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Abstract: The pericarp of Zanthoxylum bungeanum maxim (PZM) is a commonly used spice and herbal
medicine in China. In the present study, the structural characteristics of PPZM were investigated by
saccharide mapping after enzymatic digestion by using high-performance thin layer chromatography
(HPTLC) and polysaccharide analysis by using carbohydrate gel electrophoresis (PACE). The mecha-
nisms of protective effects of PPZM on Aβ25–35-induced oxidative damage were explored in PC12
cells. The results showed that PPZM contained 1,4-α-D-galactosidic, 1,4-α-D-galactosiduronic, and
(1→4)-β-D-glucosidic linkages. Pretreatment with PPZM significantly increased the cell viability of
Aβ25–35-injured PC12 cells. Flow cytometry and Hoechst/PI staining indicated that PPZM gradually
relieved the apoptosis of the Aβ25–25-treated cells. PPZM markedly decreased the ROS level of PC12
cells and suppressed Aβ25–35-induced oxidative stress by increasing the SOD level, and decreas-
ing the level of MDA and LDH. The mRNA expressions of caspase-3 and Bax were significantly
downregulated, and Bcl-2 expression was upregulated by treatment with PPZM. PPZM significantly
increased the mRNA expression of Nrf2 and HO-1 in Aβ25–35 treated cells. The results indicated
that PPZM alleviated apoptosis and oxidative stress induced by Aβ25–25 through the inhibition of
mitochondrial dependent apoptosis and activation of Nrf2/HO-1 pathway. PPZM can be used as a
potential protective agent against Aβ25–25-induced neurotoxicity.

Keywords: Zanthoxylum bungeanum maxim; polysaccharides; oxidative stress; Nrf2/HO-1 signal pathway

1. Introduction

Neurodegenerative diseases caused by aging seriously affect human health and quality
of life in modern society [1]. Alzheimer’s disease (AD) is a chronic neurodegenerative
disease closely related to memory and cognitive impairment [2]. The pathological mecha-
nism of AD is still unclear, and there is no satisfactory treatment plan at present [3]. The
main pathological features related to AD include β-amyloid (Aβ) plaque, neurogenic fiber
tangle and neuron loss [4]. Several hypotheses have been proposed to explain the causes of
AD, including the cholinergic hypothesis, Aβ hypothesis and Tau protein hypothesis [5].
Despite continuous debate about the Aβ hypothesis, evidence supports Aβ plays a signif-
icant role in the pathogenesis of AD [6,7]. In addition, oxidative stress is an early event
in the progression from normal aging to AD pathology, and is considered to be a key
harmful factor of AD. Aβ and oxidative stress are linked to each other, because Aβ induces
oxidative stress, and oxidative stress increases the Aβ deposition. Studies have shown that
the gradual accumulation of oxidative damage for a long time will lead to the appearance
of clinical and pathological AD symptoms, including Aβ deposition [8,9].

Excessive reactive oxygen species (ROS) can lead to cell apoptosis, and many fatal
diseases are related to abnormal ROS. The brain is the most vulnerable to oxygen free
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radical corrosion, because its antioxidant content is relatively low and its metabolic capacity
is high [10]. Extensive studies have proven that the production of ROS leads to the defect
of antioxidant defense system, which plays a key role in the pathogenesis of AD. With
the environment and risk factors of aging, the brain gradually becomes highly sensitive
to oxidative stress [11]. The accumulation of ROS will consume the activity and content
of some antioxidant enzymes, induce some lipid peroxidation products and cause cell
apoptosis [12,13]. In addition, Aβ can induce neuroinflammation and cause activation of
reactive astrocytes and microglial cells. These cells cluster around amyloid deposits and
sustain oxidative stress, leading to neuronal degeneration [14]. These pathological changes
of antioxidant system and related apoptosis reactions are believed to cause cognitive
impairment and progression of AD [15].

The pericarp of Zanthoxylum bungeanum maxim. (PZM), called Huajiao in Chinese, is a
common food additive and herbal medicine used throughout the long history of China [16].
PZM is used to treat colds, stomach and abdomen pains, diarrhea, and vomiting in tra-
ditional Chinese medicine [17]. Previous studies have shown that PZM has a potentially
therapeutic effect on AD, the unsaturated fatty acid amides hydroxy-α-sanshool (HAS)
from PZM could improve scopolamine-induced learning and memory impairments in
rats [18] and possessed antioxidant effects in H2O2-stimulated PC12 cells [19]. The mecha-
nisms of HAS on D-galactose/AlCl3-induced AD mice via Nrf2/HO-1 signaling pathways
were verified in our previous study [20]. Polysaccharides are also important active compo-
nents in PZM, and our previous research has reported the structural characteristics and
antioxidant activity of polysaccharides (PPZM) from PZM [21]. However, the glycosidic
linkages in PPZM were still unknown, and the neuroprotective mechanisms of PPZM on
AD treatment were also unclear. Compared with the previous study, this study further
understood the structural information of PPZM by using saccharide mapping, the neuro-
protective effects of PPZM were further confirmed by an Aβ25–35-induced damage model
in PC12 cells, and the potential neuroprotective mechanisms of PPZM on AD were further
explored through the Nrf2/HO-1 signaling pathway.

2. Results
2.1. Saccharide Mapping Analysis of PPZM

The saccharide mapping of PPZM after enzymatic digestion were obtained by HPTLC
and PACE analysis. Pectinase and cellulase were selected for depolymerization of PPZM.
As shown in Figure 1A, compared with samples before enzymatic hydrolysis, PPZM after
pectinase digestion produced different small sugars (especially between D-glucose and
maltose), which were obviously observed in HPTLC. The PACE analysis results of PPZM
digested by pectinase was shown in Figure 1C, the resolution of PACE for enzymatic
hydrolysis separation of PPZM was better than HPTLC. The chromatograms obtained by
Gel-pro analyzer 4.0 software (Media Cybernetics, Bethesda, MD, USA) clearly showed
the difference between enzymatic hydrolysis and samples before enzymatic hydrolysis.
As shown in Figure 1A,D, different small sugars (mainly distributed between glucose and
maltotriose) were also found in PPZM digested by cellulase, which were not found in
samples before enzymatic hydrolysis. PPZM could be digested by pectinase and cellulase,
indicating that PPZM contained 1,4-α-D-galactosidic, 1,4-α-D-galactosiduronic, and (1→4)-
β-D-glucosidic linkages.
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Figure 1. HPTLC profiles (A) and PACE fingerprints and chromatograms (B–D) of enzymatic hy-
drolysates of PPZM. Oligosaccharide standards (1), enzymatic hydrolysates of PPZM by corre-
sponding enzymes (2–4). D-glucose (a), maltose (b), maltotriose (c), malttetraose (d) and maltpen-
tose (e). 
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group without any treatment. However, after the incubation of Aβ25–25, the cell morphol-
ogy changed, including the reduced cell quantity, membrane blebbing and cell shrinkage 
[22]. When pretreated with PPZM for 24 h, the morphology of the cells was observably 
improved, the above cell injuries alleviated.  

PPZM showed no cytotoxicity on normal PC12 cells at the tested concentrations of 
50, 100, and 200 μg/mL (Figure 2B). Aβ25–35 (10–40 μM) significantly decreased the PC12 
cell viability in a dose-dependent manner after 24 h of incubation (Figure 2C), and 10 μM 
dose was selected for further experiments. As shown in Figure 2D, pretreatment with 
PPZM (50, 100 and 200 μg/mL) significantly increased the cell viability of Aβ25–35 damaged 
PC12 cells (p < 0.01). 

Figure 1. HPTLC profiles (A) and PACE fingerprints and chromatograms (B–D) of enzymatic hy-
drolysates of PPZM. Oligosaccharide standards (1), enzymatic hydrolysates of PPZM by correspond-
ing enzymes (2–4). D-glucose (a), maltose (b), maltotriose (c), malttetraose (d) and maltpentose (e).

2.2. PPZM Protected PC12 Cells from Aβ25–35 Induced Cytotoxicity

As shown in Figure 2A, cells showed good cellular growth morphology in the control
group without any treatment. However, after the incubation of Aβ25–25, the cell morphology
changed, including the reduced cell quantity, membrane blebbing and cell shrinkage [22].
When pretreated with PPZM for 24 h, the morphology of the cells was observably improved,
the above cell injuries alleviated.

PPZM showed no cytotoxicity on normal PC12 cells at the tested concentrations of 50,
100, and 200 µg/mL (Figure 2B). Aβ25–35 (10–40 µM) significantly decreased the PC12 cell
viability in a dose-dependent manner after 24 h of incubation (Figure 2C), and 10 µM dose
was selected for further experiments. As shown in Figure 2D, pretreatment with PPZM
(50, 100 and 200 µg/mL) significantly increased the cell viability of Aβ25–35 damaged PC12
cells (p < 0.01).

2.3. PPZM Inhibited Aβ25–25-Induced Apoptosis in PC12 Cells

Flow cytometry and Hoechst/PI staining were further used to determine the effect of
PPZM on Aβ25–25-induced apoptosis in PC12 cells. As shown in Figure 3, the percentage
of apoptotic cells and the total apoptosis rate were significantly increased after treatment
with Aβ25–35, pretreatment with PPZM (50, 100, and 200 µg/mL) effectively decreased the
apoptosis rate (p < 0.01), indicating that PPZM might inhibit Aβ25–35-induced cell apoptosis
in PC12 cells. As can be seen in Figure 4, the control cells showed even fluorescence with
the regular shape and uniform size of nucleus. The nuclear morphology appeared as
condensed bodies and highly fluorescent in the Aβ25–25 treated cells. Pretreatment with
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PPZM (50, 100, and 200 µg/mL) gradually relieved the apoptosis of the Aβ25–25 treated
cells in a concentration-dependent manner.
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Figure 2. Neuroprotective effects of PPZM on Aβ25–25-induced neurotoxicity. (A) Cell morphology
observed under a light microscope (the scale bar was 100 µm). (B) The effects of PPZM on the cell
viability of normal PC12 cells. (C) The neurotoxicity of Aβ25–25 on PC12 cells. (D) The protective
effects of PPZM on Aβ25–25 injured PC12 cells. Cell viability was measured by MTT. Results are
presented as the mean± SD. ## p < 0.01 vs. the control group; ** p < 0.01 vs. the Aβ25–25 treated group.
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Figure 4. Effects of PPZM on Aβ25–35-induced PC12 cell apoptosis measured by Hoechst/PI staining.
The morphological alterations were captured by laser confocal microscope. Scale bars were 20 µm.

2.4. PPZM Suppresses Aβ25–35-Induced Oxidative Stress

ROS levels were measured to evaluate the effects of PPZM against oxidative stress by
flow cytometry by using DCFH-DA staining. As shown in Figure 5A, compared with the
normal cells, the ROS level significantly increased in the Aβ25–35-treated cells (p < 0 01).
However, pretreatment of PPZM (50, 100 and 200 µg/mL) markedly decreased the ROS
level in Aβ25–35 damaged PC12 cells (p < 0 05, p < 0 01, and p < 0 01). Effects of PPZM on
the levels of SOD, LDH, and MDA in Aβ25–35-treated PC12 cells were further determined
(Figure 5B–D). The level of SOD was significantly decreased, whereas levels of LDH and
MDA were obviously increased in Aβ25–35-treated PC12 cells (p < 0.01). PPZM treatment
significantly increased the SOD level, and decreased the level of MDA and LDH at all the
tested the concentrations with concentration-dependent manners.

2.5. PPZM Regulates the Expression of Apoptosis-Related and Nrf2/HO-1 mRNA

Effects of PPZM on expressions of apoptosis-related caspase-3, Bcl-2 and Bax mRNA
in Aβ25–35-treated PC12 cells were shown in Figure 6. As shown in Figure 6A–C, compared
with the normal cells, mRNA expressions of caspase-3 and Bax were significantly upregu-
lated, whereas Bcl-2 was markedly downregulated in Aβ25–35-treated PC12 cells (p < 0.01).
PPZM treatment significantly decreased mRNA expressions of Caspase-3 and Bax, and
increased the expression of Bcl-2 at the concentrations of 100 and 200 µg/mL (p < 0.01).
The changes in expression of mRNA level of Nrf2 were also analyzed via RT-qPCR. As
shown in Figure 6D, different concentrations of PPZM significantly increased the mRNA
expression of Nrf2 (p < 0.01) compared with the Aβ25–35 treated PC12 cells. The expression
of the downstream factor HO-1 in this pathway was further investigated. As the results
shown in Figure 6E, PPZM significantly upregulated the mRNA expression of HO-1 in
Aβ25–35 treated cells at the concentrations of 50, 100, and 200 µg/mL (p < 0.01).
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group; * p < 0.05, ** p < 0.01 vs. the Aβ25–25 treated group.
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3. Materials and Methods
3.1. Chemicals and Reagents

Pectinase, cellulase, β-galactosidase, dextranase, β-mannase, and standards for mal-
tose (purity ≥98%), maltotriose (purity ≥98%), malttetraose (purity ≥97%), and malt-
pentaose (purity ≥7%) were products of Beijing Solarbio Science & Technology Co., Ltd.
(Beijing, China). D-glucose standard (purity ≥98%) was obtained from Sichuan Weikeqi
Biotechnology Co., Ltd. (Chengdu, China). Moreover, 8-aminonaphthalene-1,3,6-trisulfonic
acid (ANTS) was purchased from Meryer (Shanghai, China) Biochemical Technology Co.,
Ltd. (Shanghai, China). Aβ25–35 and dimethylsulfoxide (DMSO) were obtained from
Sigma-Aldrich (St. Louis, MO, USA). Fetal bovine serum (FBS) was obtained from Gibco
(Burlington, ON, Canada), Annexin V-APC/PI and Hoechst33342/PI dual staining kits
were from Jiangsu KeyGEN BioTECH Co., Ltd. (Nanjing, China), Dulbecco’s modified
Eagles medium (DMEM) cell culture medium was purchased from Procell Life Science
&Technology Co., Ltd. (Wuhan, China). Trypsin-EDTA from Hyclone Laboratories (Logan,
UT, USA). Detection kits for ROS, SOD, LDH and MDA were purchased from Nanjing
Jiancheng Bioengineering Institute (Nanjing, China). TRIzol reagent and the RevertAid
First Strand cDNA Synthesis Kit was purchased from Thermo Fisher (Waltham, MA, USA).

3.2. Polysaccharides Extraction

PZM were purchased from a local market in Hanyuan (ya’an, China). A specimen was
stored at Shanxi Provincial Key Laboratory of Traditional Chinese Medicine Processing in
Shanxi University of Chinese Medicine (Jinzhong, China). Polysaccharides from PZM were
extracted by using the method in our previous report [21]. The obtained polysaccharides
were redissolved and centrifuged (8000× g, 10 min), and then precipitated overnight by
adding 95% ethanol (1:4, v/v). After being washed with anhydrous ethanol, acetone, and
diethyl ether, the obtained polysaccharides (PPZM) were freeze-dried.

3.3. Enzymatic Digestion of PPZM

PPZM water solutions (5 mg/mL, 0.5 mL) were added to certain enzymes (the final
concentration of pectinase and cellulase were 20 and 10 U/mL, respectively) and digested
for 16 h at 37 ◦C. Then the solutions were heated at 80 ◦C for 10 min to stop the enzymatic
digestion. After centrifugation (4000× g, 10 min), the supernatants were dried by using a
nitrogen evaporator at 40 ◦C. The PPZM solution without enzyme digestion was served as
blank control.

3.4. Derivatization with ANTS

The derivatization was performed by using the reported method with some modi-
fications [23]. Briefly, ANTS was dissolved in acetic acid/water (3:17, v/v) to prepare a
solution of 0.1 mol/L. NaCNBH3 was prepared in DMSO (1 mol/L). Each dry enzymatic
hydrolysate was added 125 µL of ANTS solution and 125 µL of NaCNBH3 solution, respec-
tively. The mixture was centrifuged and incubated at 37 ◦C for 17 h. Then, the solution was
dried by using a nitrogen evaporator at 40 ◦C. The derivatized samples were resuspended
in 0.5 mL of 25% glycerin solution and stored at −20 ◦C.

3.5. HPTLC Analysis

Sample separation (5 µL) was performed on 5 cm × 10 cm silica gel 60 plates (Merck,
Darmstadt, Germany). Plates were first developed to a distance of 90 mm with ethyl
acetate/glacial acetic acid/water (2:2:1, v/v/v) as mobile phase at room temperature. After
being dried in air, the plates were redeveloped to a distance of 95 mm with the same mobile
phase. Sugars were colorized with aniline-diphenylamine-phosphoric acid solution by
heating at 105 ◦C for 10 min, and photographed.
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3.6. PACE Analysis

PACE was performed according to the reported method [24]. In brief, all the samples
(3–6 µL) were separated by using a mini-P4 vertical slab gel electrophoresis apparatus
(Ji’nan Jun Yi Biotechnology Co., Ltd., Ji’nan, China). For separation of enzymatic hy-
drolysates, electrophoresis of 34% (w/v) polyacrylamide in the resolving gel with 8% (w/v)
polyacrylamide in stacking gel was used. The 0.1 mol/L Tris-boric (pH 8.2) solution was
applied as the electrophoresis buffer. The samples were electrophoresed at 15 mA to move
the sample to the front end of the gel (observed with 365 nm UV lamp). Gels were imaged
by using a 5000 Pro II gel imaging system (Guangzhou Biolight Biotechnology Co., Ltd.,
Guangzhou, China) under UV 365 nm.

3.7. Cell Culture

Rat adrenal pheochromocytoma PC12 cells were obtained from Procell Life Science
&Technology Co., Ltd. (Wuhan, Hubei, China). Cells were cultured in DMEM supple-
mented with 10% FBS and 1% antibiotics (penicillin/streptomycin) in a humidified atmo-
sphere of 5% CO2 at 37 ◦C. The medium was changed every 2–3 days.

3.8. Treatment and Cell Viability

Cell viability assay was performed by using MTT assay [25]. PC12 cells (5 × 103/well)
were seeded into 96-well plates and cultured for 24 h. The medium was then replaced with
PPZM at concentrations of 0, 50, 100, and 200 mg/mL. After being incubated for another
24 h, 10 µL MTT solution (the final concentration of 5 mg/mL) were added and incubated
for 4 h. The culture medium was removed, and 150 mL DMSO was added. The absorbance
at 490 nm was measured by a SpectraMax® PLUS 384 microplate reader (Molecular Devices,
Sunnyvale, CA, USA).

The Aβ25–35 was dissolved in ultrapure water to prepare a 1 mM stock solution. The
solution was incubated at 37 ◦C for three days to induce aggregate before use. PC12
cells were treated with Aβ25–35 at different concentrations of 10, 20, 30, and 40 µM for
24 h to determine the neurotoxicity of Aβ25–35. For evaluation of the neuroprotective
effects of PPZM on the Aβ25–35-induced PC12 cells, cells were pretreated with PPZM at
concentrations of 50, 100, and 200 mg/mL for 24 h and then exposed to Aβ25–35 (20 µM) for
24 h. The cell viability was measured by using the MTT method as described above.

3.9. Flow Cytometry Analysis for Apoptosis and ROS

Cells were seeded into 6-well plates and incubated for 24 h. Then PPZM at final
concentrations of 50, 100, and 200 µg/mL were added to the cells. After being cultured
for 24 h, cells were treated with 20 µM Aβ25–35 for another 24 h. Cells were harvested
and washed by using PBS and stained by the Annexin V-APC/PI kit (Jiangsu KeyGEN
BioTECH Co., Ltd., Nanjing, China). Cell apoptosis was detected by using a CytoFLEX
flow cytometer (Beckman, Krefeld, Germany). In addition, the DCFH-DA ROS kit (Nanjing
Jiancheng Bioengineering Institute, Nanjing, China) was used to determine the intracellular
ROS level by flow cytometry.

3.10. Cellular Apoptosis Analysis by Hoechst33342/PI Dual Staining

Cells (2 × 105 cells/well) were plated into 6-well plates for 24 h and then incubated
with PPZM (50, 100, and 200 µg/mL) for an additional 24 h. Then, the cells were incubated
with 20 µM Aβ25–35 for 24 h. The Hoechst 33342 and PI fluorescent dye were added for
15 min, and the nuclear morphology was observed with a FV100 laser confocal microscope
(Olympus, Tokyo, Japan).

3.11. Quantitative Real-Time Polymerase Chain Reaction (RT-qPCR) Assay

Total RNA of the PC12 cells was extracted by using TRIzol reagent. The purity and
concentration of each RNA sample was determined by the OD value at 260 and 280 nm.
RNA (2 µg) was reversely transcribed into cDNA by using the RevertAid First Strand cDNA
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Synthesis Kit (Thermo Fisher, Waltham, MA, USA). RT-qPCR analysis was performed by
using an ABI StepOnePlus System (Applied Biosystems, Foster City, CA, USA). The mRNA
data were normalized to GAPDH by using the 2−∆∆CT method.

3.12. Statistical Analysis

Data obtained in the experiments are presented as mean ± standard deviations
(SD). Statistical comparisons between groups were made by one-way analysis of vari-
ance (ANOVA) by using GraphPad Prism 9 software (GraphPad Software Inc., La Jolla, CA,
USA). p < 0.05 was regarded as statistically different.

4. Discussion

As a neurodegenerative disease, AD brings an enormous financial burden for indi-
viduals and the society [26]. Therefore, it is urgent to make significant progress in order
to find effective treatment for these diseases. Natural products isolated from plants have
attracted much attention due to their high efficiency and biosafety, and polysaccharides are
one of them. Many studies have shown that polysaccharides exhibit neuroprotective effects
through a variety of mechanisms [27,28]. Experiments have shown that polysaccharides
and polysaccharide-rich extracts can exhibit neuroprotective effects by promoting neurite
outgrowth, and through Nrf2/HO-1, PI3K/Akt, NF-κB, and MAPK signaling pathways,
etc. [29]. The present study indicated that PPZM alleviated apoptosis and oxidative stress
induced by Aβ25–25 through the inhibition of mitochondrial-dependent apoptosis and
activation of Nrf2/HO-1 pathway. Although further experiments are needed in AD animal
models to support the clinical application of PPZM, this study provides a new perspective
for the therapeutic potential of PPZM in treating AD.

It is reported that the saccharide mapping based on enzymatic digestion combined
with HPTLC and PACE was one of the effective methods for the analysis of monosaccha-
rides and oligosaccharides derived from polysaccharides [30]. The resolution of oligosac-
charide separation with PACE is higher than that of HPTLC, whereas the resolution of
monosaccharide separation with HPTLC is better than that with PACE [31]. Therefore,
saccharide mapping using PACE and HPTLC analysis was used for analysis of the en-
zymatic hydrolysates of PPZM. Pectinase can act on the 1,4-α-D-galactosidic and 1,4-α-
D-galactosiduronic linkages of pectic galactan and polygalacturonan, respectively [32].
Cellulase, also known as endo-1,4-β-D-glucanase, can participate in the breakdown of
β-1,4-glucosidic linkages [33]. Our previous studies have shown that PPZM consist of
mannose, rhamnose, galacturonic acid, glucose, galactose, and arabinose [21]. Therefore,
the results indicated that PPZM contained 1,4-α-D-galactosidic, 1,4-α-D-galactosiduronic,
and (1→4)-β-D-glucosidic linkages.

AD is the most common neurodegenerative disease in elderly people. Although great
progress has been made in the mechanisms and treatment of AD, it is still an incurable dis-
ease [1]. Aβ directly or indirectly acts as a prooxidant, causing mitochondrial dysfunction
and subsequent ROS generation [34]. Many studies reported that using antioxidants against
Aβ-induced oxidative stress damage is a promising strategy to prevent AD [8]. In this
study, the protective effects and possible mechanisms of PPZM in Aβ25–35-damaged PC12
cells were investigated. The results revealed that PPZM could inhibit Aβ25–35-induced cell
damage by inhibiting apoptosis and reducing oxidative stress.

Apoptosis usually occurs in the process of aging. It exists as a stable defense mech-
anism to maintain the number of cells in the body [35]. Studies have shown that death
receptor pathway and mitochondrial pathway are two main pathways related to apopto-
sis [36]. Previous research has also shown that Aβ25–35 can cause cytotoxicity of PC12 cells
by inducing apoptosis [37–39]. In the present study, Aβ25–25-induced apoptosis and the
intervention of PPZM in PC12 cells were evaluated by flow cytometry and Hoechst/PI
staining. It was found that treatment with PPZM significantly attenuated Aβ25–35-induced
apoptosis in PC12 cells.



Molecules 2023, 28, 1813 10 of 13

Mitochondria are the main site of ROS production, and oxidative stress is another
important reason for Aβ25–25-induced cytotoxicity. The increase of ROS level in cells
may lead to further pathological changes in brain neurons, which may lead to cognitive
dysfunction. Studies have shown that in AD, oxidative stress can interfere with the process
of mitosis, destroy cell cycles, and lead to apoptosis. In this study, we found that PPZM
can play an antiapoptotic role in Aβ25–25-injured PC12 cells. We speculate that this effect
may be related to the elimination of ROS by PPZM. The degree of oxidative damage can be
measured by the LDH level, ROS scavenging enzyme SOD, and the final product of lipid
peroxidation MDA [40,41]. Therefore, The LDH, SOD, and MDA levels were determined in
this study to verify our hypothesis. As a result, PPZM significantly decreased the level of
LDH and MDA, and increased the level of SOD in Aβ25–25-injured PC12 cells.

Mitochondria also play a key role in regulating the cell death pathway associated
with Bcl-2 family protein members [42]. Bcl-2 is an antiapoptotic protein which inhibits
apoptosis, while Bax is a proapoptotic protein that can induce apoptosis in neurons. Un-
balanced Bax/Bcl-2 ratio can lead to increased mitochondrial membrane permeability and
damaged mitochondrial integrity [43]. Cytochrome c is released from mitochondria to
cytosol to activate caspase protein and lead to apoptosis [20]. In this study, PPZM treatment
significantly increased the Bcl-2 mRNA expression, and decreased the mRNA expression
of Bax; the Bax/Bcl-2 ratio was decreased in Aβ25–25-injured PC12 cells. In addition, the
caspase-3 mRNA expression was also downregulated by PPZM. These results suggest that
the protective effect of PPZM in Aβ25–25-injured PC12 cells may be related to the inhibition
of mitochondrial-dependent apoptosis.

The Nrf2 pathway is a key pathway for cells to resist oxidation and maintain home-
ostasis [44]. Under normal physiological conditions, Nrf2 and Keap1 bind together to
maintain a relative inhibition state. Under the condition of oxidative stress, Nrf2 released
from Keap1 and entered the nucleus. Then Nrf2 combined with the antioxidant response
element (ARE) to activate the expression of Nrf2 regulating genes and enhance the ability
of cells to reduce oxidative stress [45,46]. Under the condition of oxidative stress, the lack
or activation disorder of Nrf2 can increase intracellular ROS. Excessive active ROS will
lead to oxidative damage of many molecules, including DNA, protein, unsaturated fatty
acid, etc., leading to cell dysfunction, apoptosis, and even necrosis [47,48]. The antioxidant
enzymes including nicotinamide adenine dinucleotide phosphate: quinine oxidoreductase-
1 (NQO1), haemoxygenase-1 (HO-1), and SOD, etc. play an important role in protection
of the cell from ROS damage [49,50]. In the present study, PPZM treatment markedly
increased the mRNA expression of Nrf2 and HO-1. The results indicated that PPZM allevi-
ated oxidative stress and apoptosis induced by Aβ25–25, which might be closely related to
the Nrf2/HO-1 pathway.

This study demonstrated that PPZM protected PC12 cells against Aβ25–35-induced ox-
idative damage via inhibiting mitochondrial dependent apoptosis and activating Nrf2/HO-
1 signal pathway. However, Western blot, antagonist or inhibitor, and molecular biological
studies are needed to verify this pathway. In addition, more research can be done in the fu-
ture for further application of PPZM in the treatment of AD. First, the role and mechanisms
of PPZM in the treatment of AD need to be further verified through animal experiments by
employing multiple models. Secondly, further separation and purification of PPZM should
be done to obtain pure polysaccharides, and the structure of pure polysaccharides should
be identified by a variety of technologies, such as mass spectrometry and nuclear magnetic
resonance analysis. Lastly, the structure-activity relationship between the therapeutic effect
of AD and the polysaccharides needs to be clarified.

5. Conclusions

In this study, PPZM were found to contain 1,4-α-D-galactosidic, 1,4-α-D-galactosiduronic,
and (1→4)-β-D-glucosidic linkages. We demonstrated that PPZM significantly attenuated
Aβ25–35-induced apoptosis in PC12 cells by decreasing the Bax/Bcl-2 ratio and downregu-
lated caspase-3 expression. PPZM significantly decreased the level of LDH and MDA, and
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increased the level of SOD to suppress Aβ25–35-induced oxidative stress in PC12 cells. In
addition, PPZM treatment markedly increased the mRNA expression of Nrf2 and HO-1
in Aβ25–25-injured PC12 cells. The results suggested that the protective effect of PPZM in
Aβ25–25-injured PC12 cells may be related to the inhibition of mitochondrial-dependent
apoptosis and alleviation of oxidative stress through the Nrf2/HO-1 pathway. PPZM can
be used as a potential protective agent against Aβ25–25-induced neurotoxicity.
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