

Article Modeling Adsorption of CO₂ in Rutile Metallic Oxide Surfaces: Implications in CO₂ Catalysis

Rogelio Chávez-Rocha ¹, Itzel Mercado-Sánchez ¹, Ismael Vargas-Rodriguez ¹, Joseelyne Hernández-Lima ¹, Adán Bazán-Jiménez ¹, Juvencio Robles ² and Marco A. García-Revilla ¹,*¹

- ¹ Chemistry Department, Natural and Exact Sciences Division, University of Guanajuato, Noria Alta S/N, Guanajuato 36050, Mexico
- ² Pharmacy Department, Natural and Exact Sciences Division, University of Guanajuato, Noria Alta S/N, Guanajuato 36050, Mexico
- * Correspondence: magarcia@ugto.mx; Tel.: +52-473-732-00-06 (ext. 8120)

Abstract: CO₂ is the most abundant greenhouse gas, and for this reason, it is the main target for finding solutions to climatic change. A strategy of environmental remediation is the transformation of CO₂ to an aggregated value product to generate a carbon-neutral cycle. CO₂ reduction is a great challenge because of the large C=O dissociation energy, ~179 kcal/mol. Heterogeneous photocatalysis is a strategy to address this issue, where the adsorption process is the fundamental step. The focus of this work is the role of adsorption in CO₂ reduction by means of modeling the CO₂ adsorption in rutile metallic oxides (TiO₂, GeO₂, SnO₂, IrO₂ and PbO₂) using Density Functional Theory (DFT) and periodic DFT methods. The comparison of adsorption on different metal oxides forming the same type of crystal structure allowed us to observe the influence of the metal in the adsorption process. In the same way, we performed a comparison of the adsorption capability between two different surface planes, (001) and (110). Two CO₂ configurations were observed, linear and folded: the folded conformations were observed in TiO₂, GeO₂ and SnO₂, while the linear conformations were present in IrO_2 and PbO_2 . The largest adsorption efficiency was displayed by the (001) surface planes. The CO_2 linear and folded configurations were related to the interaction of the oxygen on the metallic surface with the adsorbate carbon, and the linear conformations were associated with the physisorption and folded configurations with chemisorption. TiO₂ was the material with the best performance for CO₂ interactions during the adsorption.

Keywords: metallic oxide; CO2 adsorption; environmental remediation; DFT calculations

1. Introduction

CO₂ is the most relevant greenhouse gas; the climatic change caused by high concentrations of this gas is related directly to human activity [1–3], and the impact of such climatic change is observed in the global economy and social wealth [4]. Several technological solutions were developed to reduce atmospheric emissions of CO₂ [5–7], for instance, the use of emission gases as raw materials for low contaminant technological processes. The transformation of CO₂ in aggregate-value products generates a carbon neutral cycle, which artificially reduces atmospheric emissions and relieves pressure on the traditional industry for energy production [8], considering the renewable production of combustibles. Nevertheless, a fundamental problem must be considered: CO₂ is a highly stable molecule due to its linear geometry and efficient reduction potential, -1.9 V [9]. In addition, the C=O bond holds a dissociation energy of ~179 kcal/mol, which is around twice the C-H and C-C dissociation energies displaying values of 430 and 335 kJ/mol, respectively [10]. The reduction of CO₂ is nonselective; depending on the reaction media and catalyzer, several chemical species are formed (CO, CH₄, CH₃OH, HCOOH, C₂H₆, C₂H₅OH) [11–13]. There are homogeneous and heterogeneous catalytic processes for CO₂

Citation: Chávez-Rocha, R.; Mercado-Sánchez, I.; Vargas-Rodriguez, I.; Hernández-Lima, J.; Bazán-Jiménez, A.; Robles, J.; García-Revilla, M.A. Modeling Adsorption of CO₂ in Rutile Metallic Oxide Surfaces: Implications in CO₂ Catalysis. *Molecules* **2023**, *28*, 1776. https://doi.org/10.3390/ molecules28041776

Academic Editor: Aurora Costales

Received: 30 December 2022 Revised: 7 February 2023 Accepted: 9 February 2023 Published: 13 February 2023

Copyright: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). reduction and activation [14–17]; nevertheless, heterogeneous catalysis has been proved to be more efficient and "clean" to obtain aggregate-value chemical species [18,19].

The synthesis of methane and methanol from CO_2 and water has attracted great attention from the clean energy industry because of the enormous potential for the sustainable production of fuels using solar energy [20,21]. CO_2 reduction mechanisms have been extensively studied in anatase and the rutile phases of TiO_2 [22–24], and those results indicated that reduction occurs with multiple intermediates, suggesting that the disturbed geometry of CO_2 during adsorption is the fundamental step for the reduction process. Another crucial factor is the efficiency of the catalyst, and relevant factors to consider are the charge separation displayed by the semiconductor [22,23] and the presence of water molecules during the process. The adsorption of water on the catalysts' surface causes H₂O dissociation [12,24–26], and such a process generates reactive species that are relevant in CO_2 catalysis [26].

There are reports of semiconductor metal oxides capable of reducing CO_2 in the presence of irradiation [24,27–31] despite the high reduction potential in the area that the reaction takes place. This indicates that the interaction between the CO_2 and the semiconductor surface decreases the activation energy. Several experiments reported the detection of adsorbed CO_2 , which displayed modified structures [32–36]. DFT studies have analyzed the interactions between CO_2 and different photocatalysts to study the role of adsorption on CO_2 reduction [23,37–46].

Effective adsorption and activation are key steps for CO_2 photoreduction [47], and adsorption models have been reported in the literature from kinetic and thermodynamic perspectives [48]. Therefore, the adsorption and subsequent activation of CO_2 on the surfaces of heterogeneous catalysts are both crucial for the reduction process and for the suppression of the Hydrogen Evolution Reaction (HER). Under this perspective, the interactions of the CO_2 molecule with the surface produce the formation of partially charged species ($CO_2^{\delta-}$). Besides the linearity of gaseous carbon dioxide and the absence of a permanent dipole momentum, each oxygen atom has free electronic pairs that attack metal centers behaving as Lewis's acids; therefore, the carbon atom is suitable to be attacked by a nucleophilic moiety. Considering these characteristics, CO₂ has several coordination points, and this provides the possibility of having multiple geometries associated with the adsorption of CO_2 on the surfaces of heterogeneous catalysts [37]. The morphology of the surface is relevant for the catalytic performance, and in addition, the adsorbed CO_2 geometries are determined by the surface-adsorbate interactions, and the main anchor points of CO₂ are the oxygen atoms. The preference of certain crystalline faces to adsorb CO_2 has been observed, and this is favored for those surfaces with a large number of exposed metal atoms [38,39].

DFT studies showed that the coordination geometry of the surface controls the arrangement of the active sites, usually displaying cation behavior [40–43]. However, it is evident that due to the CO₂ linearity, the possible adsorbed geometries are limited. Two adsorption configurations have been reported for CO₂: linear and bent. The former occurs selectively on surfaces of certain metal oxides such as TiO₂, CeO₂, ZnO, SnO₂ and CuO [41,42], while the latter is more common since it occurs on other metallic surfaces such as Au and Cu [41]. There is a third less common possibility in which a dissociation is carried out to M-CO and O-M during the CO₂ adsorption, and the latter has been studied in detail using DFT calculations in surface models of Fe-Ni bimetallic catalysts [44].

Photochemical activation requires an electron transfer from the surface to the adsorbed CO_2 molecule. The charge transfer from the metal to the CO_2 is related to the way in which the adsorbate is coordinated, and this is the fundamental step of photoreduction. Ab initio calculations showed that bidentate CO_2 adsorption on TiO₂-anatase formed a hybrid LUMO between the CO_2 orbitals and titanium *3d* orbitals. Such LUMO showed a decrease in energy compared with the LUMO of nonadsorbed CO_2 , which suggests that the adsorption favored the electronic transfer by the *3d* titanium orbitals to CO_2 [43]. This ability to donate charge has also been studied and detected in TiO₂ brookite models [45].

Surface defects are among the most reactive sites, and these sites experience electron density accumulation and change the surface reactivity properties. It has been proposed that oxygen vacancies play a vital role in several surface reactions [49], and those vacancies are particularly relevant in the adsorption and activation of CO_2 . Surface defects can promote higher-energy species during CO_2 adsorption compared with perfect surfaces, although the defects are able to stabilize anionic CO_2 [43]. Ab initio modeling has highlighted the importance of crystal defects for the description of adsorption and surface–adsorbate charge transfer for TiO₂ models (brookite and anatase). Even so, it must be considered that perfect surfaces display similar adsorption properties to those with vacancies, at least regarding CO_2 adsorption [23,45,46].

In this work, DFT studies were carried out on CO_2 adsorption models on rutile-type structures from diverse metal oxides. We used one type of polymorph (rutile) to evince the cation's role in adsorption, and we investigated the cation effect by comparing the adsorbed conformations and the cation effect in the adsorption energy. Additionally, we tested the adsorption in two different surfaces generated from two different lattice planes (001) and (110) to find the plane with the largest adsorption capability. Furthermore, we modeled the dissociative adsorption of water on these surfaces to analyze the competition for active sites with CO_2 , and finally, the formation of catalytic reactive species is proposed.

2. Methodology

We designed finite models of different metal oxide (MO) surfaces with rutile-like crystal structures. All of them were based on the structure reported in the crystallographic data banks followed by a geometry optimization; then, surface plane modeling was performed based on the Miller indices (001) and (110). The modeled MO surfaces were TiO_2 , GeO_2 , SnO_2 , PbO₂ and IrO₂. In the case of TiO₂, the anatase surfaces were also modeled based on the (001) and (110) Miller indices. Molecules of CO_2 and H_2O (in individual systems) that were previously optimized were added to the models. Subsequently, the geometry optimization of the entire system was carried out, and the lowest energy configuration was obtained. Modeling was performed using the ADF (Amsterdam Density Functional) computational package [50–52] and its supplement for periodic systems BAND [53–56] in version adf2014.01. The MO optimizations and adsorption modeling were performed using a TZP basis set with the PBEsol [57] functional with the D3 Grimme dispersion correction [58], which is a modification of the PBE functional [59] designed to obtain an improvement in the equilibrium properties of solids in bulk and surface systems [60]. The PBE functional was successfully used to study CO2 adsorption in metal oxide systems [40–43]. The adsorbates were previously optimized with a B3LYP/TZP level [61,62]. The ZORA pseudopotential [63–66] was used for relativistic corrections on the metals. The atomic charges were computed using the Hirshfeld scheme [67]. For details, see the supporting information (SI).

To build the surface of the finite models, we used the bulk structure of the metal oxide as the starting point and the crystallographic parameters available in the BAND software databank. The bulk structure was optimized using BAND software with the PBEsol-D3/TZP level of theory. Finally, the surface planes were obtained from Miller's indices (001) and (110) using BAND to build the slabs. The adsorbates were individually optimized using the B3LYP/TZP level of theory. Afterwards, an optimized adsorbate slab was generated and then used to perform optimizations over the optimized solid bulk surface slab, and the initial distance between the adsorbate molecules and metallic center surfaces was 5 Å. Different initial adsorbate orientations were tested which resulted in similar optimized geometries, and the conformations with the lowest energy were used to perform the analysis. For details, see the Supplementary Materials.

3. Results

3.1. CO₂ Adsorption on TiO₂ Surfaces

TiO₂ belongs to the most studied substances related to the catalytic photoreduction of greenhouse gases due to its excellent photocatalytic properties. For this reason, we modeled the adsorption of CO_2 on rutile and anatase phases, which are the most relevant phases for adsorption purposes [14]. Our results showed that both phases displayed an attractive interaction with CO₂, and Figure 1 shows the optimized geometries for both studied phases for the rutile (001) and (110) planes and for the anatase (001) and (101) planes. The adsorbate geometry was bent in the rutile; meanwhile, in the anatase, the adsorbate geometry maintained its linearity. During the optimization, CO_2 displayed a perpendicular orientation to the metallic surface; for this reason, an adsorbate oxygen atom (O_A) approached directly to a surface titanium atom (*Ti*). At this stage of the optimization, the adsorption process differed for each phase. In the case of rutile, a second interaction appeared between the carbon and a surface oxygen (O_5) , and therefore the CO₂ was bent; meanwhile, for the anatase, such an interaction and bending was not observed, and such results were the same for any plane (see Figure 2). The observed CO_2 bent geometry in rutile is indicative of the capability to generate reactive species of CO₂ during adsorption on the exposed surfaces.

Figure 1. Optimized geometries for the adsorption models over the crystalline phases of TiO_2 : **top:** (001) and (110) rutile planes; **bottom**: (001) and (101) anatase planes. Atomic representations: titanium atoms as white spheres, oxygen atoms as red spheres and carbon atoms as dark gray spheres.

Figure 2. Representation of CO_2 adsorption on TiO_2 on rutile (**right**) and anatase (**left**). Atoms are labeled as follows: O_A is the oxygen atom of CO_2 which displays the first interaction with the surface; O_B is the second oxygen atom of CO_2 ; O_S is the metallic oxide oxygen; M1 is the metallic center.

The differences in the CO₂ adsorbed structures, depending on the TiO₂ phases, suggest that the capability of the surface to interact with the adsorbate is related to the phase topology. For the case of the (110) rutile plane, there was an oxygen out of the surface, which was the responsible of the interaction $C-O_S$, denoted by the yellow oval on top of Figure 3. Additionally, rutile (001) displayed cavities between the connected layers and the alternation of the metallic atoms' positions; consequently, there were regions with oxygens connecting layers that were capable of performing the $C-O_S$ interaction, as depicted by the blue oval on top of Figure 3. Nevertheless, the anatase (101) and (001) planes were flat surfaces without relevant cavities or prominences, and this situation reduced the exposition of the O_S to have an interaction with the CO₂ carbon.

3.2. CO₂ Adsorption on SnO₂, GeO₂, PbO₂ and IrO₂ Rutile-Type Surfaces

The effect of the metallic cation on rutile-type surfaces on CO₂ adsorption is a relevant issue to consider, and for this reason, we modeled the adsorption of CO₂ on GeO₂, SnO₂, IrO₂ and PbO₂ rutile-type surfaces; the result of the optimization of CO₂ over these surfaces is displayed in Figure 4. As in the case of TiO₂, an attractive adsorbate–surface interaction was observed, displaying bended CO₂ for the case of the GeO₂ and SnO₂ surfaces, and linear geometry for IrO₂ and PbO₂. Such behavior is apparently related to the weight of the metallic cation, as the surfaces with lighter metallic cations (GeO₂and SnO₂) displayed bended CO₂ geometries and surfaces with heavier metallic cations (IrO₂ and PbO₂) displayed linear CO₂ geometries. So, additionally to the topology of the metallic oxide surface, the size of the metallic cation must be considered for CO₂ catalytic purposes. Larger sizes of metallic atoms (*M1*) sterically block accessibility to *O₅* and neglect the possibility of a C–*O₅* effective interaction, which is the critic step of the effective CO₂ adsorption for catalytic purposes.

Figure 3. Representation of rutile (**top**) and anatase (**bottom**) studied planes. Regions top of the plane in yellow ovals and regions below of the plane in blue ovals. Titanium atoms are depicted as blue spheres and oxygen as red spheres.

Figure 4. Optimized geometries for GeO₂, SnO₂, IrO₂ and PbO₂ rutile-type surfaces on (001) and (001) planes. Metallic cations are shown as large orange spheres, oxygen atoms as red spheres and carbons as dark grey spheres.

The adsorption energy is relevant when classifying a process as chemisorption or physisorption because weak intermolecular forces (van der Waals) are related with physisorption; meanwhile, chemisorption involves a structural transformation and formation (or elimination) of chemical bonds. Our criterion for the classification of adsorption is combining the energetic and structural values, whereby the largest adsorption energies with relevant structural changes in adsorbates are related to chemisorption; meanwhile, the lowest adsorption energies with an absence of structural changes are related to physisorption. The calculated values for the adsorption energies per CO₂ molecule are displayed in Table 1. For the case of the (001) plane, a large interaction energy was displayed for the bended CO₂ structures on TiO₂, GeO₂ and SnO₂, followed by a less energetic adsorption for the linear CO_2 structures on IrO_2 and PbO_2 . A similar behavior was displayed for the (110) TiO₂ and GeO₂ planes, displaying the largest adsorption energies for the bended CO₂ structures. However, the SnO₂ and PbO₂ showed similar adsorption energies displaying different CO₂ adsorbed geometries, bended for SnO₂ and linear for PbO₂. The values of adsorption on the (001) planes were larger than those displayed by the (110) planes in general, except for the PbO_2 . In Table 2, some geometric parameters are displayed for the different adsorption geometries. It is evident that the distances $M1-O_A$ and $C-O_S$ were larger for the (110) planes in general, except for PbO_2 and TiO_2 . A larger interaction distance was related to a weaker interaction, with the consequence of a lower interaction energy and less bending effect for the CO_2 geometry. Therefore, the displayed adsorption energy for the exceptional case of PbO_2 was related to the M1- O_A distance, which was smaller for the (110) plane, which caused a larger adsorption energy.

Table 1. Adsorption CO₂ energies for TiO₂, GeO₂, SnO₂, IrO₂ and PbO₂ on (001) and (110) planes.

Oxide	Plane (001) (kcal/mol)	Plane (110) (kcal/mol)
TiO ₂	-44.420	-30.450
GeO ₂	-33.447	-19.540
SnO ₂	-48.242	-17.113
IrO ₂	-7.249	-4.671
PbO ₂	-1.982	-9.663

Oxide	Angle O-C-O	Distance C-O _A (Å)	Distance C-O _B (Å)	Distance C-O _S (Å)	Distance M-O _A (Å)
TiO ₂ (001)	129.1	1.27	1.24	1.39	2.08
TiO ₂ (110)	129.2	1.31	1.19	1.60	2.01
GeO ₂ (001)	128.8	1.35	1.19	1.44	1.82
GeO ₂ (110)	142.9	1.25	1.17	1.94	2.06
SnO ₂ (001)	125.8	1.29	1.24	1.40	2.09
SnO ₂ (110)	136.3	1.27	1.19	1.74	2.24
IrO ₂ (001)	178.9	1.18	1.17	2.98	2.64
IrO ₂ (110)	178.6	1.17	1.17	2.89	3.12
PbO ₂ (001)	179.6	1.17	1.17	4.25	3.30
PbO ₂ (110)	173.9	1.18	1.17	2.69	2.78

Table 2. Distances and angles of the adsorption geometries for TiO₂, GeO₂, SnO₂, IrO₂ and PbO₂.

The graph in Figure 5 shows the values of the adsorption energy against the bond distance M1–O_A. On the left side of the graph, the presence of lighter metal oxides is observed, which shows that the shorter the bond distance, the greater the adsorption energy. This is consistent with the nature of this interaction, which is a Lewis acid–base reaction. Similarly, Figure 6 shows the adsorption energy graph against the change in angle of CO₂. Again, there was a correspondence between the highest adsorption energies with the highest degree of modification in the structure of CO₂. This suggests that both the first (M1–O_A) and the second interactions (C₁–O_S) were the largest contributors to the adsorption energy. Our results suggest that chemisorption was observed for both planes of TiO₂, GeO₂ and SnO₂, while physisorption was observed for both planes of IrO₂ and for PbO₂. Physisorption was related to the linear CO₂ adsorbed geometries in general, and the bended CO₂ adsorbed geometries were related to chemisorption, which is the expected behavior for a material with CO₂ catalytic properties.

Figure 5. Relation between adsorption energy and M1-O_A distance for TiO_2 , GeO_2 , SnO_2 , IrO_2 and PbO₂. (001) planes are blue dots and (110) planes are red dots.

Figure 6. Relation between adsorption energy and CO₂ angle for TiO₂, GeO₂, SnO₂, IrO₂ and PbO₂. (001) planes are blue dots and (110) planes are red dots.

The strength of the adsorption of a molecule depends on the surface energy, which can be defined as the increase in the energy of the crystalline structure because of the generation of a surface, whereby an asymmetric environment is therefore produced. The bonding energies of the metallic oxides were calculated and are shown in Table 3, and such energies can be considered the relative surface energies because all the calculated metallic oxides held the same molecular structure and shared the number and type of dangling bonds. The results in Table 3 indicate that the (110) surfaces held larger negative energies that the (001) ones, which agree with the previous discussion on the chemisorption/physisorption properties of such planes. There was a trend observed by the elements of the 14(IVA) group whereby the binding energy increased with the period. Nonetheless, the transition metals did not follow the trend; the Ir surface should have displayed a larger binding energy than Ge and Sn surfaces because it is a heavier atom, but the Ir surface displayed lower binding energies than the Ge and Sn ones. This behavior was rationalized from the coordination sphere perspective. For the case of rutile, each cation was coordinated with six oxygen atoms and an octahedral geometry was obtained, isolating this six-coordinated system from the crystal. The combination of the *s*, *p* and *d* orbitals generated d^2sp^3 orbitals for the transition metals and sp^3d^2 orbitals for the IVA group elements; therefore, the different electronic configurations for Ti and Ir displayed the same crystal arrangement. Additionally, for the case of the IVA group, the *d* orbitals participating in hybridization displayed the same n quantum number as the s and p orbitals. Meanwhile, the transition metal d orbitals were in a lower *n*-1 level than the *s* and *p* orbitals; for this reason, the generated hybrid orbitals of the IVA group were higher in energy than those at an *n-1* level, and therefore, the IVA group surfaces displayed higher binding energies. The surface energy is a useful descriptor of the adsorption capability of a material; nevertheless, it is evident that the characterization of the interaction between the metallic cation and the adsorbed molecule is a relevant issue to consider.

Oxides	E _B (001) kcal /mol	E _B (110) kcal /mol
TiO ₂	-182.42	-186.33
GeO ₂	-128.66	-139.57
SnO ₂	-121.73	-131.80
IrO ₂	-149.97	-162.54
PbO ₂	-106.52	-112.86

Table 3. Bonding energies for (001) and (110) planes of TiO₂, GeO₂, SnO₂, IrO₂ and PbO₂.

3.3. Charge Redistribution and Effects over CO₂

The redistribution of the charge density can be approximated by the analysis of the Hirshfeld atomic charges for the adsorption process. The change in atomic charges (AC) can be used as a measure of the charge transference during the adsorption process. In Figures 6 and 7, the changes in charges for planes (001) and (110) are listed, as well as the metallic center (M1), the neighbored metallic atom (M2), the surface oxygen (O_S) and the adsorbate oxygens (O_A) and (O_B). In Figure 8 we show a model of the charge redistribution based on the data in Figures 6 and 7. Each CO₂ adsorption conformation, bent or linear, displayed different charge redistribution mechanisms. In the case of the CO₂ bent geometries, there were three regions where the change was larger than in the rest of the surface oxygen (O_S), which bent the adsorbate through a second interaction with the adsorbate; and the CO₂ carbon atom (C_1), because of such a second interaction. In the case of linear geometries, the relevant charge transference was observed between O_A and the metallic cation M1.

Figure 8. Atomic charge change for plane (110).

For the CO₂ bent geometries on plane (001), the initial interaction generated an electron density gain for M1, followed by a charge transference to the neighbored surface oxygens, labeled as O_3 and O_4 in Figure 9. Then, the attack of Os on the CO_2 carbon generated a charge transference from O_S to C_1 . For the case of TiO₂, the large charge gain was due to the largest CO₂ deformation, which produced a large charge delocalization of ¶ electrons of CO_2 . Regarding the CO_2 bent geometries in plane (001), a similar situation was observed; a gain in the electronic charge of M1 followed by a charge transference to O_3 and O_4 , and then Os attacked the CO_2 carbon. However, in this case, a large charge donation of the metallic cation M_2 to O_S was observed. Along the series, the charge gaining of atom M1 was diminished and the transference to the adsorbate carbon was increased. For CO₂ linear geometries in planes (001), the relevant charge transference was observed between the adsorbate oxygen (O_A) and the metallic cation (M1). Meanwhile, for the linear geometries in the (110) plane, the charge transference of IrO_2 to M1 was negligible, followed by a small charge change in the O_A . Nevertheless, for PbO₂, a significant charge gain was displayed for M1 obtained from O_A . This analysis showed the relevance of the study on AC redistribution along the adsorption process.

Figure 9. Mechanism of atomic charge redistribution for plane (001) left and (110) right.

The relevance of the adsorption in catalytic processes is to diminish the activation energy to reduce the CO_2 molecule. To quantify how bent CO_2 structures are less stable than linear ones, we performed calculation of single points of isolated molecules from the geometries of the generated species along the adsorption process. In addition, relative energies were calculated using the formula $\Delta = E_{linear} - E_{adsorbed}$, where E_{linear} is the energy of the linear-isolated CO_2 structure and $E_{adsorbed}$ is the energy of the isolated CO_2 molecule, using the adsorbed geometry, Table 4. It is evident that the energies of the bent structures (from TiO_2 , GeO_2 and SnO_2 oxides) were larger than the linear species (from IrO_2 and PbO_2 oxides). Additionally, the relative energies shown in Table 4 displayed a similar behavior to the adsorption energies, whereby the species generated by the (001) plane were less stable than the (110) plane ones in general. TiO_2 displayed the lowest difference in the relative energy between planes. There was a significant difference between the planes for the case of GeO_2 and SnO_2 , showing values of 37 and 25 kcal/mol, respectively. The IrO_2 and PbO_2 oxides displayed significant small values of relative energy; therefore, the adsorbed species on these surfaces displayed a large degree of stability. The electron affinity (EA) can be used to approximate the reduction potential using empirical parameters [68–70]. For this reason, we calculated EA using the expression $EA = E_{anion} - E_{neutral}$, where E_{anion} is the energy of the anionic molecule and $E_{neutral}$ is the energy of the neutral molecule. We used the geometry of the adsorbed species and the geometry of the linear CO_2 molecule as the reference. A comparison of the EA with the relative energies (D) and with the O-C-O angles showed that the large D was related to the large EA and had smaller O-C-O angles, which suggests the correlation between CO₂ bending and the surface reduction capability.

Table 4. Relative energy (D) of CO₂ species generated during adsorption; electron affinities (EA) of adsorbed CO₂ molecules. The linear CO₂ molecule display EA of -4.19 eV.

Oxide	(001) D (kcal/mol)	(110) D (kcal/mol)	(001) EA (eV)	(110) EA (eV)
TiO ₂	57.433	59.433	1.28	1.20
GeO ₂	66.058	29.763	1.33	-0.16
SnO_2	66.182	41.964	1.57	0.55
IrO ₂	0.596	0.607	-3.89	-3.88
PbO ₂	0.232	1.177	-4.00	-3.51

3.4. Water Molecules Dissociation

The phenomenon of the adsorption of water molecules is important for several reasons. Water is a relevant substance in atmosphere phenomena as it plays a fundamental role in photocatalysis and electrochemistry on metal oxides and aqueous interfaces [71–73]. Several studies have shown that water molecules are completely dissociated on the surface of some metal oxides, generating hydroxylated surfaces [71,74–77]. TiO₂ and SnO₂ rutile are capable of dissociating H₂O [32,74,78]. The (110) plane adsorbs H₂O in a dissociative manner and the proton is attached to one of the bridge oxygens of the surface while the hydroxyl is attached to the metal center [79]. Water molecular adsorption is possible through hydrogen bond formation with OH groups; nevertheless, it makes it difficult to estimate the dissociation energy from experimental results. Gercher and Cox [78] used thermal desorption on surfaces. Their results showed that water is absorbed in a dissociative conformation on a perfect surface; this fact was attributed to a peak at 435 K in the desorption spectrum, and peaks at 200 and 300 K were also attributed to molecular water desorption.

We performed H_2O adsorption processes over TiO_2 , GeO_2 and SnO_2 surfaces, and we did not consider IrO_2 and PbO_2 because these oxides display low adsorbate affinity. The adsorption models are displayed in Figure 10. The active site was the same as in the case of CO_2 adsorption and similar processes occurred during H_2O adsorption; there were two surface interactions that formed M1-OH and O_S -H, and this observation agreed with the results reported by Lindan [79]. The surface dissociation energies of the water molecules dissociating into metal oxides are shown in Table 5; our values were larger than those reported in previous studies [71,79,80], in which the dissociation of H₂O on SnO₂ and TiO2 (001) displayed values around -40 kcal/mol. Table 5 shows that the process of H₂O surface dissociation was preferred over the adsorption of CO₂, considering that H-OH bond breaking took place. The study of the processes that occur after surface H₂O dissociation is needed to consider what the probable reactive species for CO₂ catalysis are. A relevant question must be addressed: is there a chance of liberation of H and OH as free radicals? Or do these species stay on the surface? To obtain a close connection with the experimental conditions of photocatalysis, adsorbates mixes must be modeled (H₂O and CO₂) on surfaces together with a characterization of vertical excitations, excited states relaxation and electromagnetic emissions. This study will be addressed in future work.

Figure 10. H_2O adsorption–dissociation geometries for TiO₂, GeO₂ and SnO₂ surfaces in planes (001) and (110). Oxygen are red spheres, metals are large gray spheres and hydrogen are small white spheres.

Table 5. H_2O surface dissociation energies in TiO₂, GeO₂ and SnO₂ oxides for (001) and (110) planes.

Oxide	E _D (001) (kcal/mol)	E _D (110) (kcal/mol)
TiO ₂	-31.508	-71.164
SnO ₂	-60.094	-56.541
GeO ₂	-62.578	-57.525

4. Conclusions

The results showed two adsorbate geometries for CO_2 adsorption on rutile and anatase surfaces: one of them was a bended structure and the second one was linear. The observation of one of these geometries depended on the interaction between a surface oxygen and the carbon atom of adsorbate (C-Os) as this interaction was responsible for the CO_2 bending. The main difference between the adsorption behavior of the TiO₂ phases was the availability of the surface oxygens to interact with the adsorbate. Additionally, the surface topology was relevant to perform secondary interactions with adsorbates. The studied oxides (TiO₂, GeO₂, SnO₂, IrO₂ and PbO₂) were capable of adsorbing CO₂; nevertheless, the lighter oxides, TiO_2 , GeO_2 and SnO_2 , bent CO_2 during adsorption. Meanwhile, the heaviest oxides (IrO₂ and PbO₂) maintained a linear CO₂ geometry. Chemisorption was observed for both planes of TiO_2 , GeO_2 and SnO_2 , while physisorption was observed for both planes of IrO_2 and PbO_2 . Therefore, the size of the metallic cation was relevant to the final adsorbed geometries. The planes (001) displayed the largest CO_2 affinities compared with the (110) planes. Additionally, the bent CO_2 geometries were related to chemisorption processes, lower CO₂ stability and a large positive and therefore a positive reduction potential. Finally, it was found that the water molecules dissociated during the adsorption process on the TiO_2 , GeO_2 and SnO_2 surfaces, displaying the same active sites as in the case of CO_2 adsorption, whereby the M1-O-H and O_S -H species were observed in the adsorbed H_2O . These reactive species with bent CO_2 geometries suggested the generation of multiple secondary products that will be studied in future work.

Supplementary Materials: The following supporting information can be downloaded at: https: //www.mdpi.com/article/10.3390/molecules28041776/s1, Figure S1: Scheme of models formation; Coordinates of adsorption models.

Author Contributions: Conceptualization, M.A.G.-R. and R.C.-R.; methodology, M.A.G.-R. and R.C.-R.; software, A.B.-J.; hardware, A.B.-J.; validation, J.R., I.M.-S., I.V.-R. and J.H.-L.; formal analysis, I.M.-S.; investigation, I.V.-R.; resources, J.H.-L.; data curation, I.M.-S.; writing—original draft preparation, R.C.-R.; writing—review and editing, M.A.G.-R., J.R. and R.C.-R.; visualization, I.V.-R. and J.H.-L.; supervision, M.A.G.-R. and J.R.; project administration, M.A.G.-R.; funding acquisition, A.B.-J. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by CONACYT for R.C.-R., grant number CVU: 1020083, and J.H-L., CVU: 270750.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The National Laboratory UG-UAA-CONACYT (316011) is acknowledged for providing the supercomputing resources. R.C.-R. and J.-H.-L. acknowledge CONACYT for providing their scholarships (1020083 and 270750). Paulina Lozano-Sotomayor and Lilia Bernabé are acknowledged for revising the language of the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

- Le Quéré, C.; Takahashi, T.; Buitenhuis, E.T.; Rödenbeck, C.; Sutherland, S.C. Impact of climate change and variability on the global oceanic sink of CO₂. *Glob. Biogeochem. Cycles* 2010, 24, 1–10. [CrossRef]
- Hao, Y.; Chen, H.; Wei, Y.-M.; Li, Y.-M. The influence of climate change on CO2 (carbon dioxide) emissions: An empirical estimation based on Chinese provincial panel data. J. Clean. Prod. 2016, 131, 667–677. [CrossRef]
- 3. Shine Keith, P.; Sturges William, T. CO₂ Is Not the Only Gas. *Science* 2007, 315, 1804–1805. [CrossRef] [PubMed]
- 4. Dellink, R.; Lanzi, E.; Chateau, J. The Sectoral and Regional Economic Consequences of Climate Change to 2060. *Environ. Resour. Econ.* **2019**, *72*, 309–363. [CrossRef]
- Socolow, R.; Hotinski, R.; Greenblatt, J.B.; Pacala, S. Solving the Climate Problem: Technologies Available to Curb CO₂ Emissions. Environ. Sci. Policy Sustain. Dev. 2004, 46, 8–19. [CrossRef]
- Steinberg, M.; Cheng, H.C. Advanced technologies for reduced CO₂ emissions. In Proceedings of the Annual Meeting of Air Pollution Control Association, Dallas, TX, USA, 19–24 June 1988.
- Ward, H.; Radebach, A.; Vierhaus, I.; Fügenschuh, A.; Steckel, J.C. Reducing global CO₂ emissions with the technologies we have. *Resour. Energy Econ.* 2017, 49, 201–217. [CrossRef]

- 8. Olah, G.A.; Prakash, G.K.S.; Goeppert, A. Anthropogenic Chemical Carbon Cycle for a Sustainable Future. *J. Am. Chem. Soc.* 2011, 133, 12881–12898. [CrossRef]
- Surdhar, P.S.; Mezyk, S.P.; Armstrong, D.A. Reduction potential of the carboxyl radical anion in aqueous solutions. *J. Phys. Chem.* 1989, 93, 3360–3363. [CrossRef]
- Xie, S.; Zhang, Q.; Liu, G.; Wang, Y. Photocatalytic and photoelectrocatalytic reduction of CO₂ using heterogeneous catalysts with controlled nanostructures. *Chem. Commun.* 2016, *52*, 35–59. [CrossRef]
- 11. Chang, X.; Wang, T.; Gong, J. CO₂ photo-reduction: Insights into CO₂ activation and reaction on surfaces of photocatalysts. *Energy Environ. Sci.* **2016**, *9*, 2177–2196. [CrossRef]
- 12. Habisreutinger, S.N.; Schmidt-Mende, L.; Stolarczyk, J.K. Photocatalytic Reduction of CO₂ on TiO₂ and Other Semiconductors. *Angew. Chem. Int. Ed.* **2013**, *52*, 7372–7408. [CrossRef]
- Chen, Y.; Wang, D.; Deng, X.; Li, Z. Metal–organic frameworks (MOFs) for photocatalytic CO₂ reduction. *Catal. Sci. Technol.* 2017, 7, 4893–4904. [CrossRef]
- Abdullah, H.; Khan, M.M.R.; Ong, H.R.; Yaakob, Z. Modified TiO₂ photocatalyst for CO₂ photocatalytic reduction: An overview. J. CO2 Util. 2017, 22, 15–32. [CrossRef]
- 15. Gao, Y.; Wang, H.; Wu, J.; Zhao, R.; Lu, Y.; Xin, B. Controlled facile synthesis and photocatalytic activity of ultrafine high crystallinity TiO2 nanocrystals with tunable anatase/rutile ratios. *Appl. Surf. Sci.* **2014**, *294*, 36–41. [CrossRef]
- 16. Zhao, H.; Liu, L.; Andino, J.M.; Li, Y. Bicrystalline TiO₂ with controllable anatase–brookite phase content for enhanced CO₂ photoreduction to fuels. *J. Mater. Chem. A* **2013**, *1*, 8209–8216. [CrossRef]
- 17. Li, X.; Yu, J.; Jaroniec, M.; Chen, X. Cocatalysts for Selective Photoreduction of CO₂ into Solar Fuels. *Chem. Rev.* **2019**, *119*, 3962–4179. [CrossRef] [PubMed]
- Guil-López, R.; Mota, N.; Llorente, J.; Millán, E.; Pawelec, B.; Fierro, J.L.G.; Navarro, R.M. Methanol Synthesis from CO₂: A Review of the Latest Developments in Heterogeneous Catalysis. *Materials* 2019, *12*, 3902. [CrossRef]
- 19. Handoko, A.D.; Li, K.; Tang, J. Recent progress in artificial photosynthesis: CO₂ photoreduction to valuable chemicals in a heterogeneous system. *Curr. Opin. Chem. Eng.* **2013**, *2*, 200–206. [CrossRef]
- Centi, G.; Perathoner, S. Opportunities and prospects in the chemical recycling of carbon dioxide to fuels. *Catal. Today* 2009, 148, 191–205. [CrossRef]
- 21. Omae, I. Aspects of carbon dioxide utilization. Catal. Today 2006, 115, 33–52. [CrossRef]
- Ji, Y.; Luo, Y. Theoretical Study on the Mechanism of Photoreduction of CO₂ to CH4 on the Anatase TiO₂(101) Surface. ACS Catal. 2016, 6, 2018–2025. [CrossRef]
- 23. Pipornpong, W.; Wanbayor, R.; Ruangpornvisuti, V. Adsorption CO₂ on the perfect and oxygen vacancy defect surfaces of anatase TiO₂ and its photocatalytic mechanism of conversion to CO. *Appl. Surf. Sci.* **2011**, 257, 10322–10328. [CrossRef]
- Anpo, M.; Yamashita, H.; Ichihashi, Y.; Ehara, S. Photocatalytic reduction of CO₂ with H₂O on various titanium oxide catalysts. *J. Electroanal. Chem.* 1995, 396, 21–26. [CrossRef]
- 25. Liu, L.; Zhao, H.; Andino, J.M.; Li, Y. Photocatalytic CO₂ Reduction with H₂O on TiO₂ Nanocrystals: Comparison of Anatase, Rutile, and Brookite Polymorphs and Exploration of Surface Chemistry. *ACS Catal.* **2012**, *2*, 1817–1828. [CrossRef]
- Umezawa, N.; Kristoffersen, H.H.; Vilhelmsen, L.B.; Hammer, B. Reduction of CO₂ with Water on Pt-Loaded Rutile TiO₂(110) Modeled with Density Functional Theory. J. Phys. Chem. C 2016, 120, 9160–9164. [CrossRef]
- 27. Matsumoto, Y. Energy Positions of Oxide Semiconductors and Photocatalysis with Iron Complex Oxides. J. Solid State Chem. 1996, 126, 227–234. [CrossRef]
- Peng, C.; Reid, G.; Wang, H.; Hu, P. Perspective: Photocatalytic reduction of CO₂ to solar fuels over semiconductors. J. Chem. Phys. 2017, 147, 030901. [CrossRef]
- 29. Dhakshinamoorthy, A.; Navalon, S.; Corma, A.; Garcia, H. Photocatalytic CO₂ reduction by TiO₂ and related titanium containing solids. *Energy Environ. Sci.* **2012**, *5*, 9217–9233. [CrossRef]
- Wu, H.-L.; Li, X.-B.; Tung, C.-H.; Wu, L.-Z. Semiconductor Quantum Dots: An Emerging Candidate for CO₂ Photoreduction. *Adv. Mater.* 2019, *31*, 1900709. [CrossRef]
- Yan, Y.-I.; Fang, Q.-J.; Pan, J.-k.; Yang, J.; Zhang, L.-I.; Zhang, W.; Zhuang, G.-I.; Zhong, X.; Deng, S.-w.; Wang, J.-g. Efficient photocatalytic reduction of CO₂ using Fe-based covalent triazine frameworks decorated with in situ grown ZnFe₂O₄ nanoparticles. *Chem. Eng. J.* 2021, 408, 127358. [CrossRef]
- 32. Krischok, S.; Höfft, O.; Kempter, V. The chemisorption of H₂O and CO₂ on TiO₂ surfaces: Studies with MIES and UPS (HeI/II). *Surf. Sci.* **2002**, *507–510*, 69–73. [CrossRef]
- Liang, L.; Ling, P.; Li, Y.; Li, L.; Liu, J.; Luo, Q.; Zhang, H.; Xu, Q.; Pan, Y.; Zhu, J.; et al. Atmospheric CO₂ capture and photofixation to near-unity CO by Ti³⁺-Vo-Ti³⁺ sites confined in TiO₂ ultrathin layers. *Sci. China Chem.* 2021, *64*, 953–958. [CrossRef]
- Sorescu, D.C.; Al-Saidi, W.A.; Jordan, K.D. CO₂ adsorption on TiO₂(101) anatase: A dispersion-corrected density functional theory study. *J. Chem. Phys.* 2011, 135, 124701. [CrossRef] [PubMed]
- Mino, L.; Spoto, G.; Ferrari, A.M. CO₂ Capture by TiO₂ Anatase Surfaces: A Combined DFT and FTIR Study. *J. Phys. Chem. C* 2014, 118, 25016–25026. [CrossRef]
- Li, H.; Rameshan, C.; Bukhtiyarov, A.V.; Prosvirin, I.P.; Bukhtiyarov, V.I.; Rupprechter, G. CO₂ activation on ultrathin ZrO₂ film by H2O co-adsorption: In situ NAP-XPS and IRAS studies. *Surf. Sci.* 2019, 679, 139–146. [CrossRef]

- 37. Gattrell, M.; Gupta, N.; Co, A. A review of the aqueous electrochemical reduction of CO₂ to hydrocarbons at copper. *J. Electroanal. Chem.* **2006**, *594*, 1–19. [CrossRef]
- 38. Cadi-Essadek, A.; Roldan, A.; de Leeuw, N.H. Density functional theory study of the interaction of H₂O, CO₂ and CO with the ZrO₂ (111), Ni/ZrO₂ (111), YSZ (111) and Ni/YSZ (111) surfaces. *Surf. Sci.* **2016**, *653*, 153–162. [CrossRef]
- Chen, H.-Y.T.; Tosoni, S.; Pacchioni, G. A DFT study of the acid–base properties of anatase TiO₂ and tetragonal ZrO₂ by adsorption of CO and CO₂ probe molecules. *Surf. Sci.* 2016, 652, 163–171. [CrossRef]
- Bendavid, L.I.; Carter, E.A. CO₂ Adsorption on Cu₂O(111): A DFT+U and DFT-D Study. J. Phys. Chem. C 2013, 117, 26048–26059. [CrossRef]
- Zhu, S.; Guo, L.; Li, P.; Zhang, B.; Zhao, G.; He, T. A computational study on linear and bent adsorption of CO₂ on different surfaces for its photoreduction. *Catal. Today* 2019, 335, 278–285. [CrossRef]
- 42. Tang, Q.-L.; Luo, Q.-H. Adsorption of CO₂ at ZnO: A Surface Structure Effect from DFT+U Calculations. *J. Phys. Chem. C* 2013, 117, 22954–22966. [CrossRef]
- 43. He, H.; Zapol, P.; Curtiss, L.A. A Theoretical Study of CO₂ Anions on Anatase (101) Surface. J. Phys. Chem. C 2010, 114, 21474–21481. [CrossRef]
- Nie, X.; Wang, H.; Liang, Z.; Yu, Z.; Zhang, J.; Janik, M.J.; Guo, X.; Song, C. Comparative computational study of CO₂ dissociation and hydrogenation over Fe-M (M = Pd, Ni, Co) bimetallic catalysts: The effect of surface metal content. *J. CO2 Util.* 2019, 29, 179–195. [CrossRef]
- 45. Rodriguez, M.M.; Peng, X.; Liu, L.; Li, Y.; Andino, J.M. A Density Functional Theory and Experimental Study of CO₂ Interaction with Brookite TiO₂. J. Phys. Chem. C 2012, 116, 19755–19764. [CrossRef]
- Indrakanti, V.P.; Schobert, H.H.; Kubicki, J.D. Quantum Mechanical Modeling of CO₂ Interactions with Irradiated Stoichiometric and Oxygen-Deficient Anatase TiO₂ Surfaces: Implications for the Photocatalytic Reduction of CO₂. *Energy Fuels* 2009, 23, 5247–5256. [CrossRef]
- Li, X.; Yu, J.; Jiang, C. Chapter 1—Principle and surface science of photocatalysis. In *Interface Science and Technology*; Yu, J., Jaroniec, M., Jiang, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; Volume 31, pp. 1–38.
- 48. Zhang, L.; Jaroniec, M. Chapter 2—Fundamentals of adsorption for photocatalysis. In *Interface Science and Technology*; Yu, J., Jaroniec, M., Jiang, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; Volume 31, pp. 39–62.
- Huygh, S.; Bogaerts, A.; Neyts, E.C. How Oxygen Vacancies Activate CO₂ Dissociation on TiO₂ Anatase (001). J. Phys. Chem. C 2016, 120, 21659–21669. [CrossRef]
- 50. te Velde, G.; Bickelhaupt, F.M.; Baerends, E.J.; Fonseca Guerra, C.; van Gisbergen, S.J.A.; Snijders, J.G.; Ziegler, T. Chemistry with ADF. J. Comput. Chem. 2001, 22, 931–967. [CrossRef]
- 51. Fonseca Guerra, C.; Snijders, J.G.; te Velde, G.; Baerends, E.J. Towards an order-N DFT method. *Theor. Chem. Acc.* **1998**, *99*, 391–403. [CrossRef]
- 52. ADF2014, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands. Available online: https://www.scm. com/ (accessed on 2 May 2022).
- 53. te Velde, G.; Baerends, E.J. Precise density-functional method for periodic structures. Phys. Rev. B 1991, 44, 7888–7903. [CrossRef]
- 54. Wiesenekker, G.; Baerends, E.J. Quadratic integration over the three-dimensional Brillouin zone. *J. Phys. Condens. Matter* **1991**, *3*, 6721–6742. [CrossRef]
- 55. Franchini, M.; Philipsen, P.H.T.; Visscher, L. The Becke Fuzzy Cells Integration Scheme in the Amsterdam Density Functional Program Suite. *J. Comput. Chem.* **2013**, *34*, 1819–1827. [CrossRef] [PubMed]
- 56. Franchini, M.; Philipsen, P.H.T.; van Lenthe, E.; Visscher, L. Accurate Coulomb Potentials for Periodic and Molecular Systems through Density Fitting. *J. Chem. Theory Comput.* **2014**, *10*, 1994–2004. [CrossRef] [PubMed]
- Perdew, J.P.; Ruzsinszky, A.; Csonka, G.I.; Vydrov, O.A.; Scuseria, G.E.; Constantin, L.A.; Zhou, X.; Burke, K. Erratum: Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces [Phys. Rev. Lett. 100, 136406 (2008)]. *Phys. Rev. Lett.* 2009, 102, 039902. [CrossRef]
- 58. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. *J. Chem. Phys.* **2010**, *132*, 154104. [CrossRef] [PubMed]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. *Phys. Rev. Lett.* 1996, 77, 3865–3868. [CrossRef]
- 60. Perdew, J.P.; Ruzsinszky, A.; Csonka, G.I.; Vydrov, O.A.; Scuseria, G.E.; Constantin, L.A.; Zhou, X.; Burke, K. Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces. *Phys. Rev. Lett.* **2008**, *100*, 136406. [CrossRef]
- 61. Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. *Phys. Rev. B* **1988**, *37*, 785–789. [CrossRef]
- 62. Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. [CrossRef]
- 63. van Lenthe, E.; Baerends, E.J.; Snijders, J.G. Relativistic total energy using regular approximations. *J. Chem. Phys.* **1994**, 101, 9783–9792. [CrossRef]
- 64. van Lenthe, E.; van Leeuwen, R.; Baerends, E.J.; Snijders, J.G. Relativistic regular two-component Hamiltonians. *Int. J. Quantum Chem.* **1996**, *57*, 281–293. [CrossRef]
- 65. van Lenthe, E.; Snijders, J.G.; Baerends, E.J. The zero-order regular approximation for relativistic effects: The effect of spin–orbit coupling in closed shell molecules. *J. Chem. Phys.* **1996**, *105*, 6505–6516. [CrossRef]

- 66. van Lenthe, E.; Ehlers, A.; Baerends, E.-J. Geometry optimizations in the zero order regular approximation for relativistic effects. *J. Chem. Phys.* **1999**, *110*, 8943–8953. [CrossRef]
- 67. Hirshfeld, F.L. Bonded-atom fragments for describing molecular charge densities. Theor. Chim. Acta 1977, 44, 129–138. [CrossRef]
- 68. Ruoff, R.S.; Kadish, K.M.; Boulas, P.; Chen, E.C.M. Relationship between the Electron Affinities and Half-Wave Reduction Potentials of Fullerenes, Aromatic Hydrocarbons, and Metal Complexes. *J. Phys. Chem.* **1995**, *99*, 8843–8850. [CrossRef]
- 69. Conradie, J. A Frontier orbital energy approach to redox potentials. J. Phys. Conf. Ser. 2015, 633, 012045. [CrossRef]
- Bateni, S.B.; England, K.R.; Galatti, A.T.; Kaur, H.; Mendiola, V.A.; Mitchell, A.R.; Vu, M.H.; Gherman, B.F.; Miranda, J.A. Prediction of reduction potentials from calculated electron affinities for metal-salen compounds. *Beilstein J. Org. Chem.* 2009, *5*, 82. [CrossRef]
- 71. Xu, H.; Zhang, R.Q.; Ng, A.M.C.; Djurišić, A.B.; Chan, H.T.; Chan, W.K.; Tong, S.Y. Splitting Water on Metal Oxide Surfaces. J. Phys. Chem. C 2011, 115, 19710–19715. [CrossRef]
- 72. Verdaguer, A.; Sacha, G.M.; Bluhm, H.; Salmeron, M. Molecular Structure of Water at Interfaces: Wetting at the Nanometer Scale. *Chem. Rev.* **2006**, *106*, 1478–1510. [CrossRef]
- 73. Diebold, U. The surface science of titanium dioxide. Surf. Sci. Rep. 2003, 48, 53–229. [CrossRef]
- 74. Thiel, P.A.; Madey, T.E. The interaction of water with solid surfaces: Fundamental aspects. *Surf. Sci. Rep.* **1987**, *7*, 211–385. [CrossRef]
- Zwicker, G.; Jacobi, K. Site-specific interaction of H₂O with ZnO single-crystal surfaces studied by thermal desorption and UV photoelectron spectroscopy. *Surf. Sci.* 1983, 131, 179–194. [CrossRef]
- Henrich, V.E. Ultraviolet photoemission studies of molecular adsorption on oxide surfaces. *Prog. Surf. Sci.* 1979, 9, 143–164. [CrossRef]
- 77. McKay, J.M.; Henrich, V.E. Surface electronic structure of NiO: Defect states, O₂ and H₂O interactions. *Phys. Rev. B* 1985, 32, 6764–6772. [CrossRef] [PubMed]
- Gercher, V.A.; Cox, D.F. Water adsorption on stoichiometric and defective SnO₂(110) surfaces. *Surf. Sci.* 1995, 322, 177–184.
 [CrossRef]
- 79. Lindan, P.J.D. Water chemistry at the SnO₂(110) surface: The role of inter-molecular interactions and surface geometry. *Chem. Phys. Lett.* **2000**, *328*, 325–329. [CrossRef]
- 80. Slater, B.; Richard, C.; Catlow, A.; Williams, D.E.; Stoneham, A.M. Competitive Adsorption of O₂ and H₂O at the Neutral and Defective SnO₂ (110) Surface. *MRS Online Proc. Libr.* **2001**, *658*, 933. [CrossRef]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.