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Abstract: A synergetic strategy was proposed to address the critical issue in the brand characterization
of Colla corii asini (Ejiao, CCA), a precious traditional Chinese medicine (TCM). In all brands of CCA,
Dong’e Ejiao (DEEJ) is an intangible cultural heritage resource. Seventy-eight CCA samples (including
forty DEEJ samples and thirty-eight samples from other different manufacturers) were detected by
laser-induced breakdown spectroscopy (LIBS) and near-infrared spectroscopy (NIR). Partial least
squares discriminant analysis (PLS-DA) models were built first considering individual techniques
separately, and then fusing LIBS and NIR data at low-level. The statistical parameters including
classification accuracy, sensitivity, and specificity were calculated to evaluate the PLS-DA model
performance. The results demonstrated that two individual techniques show good classification
performance, especially the NIR. The PLS-DA model with single NIR spectra pretreated by the
multiplicative scatter correction (MSC) method was preferred as excellent discrimination. Though
individual spectroscopic data obtained good classification performance. A data fusion strategy was
also attempted to merge atomic and molecular information of CCA. Compared to a single data
block, data fusion models with SNV and MSC pretreatment exhibited good predictive power with no
misclassification. This study may provide a novel perspective to employ a comprehensive analytical
approach to brand discrimination of CCA. The synergetic strategy based on LIBS together with NIR
offers atomic and molecular information of CCA, which could be exemplary for future research on
the rapid discrimination of TCM.

Keywords: laser-induced breakdown spectroscopy; near-infrared spectroscopy; data fusion; Colla
Corii Asini; brand characterization

1. Introduction

Ejiao (Colla Corii Asini, CCA) made from donkey hide has been widely used as a
precious traditional Chinese medicine (TCM) in China for more than 2000 years [1,2]. As
recorded in ancient and classic TCM monographs, CCA shows great efficacy in enrich-
ing blood and staunching bleeding [3]. Nowadays, multiple brands of CCA have been
manufactured by different pharmaceutical factories in China. Quality difference of CCA
exists among different brands, affecting nutritional value and market price. The nutritional
properties of CCA are affected by such factors, as geographical origins, raw materials, water
sources as well as pharmaceutical processes. Among these factors, geographical origin
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mainly confers nutritional qualities to CCA. Traditionally, CCA is evaluated according
to its producing areas [3]. For example, Dong’e Ejiao (DEEJ) produced in Dong’e county
of Shandong province has been acknowledged as authentic and top-quality CCA prod-
ucts. DEEJ is well known as one of the intangible cultural heritage resources. However,
a similar manufacturing process of CCA caused similar appearance characteristics and
physical features. It is difficult to distinguish DEEJ from CCA of other brands. A critical
issue in the quality control of Ejiao is brand or manufacturer identification. Therefore, a
way of discriminating against CCA is needed for the purpose of brand protection and
competitive advantage.

To date, multiple analytical techniques have been successfully prioritized for qual-
ity assessment and differentiation of CCA, such as vibrational spectroscopic techniques
(Fourier transform infrared (FTIR) spectroscopy and near-infrared (NIR) spectroscopy [4,5],
liquid chromatography mass-spectrometry [6,7], gas chromatography-mass spectrometry
(GC-MS) [4], and Polymerase Chain Reaction (PCR) [8], etc. The truth is that data obtained
from different analytical techniques can provide complementary chemical information thus
improving the qualitative or quantitative analysis performance [9–12]. However, these
approaches applied only one analytical tool.

Spectroscopic techniques are appealing tools for fast quality control of traditional Chi-
nese medicine (TCM) with no laborious sample preparation. For example, laser-induced
breakdown spectroscopy (LIBS) and near-infrared spectroscopy (NIR) have many advan-
tages such as minimal sample pretreatment, fast detection, less destruction, environmen-
tally friendly and cost-effective properties of the analytical procedure, have been uesd
in pharmaceuticals, food, and agriculture filed [13–15]. LIBS is a spectrochemical sensor
technology for the acquisition of simultaneous multi-elemental analysis based on atomic
emission [16,17]. In LIBS, a pulsed laser beam is focused on the sample to vaporize the
sample and induce the formation of a plasma. The emission of the plasma containing
excited atoms and ions present in the sample is collected and analyzed through an optical
system and a spectrometer in order to extract the spectroscopic information [18]. Quali-
tative and quantitative information can be obtained by identification of the spectral lines
and analysis of their peak intensities, respectively. LIBS has the unique advantages of fast
analysis, in-situ or remote measurements, and ability to analyze various samples such as
solids, liquids, and gases with little or no sample preparation [17]. It is well accepted that
some inorganic elements of TCM play significant roles in biological activity, which are
responsible for the clinical effect [19]. Hence, elemental fingerprints are useful to identify
the geographical origin and species of TCM.

Another promising technique is NIR, which has been successful in the quality control
of food and drug. As a non-destructive technique, NIR employs measurements of photon
energy to obtain qualitative and quantitative information based on the interaction of the
sample with NIR radiation [20,21]. It covers the wavelength range of 800–2500 nm and
mainly reflects vibration information of hydrogen bonds in a molecular structure, such
as carbon–hydrogen (C-H), oxygen–hydrogen (O-H), nitrogen–hydrogen (N-H) [22,23].
Particularly, hydrogen bonds own high spectral stability in the NIR region, which aid in
qualitative and quantitative analyses.

The combination of LIBS and NIR could provide complementary information on
unknown species, involving not only the elemental compositions but also the molecular
components. Nowadays, the two techniques have been prevailing analytical tools for
quality control of TCM with the rapid development of powerful computers and data
analysis tools [24–26]. In addition, the potential applications of LIBS coupled with NIR
on analyses of food and vegetable achieve considerable success [18,27]. However, brand
characterization of CCA by combining LIBS with NIR has not been reported yet.

Usually, the application of LIBS and NIR spectroscopy in classification analysis needs
the assistance of chemometrics approaches to construct the discriminant model. Among
these approaches, partial least squares discriminant analysis (PLS-DA) is an effective
algorithm used to optimize separation between different groups of samples [28]. PLS-DA
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is based on the classical PLS regression algorithm, which models the response matrix Y
(class membership) through the predictive matrix X (original data) [28,29]. The Y matrix
in PLS-DA is a set of binary variables (0 and 1), representing the membership of each
sample. The main advantage of PLS-DA is that it can offer a graphical visualization and
understanding of the different data patterns and relations by latent variables (LVs) and
loadings [30].

The main objective of the present study was to classify CCA samples according to
their species. CCA samples mainly contain organic and inorganic components including
collagen, proteins, amino acids, polysaccharides, trace elements, water, etc. [3]. We focused
on the application of a synergetic strategy to build robust classification models for brand
characterization of CCA collected from different pharmaceutical factories in China. LIBS
and NIR were fully investigated to offer atomic and molecular information on CCA sam-
ples. In this work, PLS-DA was chosen for model development based on LIBS and NIR
spectroscopy processed separately. Considering the potential comprehensive information
of CCA species provided by LIBS and NIR, a low-level data fusion strategy was also em-
ployed. After spectral pretreatment, two types of PLS-DA models were established, namely,
single models and data fusion models. Then, the classification performance of PLS-DA
models was evaluated by three statistical indicators such as total accuracy, sensitivity (Se),
and specificity (Sp) [31,32].

The methodology is found to be helpful for the quality control of CCA, and exhibits
the promise of addressing similar needs in other precious TCM products in the future.

2. Results and Discussion
2.1. Spectral Features of LIBS and NIR

The normalized LIBS spectra of the CCA sample is shown in Figure 1. The elemental
compositions of CCA were identified and marked according to the NIST (US, National
Institute of Standards and Technology) database [33]. LIBS spectra are quite complex due
to the emission of multi-elements from samples. The characteristic spectral lines of Ca, Na,
Mg, K, and Fe were observed in the CCA LIBS spectra. In addition, spectral lines of organic
compositions, such as C, N and O can also be observed, which are actually both from
CCA samples and the air. Additionally, some molecular spectra, such as C-N emissions
appear in the LIBS spectrum. While the C-N bands arise from the interaction of carbon with
atmospheric nitrogen. Selecting the appropriate characteristic spectra is significant to the
classification results. The 47 spectral lines including 13 elements and four C-N molecular
bands are summarized in Table 1 and chosen for further analysis.

Figure 1. The representative normalized LIBS spectrum of the CCA sample.
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Table 1. Selected spectral lines of LIBS Spectra.

Elements Wavelength (nm) Elements Wavelength (nm)

C 247.722 Ba 455.360, 493.385

Mg

279.422, 280.124,
285.085, 383.825
516.730, 517.270,

518.359

Fe 526.987

Si 288.031 Na 588.958, 589.551

Ca

315.866, 317.921,
370.621, 393.378
396.814, 422.639,
428.287, 430.226
442.643, 443.500,
445.444, 558.850

N 742.400, 744.294,
746.927

612.923, 616.233,
643.966, 646.212
649.394, 714.856,

720.259

Li 670.746

C-N 385.461, 386.105,
387.087, 388.302 H 656.309

Al 394.422, 396.096 K 766.515, 769.947
Sr 407.786, 421.500 O 777.216, 777.505

Figure 2 shows plots of the original NIR spectra of CCA samples. The major features
of the raw NIR spectra exhibit no distinct differences among different samples except
the transmittance (indirect reflecting the absorption intensity). The NIR spectra reflects
the organic molecules’ information containing molecular bonds, such as C-H, O-H, N-H,
etc [34]. Three characteristic absorption bands can be viewed at 5784 cm−1, 6650 cm−1,
8417 cm−1, which are abundant in the molecular structures of amino acids, peptides,
proteins, etc. In addition, the relatively slow absorption peak appeared at approximately
5151 cm−1, which may correspond to the frequency of the O–H bond in water molecules.
The NIR spectroscopy-based fingerprint contains complex attributes of the CCA samples
sufficiently, which are related to brand characterization.

Figure 2. NIR spectra of Ejiao samples.
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2.2. PLS-DA Model from LIBS Data

The PLS-DA model was built on a single LIBS data block using the selected variables
(listed in Table 2). When the number of LVs set as 11, the classification accuracy of the
PLS-DA model reached the max value. Hence, the optimal number of LVs was selected
as 11. Subsequently, the PLS-DA model was constructed to validate the training set and
predict the testing set. Figure 3 displays the classification result of the PLS-DA model
using the LIBS spectra. As can be seen from Figure 3, all samples are properly classified in
the training set while the DEEJ samples are misclassified as non-DEEJ samples and one
non-DEEJ sample is misclassified as a DEEJ sample in the testing set. The total accuracy
values of the PLS-DA model are 100% and 85.18% for different class samples in the training
set and the testing set, respectively. The sensitivity values of the PLS-DA model are 100%
and 91.67% for different class samples in the training and testing sets, while the specificity
values are 100% and 92.30% for different class samples, respectively. The misclassified
sample in the top right corner of Figure 3 was sample No. 74 (belonging to Shandong Fupai
Ejiao Co., Jinan, China, Ltd., listed in Table 2). We compared the LIBS spectra. It was found
that the LIBS spectra of non-DEEJ sample No. 74 was very similar to DEEJ sample No. 38
(listed in Table 2), which indicated that they have the same elemental compositions and
similar peaks intensity.

Table 2. Detailed information of all the CCA samples.

Sample No. Manufacturer

1–40 Shandong Dong’e Ejiao Co., Ltd. Liaocheng city, Shandong, China

41–48 Shandong Huaxin Pharmaceutical Group Co., Ltd. Heze city,
Shandong, China

49–61 Shandong Yanggu Guajing Ejiao factory Liaocheng city,
Shandong, China

62 Shandong Dong’a Xiuyuan Ejiao biological group Neihuang Ejiao
Pharmaceutical Co., Ltd. Anyang city, Henan, China

63 Shandong Jishui Ejiao Co., Ltd. Heze city, Shandong, China

64–65 Shandong Hongjitang Pharmaceutical Group Co., Ltd. Jinan city,
Shandong, China

66–72 Shandong Dong’e Guojiaotang Ejiao Pharmaceutical Co., Ltd.
Liaocheng city, Shandong, China

73–75 Shandong Fupai Ejiao Co., Ltd. Jinan city, Shandong, China

76–78 Shandong Yixiaotang Ejiao group Bainian Pharmaceutical Co.,
Ltd. Zaozhuang city, Shandong, China

Figure 3. The PLS-DA model using the LIBS spectra.
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2.3. PLS-DA Model from NIR Data

The performance of PLS-DA models for NIR spectra with different pretreatment
methods is shown in Table 3. The total accuracy values of the PLS-DA model based on raw
NIR spectroscopy are 100% and 88.89% for the training set and the testing set, respectively.
The sensitivity values of the PLS-DA model are 100% and 82.35% for different class samples,
while the specificity values are 100% both in the training set and testing set, respectively. As
shown in Figure 4, all samples are properly assigned in the training set but four Non-DEEJ
samples are incorrectly assigned as DEEJ samples in the testing set, which means that,
except for these four incorrectly classified samples, the model correctly predicted the class
of the other samples.

Table 3. The discrimination results of the PLS-DA model based on NIR spectra (in the region of
5500–9000 cm−1) by different preprocessing methods.

Pretreatment LVs
Training Set Testing Set

Se (%) Sp (%) Ta (%) Se (%) Sp (%) Ta (%)

Raw 7 100 100 100 93.33 100 96.3
MSC 10 100 100 100 100 100 100
SNV 7 100 100 100 100 92.86 96.3
SG9 9 100 100 100 82.35 100 88.89
1st d 6 100 100 100 92.86 92.31 96.3

Some preprocessing methods for the NIR data were compared, such as multiplicative scatter correction (MSC),
standard normal variate transformation (SNV), Savitzky–Golay smoothing with 9 points (SG9), and first derivative
(1st d).

Figure 4. The PLS-DA model using the raw NIR spectra.

Screening of specific NIR wavebands was employed to increase the classification
performance between DEEJ and Non-DEEJ samples. The screened wavebands include
5500–9000 cm−1, which might represent the special spectroscopic characteristic of the
discriminatory markers. The discrimination ability of PLS-DA models building with
original and different pretreatments of NIR spectra were computed and compared. As
shown in Table 3, all PLS-DA models constructed with NIR spectra show good prediction
performance. Meanwhile, the discrimination potential in the testing set is better than that in
the testing set. The PLS-DA model established by the raw NIR spectra exhibits satisfactory
performance. The total accuracy values are 100% and 96.3% for different class samples in
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the training set and in the testing set, respectively. The sensitivity values are 100% and
93.33% for different class samples in the training set and testing set, respectively, while
specificity values reach 100% for different class samples in the training set and in the testing
set, respectively. Theoretically, as might be expected, PLS-DA models built on the NIR data
by different data preprocessing methods can improve the discrimination. But the models
obtained by Savitzky-Golay smoothing (SG) and first derivative (1st d) pretreatment do
not show better performance than that of screened original NIR spectra.

Among all the discriminant models, the PLS-DA model with NIR spectra pretreated
by the multiplicative scatter correction (MSC) method offers perfect performance than
the others. When the optimal number of LVs set as 10, this PLS-DA model provides
correct classification for all samples both in the training and testing sets. The PLS-DA
discriminatory information of NIR spectra pretreated by the MSC method is shown in
Figure 5. Therefore, the MSC method is identified as the optimal pretreatment method for
NIR spectra. The capability of NIR spectroscopy for CCA authentication can attribute to
the differences in the amount of hydrogen bonds (C-H, O-H, and N-H) absorption for the
organic compounds presenting in CCA samples.

Figure 5. The PLS-DA model of NIR spectra pretreated by multiplicative scatter correction method.

2.4. PLS-DA Model from Data Fuion of LIBS and NIR

Data fusion is the integration of data blocks from different analytical technologies into
a single model [35,36]. Though, single LIBS or single NIR can provide good discrimination
ability. The low-level fusion strategy based on concatenating LIBS and NIR spectra was
also investigated in this work. The discrimination ability of PLS-DA models based on the
low-level fusion with different pretreatments is shown in Table 4. The total accuracy values
of PLS-DA models based on LIBS combined with the screened original NIR spectra are
98.04% and 96.30% for different class samples in the training set and testing set, respectively.
The sensitivity values are 96.15% and 93.33%, whereas specificity values are 96.15% and
100% for different class samples in the training sets and in the testing sets, respectively.
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Table 4. The discrimination results of the partial least squares-discriminant analysis models based on
low-level data fusion.

Pretreatment LVs
Training Set Testing Set

Se (%) Sp (%) Ta (%) Se (%) Sp (%) Ta (%)

Raw 7 96.15 96.15 98.04 93.33 100 96.3
MSC 11 100 100 100 100 100 100
SNV 10 100 100 100 100 100 100
SG9 13 100 100 100 82.35 100 88.89
1st d 7 100 100 100 93.33 100 96.3

Some preprocessing methods for the NIR data were compared, such as multiplicative scatter correction (MSC),
standard normal variate transformation (SNV), Savitzky-Golay smoothing with 9 points (SG9), and first derivatives
(1st d).

Taking the classification efficiency into account, SNV and MSC were the best data
preprocessing methods for discriminating DEEJ from Non-DEEJ, which can eliminate re-
dundant information and manifest differences among samples. When the optimal number
of LVs set as 10, the total accuracy values of the PLS-DA model based on low-level data fu-
sion with SNV data pretreatment reach 100% for different class samples both in the training
sets and testing sets. The sensitivity values and specificity values of the PLS-DA model are
100% for different class samples both in the training sets and testing sets. The data fusion
model also exhibits excellent discrimination performance with MSC data pretreatment.
When the optimal number of LVs set as 11, the total accuracy values, sensitivity values, and
specificity values all reach 100%, indicating no sample is misclassified.

3. Materials and Methods
3.1. Sample Preparation

Seventy-eight CCA samples were collected from different manufacturers in China,
including forty DEEJ samples and thirty-eight CCA samples from other factories called
Non-DEEJ. Sample storage may influence the CCA quality. As a drug, CCA was sealed
with a box. Thus, all samples were stored in a cool, dark area before analysis. The detailed
information on all CCA samples is listed in Table 1. Due to the solid and glossy surface of
CCA samples, no special sample preparation was performed in LIBS and NIR experiments.

3.2. Sample Measurement

The LIBS system used for CCA analysis comprises a Q-switched Nd: YAG laser
operating at 1064 nm with a pulses duration of 3–5 ns at a frequency of 2 Hz. Echelle
spectrometer (LTB, ARYELLE 150, Berlin, Germany) records the spectrum from 193 to
840 nm with an approximate resolution of 0.1 nm. The laser beam was focused on the
sample surface by a microscope objective lens system with an 80 mm focal length (Avantes
UV-74). The focused spot size on the target surface was about 100 µm in diameter. An
optical fiber was connected to the spectrometer with an intensified gated CCD camera (LTB
ARYELLE 200 and iStar from Andor Technology) to disperse and record the spectra. A
laser pulse energy of 40 mJ, a gate width of 100 µs, and a delay time of 0.6 µs resulted in
the maximum signal-to-noise ratio, then being selected for LIBS experiments. All LIBS
experiments were performed in ambient air. “LTB-Sophi” software was used to record the
emission spectrum of the species and extract analytical information. Four laser shots per
location of twelve sampling locations were collected and spectra averaged aiming to limit
the relative standard deviation of the peak-intensity ratios.

NIR spectra were collected by Antaris Nicolet FT-NIR system (Thermo Fisher Scien-
tific Inc., Waltham, MA, USA). All spectra were measured in integrating sphere diffuse
mode. Each spectrum was an average of 64 scans across the wavenumbers from 10,000 to
4000 cm−1 with a resolution of 4 cm−1 at ambient temperature. The spectra was recorded
as Log(1/R) using air as a reference.
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3.3. Spectral Pretreatment

The original LIBS spectra are often affected by various sources of interference from
light scattering, instrument noise, and background [27]. Thus, conventional minimum-
maximum normalization was employed to transform the original LIBS data to the range
of 0–1 [27]. The raw spectra acquired from the NIR spectrometer are often characterized
by baseline shift and unwanted spectral variation produced from light scattering effects,
variation in optical path length, random noise, sample matrix, and others. In order to
build a robust and stable model, data pretreatment must be taken prior to data analysis to
minimize interference of NIR spectra. Here, four basic NIR spectral pretreatment methods
were applied to reduce interference and optimize model performance, including standard
normal variate (SNV), multiplicative scatter correction (MSC), Savitzky-Golay smoothing
(SG), first derivative (1st d). Moreover, the optimal pretreatment method is selected by the
highest classification accuracy rule in both training and testing sets.

3.4. Multivariate Analysis and Latent Variable Analysis

The spectral preprocessing and model calculation steps were performed by the Un-
scrambler 9.7 software (CAMO software AS, Oslo, Norway) and homemade routines in
Matlab version R2009a with Statistical Toolbox. Partial least squares discriminant analysis
(PLS-DA) algorithm was investigated for a single data block or fusion block respectively.
To obtain robust multivariate calibration models, 78 samples were split into two sets of
training (calibration) and testing (validation) sets in a ratio of 2:1 by KennardStone (KS)
algorithm. Training set is used for building the model while the testing set is used for
assessing the robustness of the model [29]. Before PLS-DA, several pretreatments were
performed on LIBS and NIR spectra. It is generally known that the number of latent vari-
ables (LVs) is a critical parameter that is obtained from the evaluation of the class border
by Bayesian decision [30]. The optimal number of LVs for each model was determined by
10-fold cross-validation based on the highest classification accuracy. Then the optimized
model was used for the testing set. Besides total accuracy (Tc), sensitivity (Se) and speci-
ficity (Sp) were mainly computed to evaluate the performance of the established PLS-DA
model based on preprocessed data. Sensitivity, also called the true positive rate (TPR),
represents the positive correctly classified samples to the total number of positive samples
as in Equation (2). Whereas specificity, also called the true negative rate(TNR), is expressed
as the proportion of the correctly classified negative samples to the total number of negative
samples as in Equation (3).

The three evaluation parameters were calculated as follows:

Tc = (TP + TN)/(TP + FP + FN + TN) (1)

Se = TP/(TP + FN) (2)

Sp = TN/(FP + TN) (3)

where, TP and TN indicate the number of true positive samples and true negative samples,
respectively. While FP and FN indicate the number of false positive samples and false
negative samples. For each class, a positive sample means itself, and a negative sample
is the other class. The sensitivity corresponds to the model’s ability to correctly predict
the class of the samples, while specificity reflects its ability to incorrectly prediction of
samples from other classes [29]. Perfect discrimination of the PLS-DA model yields the
highest values of total accuracy, sensitivity, and specificity, indicating all samples are
successfully classified.

3.5. Data Fusion Strategy

Data fusion can produce more accurate information by integrating multiple comple-
mentary data sources. Basically, it can be categorized into three levels: low level, mid
level, and high level [37–39]. Low-level data fusion strategy was adopted in this work. The
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scheme of data analysis in this experiment is shown in Figure 6. To prepare for low-level
fusion, raw data from all CCA are straightforwardly concatenated into a new data ma-
trix. Before data concatenation, all variables were normalized to the same scale aimed at
rectifying the dimensional imbalance between raw data matrices.

Figure 6. The scheme of data analysis.

4. Conclusions

In this study, the feasibility of individual and combining information from LIBS and
NIR techniques was researched aiming to address brand discriminant of Ejiao. LIBS and
NIR spectroscopies bring atomic and molecular information of species. The discrimination
results of PLS-DA models showed that individual techniques had good performance at
authenticating brands of CCA. Especially, the PLS-DA model based on the single NIR data
pretreated with the MSC method achieved a perfect classification effect, and it obtained
100% correct classification of each class for all samples. A data fusion strategy was also
investigated for complementary information from two spectroscopic techniques. Data
fusion models based on LIBS and NIR with SNV and MSC pretreatment also show good
predictive ability. In general, the synergetic strategy of LIBS and NIR spectra demonstrated
the possibility of brand discrimination of Ejiao, and it can be used to provide a reliable
method for brand protection or geographical authenticity evaluation of TCM.
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