
microstructures. Raman spectra were obtained using a Renishaw inVia Raman spectrome-
ter and a 532 nm laser source). Brunauer–Emmett–Teller (BET) specific surface and pore
volumes of samples were measured using a Micromeritics ASAP 2460 unit. Thermogravi-
metric analysis (TGA) was performed on a Setaram Labsys Evo SDT Q600 at a heating
rate of 10 ◦C min−1 from room temperature to 400 ◦C in air flow. Fourier transform in-
frared spectroscopy (FTIR) was carried out on an IR spectrophotometer (Shimadzu). X-ray
photoelectron spectroscopy (XPS, ESCALAB 250) was used to analyze surface elemental
compositions and chemical bonding.
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3.6. Electrochemical Tests

The electrochemical properties of VN/S microrods and VN/S@PANI microrods were
measured by button cell (CR2032). The mass ratio composite (70%), carbon black (20%) and
polyvinylidene fluoride adhesive (PVDF, 10%) were mixed with a certain amount of (N-
methylprolinodone) (NMP). The mixture is stirred into a uniform slurry and evenly coated
on aluminum foil (Shanghai Aladdin Reagent Co., Ltd.) with a diameter of 14 mm and a
thickness of 0.015 mm (Shanghai Aladdin Reagent Co., Ltd.). The mixture is dried in a 60 ◦C
vacuum for 12 h. The batteries were manufactured in an Ar-filled glove box (O2 < 0.01 ppm,
H2O < 0.01 ppm, Mikrouna, Super 1220/750/900). Li foil (Shanghai Aladdin Reagent
Co., Ltd., Shanghai, China) is used as pair electrode/reference electrode. The electrolyte
was 1 M Lithium bis(trifluoromethanesulphonyl)imide (LiTFSI, Sigma Aldrich, Shanghai,
China) in a 1:1 volume ratio of 1,3-dioxolane and 1,2-Dimethoxyethane and 1 wt% LiNO3
additive. The Neware battery test system (Neware CT-3008) performed constant current
discharge–charge tests in a potential window of 1.6 to 2.8 V. Cyclic voltammetry (CV)
curves and electrochemical impedance spectroscopy (EIS) measurements (from 0.01 Hz to
100 kHz) were performed on an electrochemical workstation (ChenhuanChi-660E).

4. Conclusions

To sum up, a kind of porous rod-like VN with a large specific surface area was prepared
by a simple calcination process. After compounded with sulfur and then coated with
polyaniline, the VN/S@PANI composite showed excellent electrochemical performance.
The VN/S@PANI composite delivered an initial discharge capacity of 1007 mAh g−1 at
0.5 A g−1, and it maintained at a capacity of 735 mAh g−1 over 150 cycles. The capacity of
the VN/S@PANI cathode maintained at 410 mAh g−1 at 2 A g−1 over 400 cycles. The porous
structure of VN microrods can absorb more sulfur and provide large interspace to overcome
the volume change during the discharge procedure. The outer layer of PANI not only
promotes the cathode conductivity but adsorbs the polysulfides and inhibits the shuttling
effect of polysulfide. Thus, the VN/S@PANI cathode possessed excellent conductivity
and effective chemisorption ability, which improved the electrochemical performance of
Li-S batteries.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28041823/s1, Figure S1: (a) SEM image of VN/S@PANI
composite. (b) Line scanning curves of VN/S@PANI; Figure S2: TGA curves of (a) VN/S and
(b) VN/S@PANI; Figure S3: (a) Initial five CV curves of VN/S composite at a scan rate of 0.1 mV s−1.
(b) CV curves of VN/S composite at 0.1 to 1.0 mV s−1. (c) The log(i) vs. log(v) of VN/S. (d) Contri-
bution ratio of capacitance control and diffusion control; Figure S4: (a) SEM and (b) TEM images of
VN/S@PANI cathode after 500 cycles; Table S1: Compared electrochemical performance of reported
materials as sulfur hosts or interlayers.
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