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Abstract: The aromatic C(sp2)-H functionalization of unprotected naphthols with α-phenyl-α-diazoesters
under mild conditions catalyzed by CuCl and CuCl2 exhibits high efficiency and unique ortho-
selectivity. In this study, the combination of density functional theory (DFT) calculations and
experiments is employed to investigate the mechanism of C-H functionalization, which reveals
the fundamental origin of the site-selectivity. It explains that CuCl-catalyzed ortho-selective C-H
functionlization is due to the bimetallic carbene, which differs from the reaction catalyzed by CuCl2
via monometallic carbene. The results demonstrate the function of favourable H-bond interactions on
the site- and chemo-selectivity of reaction through stabilizing the rate-determining transition states
in proton (1,3)-migration.

Keywords: copper catalysis; ortho-C(sp2)-H bond functionalization; naphthols; diazo compounds;
metal carbene; density functional theory (DFT) calculations

1. Introduction

The metal-carbenes, normally generated from diazo compounds via the catalysis of
transition-metals, have been widely used in organic synthesis as one of the most significant
reactive intermediates due to the versatile transformations [1–16], such as cycloaddition,
cyclopropanation, ylide formation and rearrangement, O-H bond insertion, N-H bond
insertion, and C-H bond functionalization [17–31]. Thus, it is highly desirable to develop
a new reactional methodology by using metal-carbenes as the key species in synthetic
chemistry. On the other hand, because phenyl rings, such as benzene, phenol, aniline
and their derivatives, occur widely in natural products, bioactive molecules and drugs
are important platforms in organic synthesis. The highly site-selective aromatic C(sp2)-H
bond functionalization of phenyl ring without the directing groups is still challenging,
especially for the phenol derivatives [32–38]. In this field, due to its high activity in
organic reactions, metal-carbene species have the advantage in the activation of inert C-H
bond, while still meeting the chemo- and region-selectivities. For example, the phenolic
O-H insertion occurred during the reactions of phenol derivatives with diazoesters in the
presence of various metal catalysts such as Rh, Fe, Ru, Cu, and Pd (Scheme 1a) [39–44]. In
2014, we disclosed the first gold-catalyzed aromatic C(sp2)-H bond functionalization of
free phenols with diazo compounds in high efficiency with excellent para-selectivity [45].
Later, we reported the challenging ortho-selective aromatic C(sp2)-H bond alkylation of
phenols with diazoesters by using B(C6F5)3 and naphthols with diazoesters by using
gold catalyst (Scheme 1b) [46,47]. Nemoto disclosed the similar gold catalyzed C(sp2)-H
bond functionalization/cyclization of β-naphthols with diazoesters [48]. However, the
catalysts used in these reactions, like gold complexes and B(C6F5)3, are expensive. Thus,
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the development of inexpensive and abundant catalysts to replace the noble catalysts is
a long-term need. Furthermore, understanding the origins of new catalytic systems in
carbene chemistry is also very important, which could guide the design of new reactions
and new catalysts.
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Compared to other commonly used transition-metals in organic synthesis, copper
represents a type of ideal catalyst for chemical reactions. It attracts much attention due to its
low-toxicity, low cost, ready availability, and its benign environmental impact [49–53]. It has
been used in carbene transfer reactions for half a century. However, the O-H insertion was
the major reaction when phenol derivatives reacted with diazo compounds in the presence
of copper [54–57]. In 1952, Yates reported the reaction of phenols and diazo compounds
under copper catalyst, delivering O-H insertion product as the primary one along with the
side product via the ortho-selective C-H bond functionalization/cycliztion [54]. Recently,
Zhou disclosed an elegant asymmetric copper-catalyzed O-H insertion of phenols [56].
Apart from experimental investigations, mechanistic investigation of the O-H insertion by
copper-catalyzed carbenes transferred from diazo compounds were also performed [58–62].
Pérez et al. examined the mechanism of copper-catalyzed O-H insertion reaction, in which
they investigated the ligand effects of TpX (hydrotris(3,5-dimethylpyrazolyl)borate and
its derivatives) on chemoselectivity by experiments [58]. Yu et al. explored the detailed
mechanism of O-H insertion of diazoacetates under copper (I) by DFT calculation [59]. They
discovered that the (1,2)-H migration favored the copper-associated ylide pathway, in which
the water molecule acted as an effective proton shuttle for the (1,2)-H shift in Cu-catalyzed
O-H insertion. In contrast to the above cases, we recently reported a copper-catalyzed
ortho-selective C-H bond alkylation of naphthols and phenols that provided an important
route for the synthesis of ortho-substituted phenol derivatives [63]. However, the detailed



Molecules 2023, 28, 1767 3 of 13

mechanism of copper-catalyzed C(sp2)-H bond functionalization is still unknown due to the
more complex structures and versatile valence states of copper (Scheme 1c). In our previous
work, we studied the competitive pathways of gold catalyzed C-H bond functionalization
and O-H bond insertions of phenols with diazo compounds via the combination of DFT
calculations and experiments [61,62]. In this report, both CuCl and CuCl2 were efficient
catalysts for this reaction, providing a good yield of the ortho-selective products with
excellent site-selectivity (Table 1). In this study, we investigated the mechanism of site-
selective C(sp2)-H bond functionalization of 1-naphthol and α-diazoacetate catalyzed by
CuCl and CuCl2 by combining DFT calculations and experiments.

Table 1. Copper-catalyzed C(sp2)-H bond functionalization of naphthols with α-diazoesters [63].
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Catalyst Yield of 3 (%) 1 Yield of 4 (%) 1

CuCl 76 0
CuCl2 87 0

1 The yield was determined by 1H NMR of crude product by using CH2Br2 as internal standard.

Previously, we reported a mechanistic study on how to yield the active Cu-carbenes
from diazo compounds with CuCl and CuCl2 [64]. The DFT calculations revealed that the
most stable structure of CuCl in the solution was dimer, while that of CuCl2 was monomer.
Then, the decomposition of α-phenyl-α-diazoester under CuCl generated the bimetallic
carbene, while the monometallic Cu(II)-carbene was obtained in the presence of CuCl2
(Figure 1). Therefore, the two types of Cu-carbenes will be used as the precursors for the
site-selective C(sp2)-H bond functionalization of naphthols.
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Figure 1. The reactions of the formation of the monometallic and bimetallic Cu carbenes [64].

2. Results and Discussion

Under the catalysis of transition metal Cu, we studied the mechanisms of C-H
bond functionalization between diazo compounds and naphthols to generate the ortho-
substituted products. Previous experimental studies reported that the transition metal
complexes initially reacted with the methyl phenyl diazoacetates to form metal carbenes
by releasing the N2 molecules [65–67]. The metal carbenes and naphthols were regarded
as the precursors for the C-H insertion. Thus, the Cu-carbenes and naphthols are used as
the reaction precursors in our DFT calculations. The relative energies of all intermediates
and transition states to the sum of precursors are calculated and presented in all figures.
The red and pink lines denote the lowest energy pathways of ortho-C-H and para-C-H
insertions, respectively.
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2.1. The C-H Insertion of Naphthols Catalyzed by the (CuCl)2 Dimer

As discussed, the DFT calculations revealed that CuCl preferred the dimer to the
monomer in the solution [64]. Assuming the (CuCl)2 dimer as an effective catalyst, it reacts
with the diazo compound to yield the bimetallic Cu carbene. Figure 2 shows the calculated
free energy profiles for the detailed reaction pathways of the C(sp2)-H bonds of naphthols
inserted by bimetallic Cu carbenes. The bimetallic Cu carbenes and naphthols undergo
the electrophilic addition to form the intermediate 1-Int-o2 through the ortho-substituted
transition state 1-TS-o1 with a barrier of 11.9 kcal mol−1. Another reaction pathway of
the addition at the para-C(sp2) of naphthols via 1-TS-p1 has a higher barrier of 12.7 kcal
mol−1. In the two addition pathways, the protons of the aromatic C-H bonds transfer to the
carboxyl oxygen atoms via the optimized five-membered ring transition states 1-TS-o3/p3.
In this case, the protons of 1-Int-o2/p2 at the ortho- and para-carbons of naphthols move to
the carbonyl oxygens to form the enols 1-Int-o4/p4, which overcome the activation barriers
of 8.5 and 8.6 kcal mol−1, respectively.
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There are two possible reaction pathways from 1-Int-o4 to yield the final product
Pro-o8. One is the conversion of 1-Int-o4 into 1-Int-o5* through the (CuCl)2 dimer disso-
ciating into the solution by absorbing an energy of 7.0 kcal mol−1. The second pathway
is that the (CuCl)2 dimer in 1-Int-o4 undergoes the (1,3)-migration to the phenyl group to
yield the less stable enol 1-Int-o5. However, the formation of 1-Int-o5 is more favorable
than 1-Int-o5* by 4.9 kcal mol−1 in energy. For the para-C-H insertion of naphthols, the
reaction process is like the ortho-C-H insertion. The enol complex 1-Int-p4 could be further
stabilized through the intramolecular (1,3)-migration of the (CuCl)2 dimer, leading to the
enol intermediate 1-Int-p5 rather than to 1-Int-p5*. Subsequently, the metal catalysts partic-
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ipate in the two-water assisted (1,3)-H migration via the eight-membered ring transition
states 1-TS-o6-2w and 1-TS-p6-2w. Comparison of the calculated energies of the optimized
TSs for proton transfer suggests that the energy of 1-TS-o6-2w is lower than that of 1-TS-
p6-2w by 1.4 kcal mol−1. In this case, the proton transfer from the hydroxyl group to the
ortho-position carbon of naphthol through 1-TS-o6-2w leads to the formation of 1-Int-o7
with a barrier of 18.7 kcal mol−1. Finally, the (CuCl)2 dimer of 1-Int-o7 dissociates into the
solution to yield the final product Pro-o8 with the calculated energy of −35.8 kcal mol−1.

2.2. The Key H-Bond Interactions Formed with (CuCl)2

To further explain the site-selectivity of the bimetallic Cu carbene catalyzed C(sp2)-H
functionalization of naphthols with diazo compounds, we focus on the two important
elementary steps during the activation of the ortho-C-H bond of naphthols by the bimetallic
Cu carbenes: the electrophilic addition of bimetallic Cu carbenes and naphthols, and the
two water-assisted (1,3)-proton transfer with the participation of Cu catalyst, which is the
rate-determining step of the reaction. It is found that both the electrophilic addition and the
(1,3)-H migration at the ortho-sites of naphthols are superior to that of the para-sites. The
optimized structures and energies of 1-TS-1o, 1-TS-1p, 1-TS-o6-2w, and 1-TS-6p-2w are
shown in Figure 3. It is noted that the electrophilic addition at the ortho-C(sp2) of naphthol
has a lower barrier of 11.9 kcal mol−1 relative to that at the para-C(sp2), which is consistent
with the known experiment results [63]. The 1-TS-o1 is stabilized by the O-H···Cl H-bond
interaction between the hydroxyl group of naphthol and the Cl atom of bimetallic Cu
carbene, with the H···Cl distance of 2.14 Å, as shown in Figure 3.
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Additionally, the H-bond interactions also play an important role in the two water-
assisted proton transfer. The remote (1,3)-H migration needs two water molecules as a
shuttle rather than one, which has been demonstrated in our previous study on the C-H
insertion of phenols by Au-carbenes [61,62]. There are two kinds of H-bonds formed
in the transition state 1-TS-o6-2w, including the O-H···Cl H-bond interaction formed
from the shuttle water and the Cl atom of the (CuCl)2 dimer, and the O-H···O H-bond
interaction between the hydroxyl group of naphthol and the shuttle water. Due to the
stabilization of the formed H-bonds in 1-TS-o6-2w, the barrier of the (1,3)-proton shift
is only 18.7 kcal mol−1, lower than that of 20.1 kcal mol−1 of 1-TS-p6-2w, leading to the
ortho-substituted products. Thus, the presence of H-bond interactions in the ortho-C-H
functionalization reduces the energy barriers of the electrophilic addition of the metal
carbenes with naphthols and the (1,3)-proton transfer process.
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2.3. The C-H Insertion of Naphthols Catalyzed by the CuCl Monomer

We also studied the C(sp2)-H bond insertion mechanism of naphthols catalyzed
by the CuCl monomer instead of the (CuCl)2 dimer. Figure 4 displays the calculated
free energy profiles of reaction pathways of the C-H bonds of naphthols inserted by the
monometallic Cu carbenes. The first step remains the addition of the monometallic carbenes
and naphthols and the calculated results indicate that the electrophilic addition at the para-
C(sp2) of naphthols occurs via the transition state 1′-TS-p1 with a lower energy barrier of
15.6 kcal mol−1. This is lower than that of 17.6 kcal mol−1 at the ortho-C(sp2) via 1′-TS-o1.
Thus, the addition through 1′-TS-p1 is more kinetically favorable and not consistent with
the experimental observations. If 1′-Int-o4 releases the moiety of the CuCl monomer
into the solution, it yields a more stable intermediate 1′-Int-o5* with the exothermicity
of 2.8 kcal mol−1. However, the (1,3)-migration of CuCl to the phenyl group in 1′-Int-o4
leads to the enol 1′-Int-o5 with an exothermic energy of 5.9 kcal mol−1. Because 1′-Int-o5
is more stable than 1′-Int-o5* by 3.1 kcal mol−1, the catalyst CuCl participates in the proton
transfer. Also, 1′-Int-p4 transforms to the 1′-Int-p5 through the (1,3)-migration of the
monomer CuCl instead of the dissociation of CuCl to form 1′-Int-p5*. Furthermore, the
barrier from 1′-Int-o5 to 1′-TS-o6-2w is high (up to 28.2 kcal mol−1)and considered as the
rate-determining step, which is higher than that of 1′-Int-p5 to 1′-TS-p6-2w by 5.8 kcal
mol−1. Such a high barrier is counter to the experimental results. As such, the reaction
pathways catalyzed by the monometallic carbenes of CuCl are excluded [63]. In summary,
the calculated reaction pathways of C-H bond functionalization of naphthols catalyzed by
the bimetallic and monometallic carbenes account for the site-selectivity of the C-H bond
functionalization by the mild catalyst CuCl. The calculated results of these two steps show
that the Cu-catalyzed C-H bond functionalization of naphthols with diazo esters is more
inclined to obtain the ortho-substituted products.
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Figure 4. The calculated free energy profiles ∆Gsol and the corresponding structures of intermedi-
ates and transition states along different pathways of the C–H bonds of naphthols inserted by the
monometallic carbenes of the CuCl monomer. The reasonable ortho-selective pathway is shown in
red, the para-selective pathway is pink, and other possible pathways are in blue. The free energies
are given in kcal mol−1.
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2.4. The C-H Insertion of Naphthols Catalyzed by the CuCl2 Monomer

Figure 5 shows the calculated free energy profiles for the possible C-H bonds insertion
pathways of naphthols catalyzed by the monometallic carbenes of CuCl2. The difference,
when compared to Cu(I), is the energy barriers of the electrophilic addition at the ortho-
C(sp2) of naphthols, which is higher than that at the para-C(sp2) by 2.8 kcal mol−1. For
ortho-C-H insertion, it is an endothermic process when the CuCl2 moiety of 2-Int-o4
migrates from the C=C double bond to the phenyl group to generate 2-Int-o5* via (1,3)-
migration of the monomer CuCl2. The 2-Int-o4 can transform to the key intermediate
2-Int-o5 through the CuCl2 monomer as it dissociates into the solution by releasing an
energy of 4.6 kcal mol−1, which is relatively more feasible and stable compared to the
formation of 2-Int-o5*. Like the process of ortho-C-H insertion, the enol complex 2-Int-p4
can be further stabilized by releasing CuCl2 into the solution, leading to a free enol 2-Int-p5
rather than 2-Int-p5*. Subsequently, the two water-assisted (1,3)-H migration without
the participation of CuCl2 via the eight-membered ring transition states 2-TS-o6-2w and
2-TS-p6-2w are the pivotal steps in the ortho-C-H and para-C-H insertions, with the calculated
barriers of 19.8 and 22.2 kcal mol−1, respectively. The activation energy barrier of 2-TS-p6-2w
is higher than that of 2-TS-o6-2w by 2.4 kcal mol−1, implying that the C(sp2)-H insertion
catalyzed by Cu(II) prefers the ortho-selective product Pro-o8 to the para-substituted product
Pro-p8, which is in accordance with previous experimental results [58–62].
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Figure 5. The calculated free energy profiles ∆Gsol and the corresponding structures of interme-
diates and transition states along different pathways of the C–H bonds of naphthols inserted by
the monometallic carbenes of CuCl2. The reasonable ortho-selective pathway is shown in red, the
para-selective pathway is pink, and other possible pathways are in blue. The free energies are given
in kcal mol−1.
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The structures of the key transition states 2-TS-1o and 2-TS-1p of the electrophilic
additions in the two pathways are shown in Figure 6. The calculated distance between
the C1 atom of the copper-carbene and the C2 atom of naphthol in 2-TS-1p is longer than
that of 2-TS-1o. Although neither 2-TS-1o nor 2-TS-1p has H-bonds formed, the H-bond
interaction of O-H···O between the hydroxyl group of naphthol and the water molecule
in 2-TS-o6-2w plays a crucial role in stabilizing the proton transfer through the Cu-free
pathways, with a distance of 1.60 Å. The 2-TS-o6-2w has a lower barrier than that of 2-TS-
p6-2w, which could be the key to control the chemo- and site-selectivity of the C-H bond
insertion of naphthols catalyzed by Cu(II).
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2.5. Experimental Reactivity of 1-Methoxynaphthalene Catalyzed by Cu Catalysts

To further prove the Cu-catalyzed ortho-C-H insertion mechanism of naphthols we
proposed, we performed the experiments of the 1-methoxynaphthalene 5 and methyl α-
diazoacetate 2 catalyzed by Cu catalysts and obtained a trace amount of the ortho-selective
C-H products 6 (Scheme 2). Due to the high structural similarity of the reactants, we
presuppose that it also follows the same reaction mechanism of naphthols inserted by the
Cu carbenes. Since we have discussed the significance of the electrophilic addition and
the hydrogen transfer assisted by two water molecules, the DFT calculations are primarily
performed to investigate the two crucial elementary steps.
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Figure 7 shows the calculated energy profiles of the ortho- and para-C-H bonds of
1-methoxynaphthalenes inserted by the bimetallic and monometallic Cu carbenes. The
calculated reaction pathways of the C-H insertion of 1-methoxynaphthalenes are similar to
that of naphthols. With the catalysts CuCl or CuCl2, the calculated free energy barriers of
the electrophilic addition at the ortho-positions of 1-methoxynaphthalenes are higher than
the counterparts at the para-positions. It has been emphasized that the H-bonds formed
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by the hydroxyl groups of naphthols and the bimetallic carbenes are the key factors to
determine the site-selectivity in the addition step. Nevertheless, such a specific O-H···Cl
H-bond interaction does not exist in the transition states 3-TS-o1 and 4-TS-o1 due to the
steric effect of methoxy groups of 1-methoxynaphthalenes.
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The energy barriers of the subsequent rate-determining steps, namely the proton
transfer steps at the ortho-positions, are relatively higher than that of the para-positions.
Specifically, the crucial barriers of the (1,3)-H transfer in the transition states 3-TS-o6-2w
and 3-TS-p6-2w at the ortho-C-H and para-C-H insertion catalyzed by the (CuCl)2 dimer
reach high energies of 25.4 and 23.3 kcal mol−1, respectively. In another case, the (1,3)-H
transfer of the ortho-C-H and para-C-H insertion catalyzed by the CuCl2 monomer also
have high activation barriers of 24.0 and 22.7 kcal mol−1, respectively. The high barriers
of both 3-TS-o6-2w and 4-TS-o6-2w mean that it is difficult to pass through them and
obtain the product at the room temperature when using the trace amount of the product 6
obtained in our experiments. The optimized structures of the transition states 3/4-TS-o6-2w
and 3/4-TS-p6-2w are remarkably different from that of naphthols due to the lack of the
crucial H-bonds formed between the chemical groups of reactants and the metal catalysts.

3. Materials and Methods
3.1. General Imformation

1H NMR spectra were recorded on a BRUKER 500 spectrometer (Billerica, MA, USA)
in CDCl3. Chemical reagents were purchased from Leyan (Shanghai, China). Anhydrous
dichloromethane (DCM) was distilled from calcium hydride to use. Catalysts CuCl and
CuCl2 were purchased from Alfa-Aesar Company (Haverhill, MA, USA) and used directly.
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3.2. Synthetic Procedure for the Reaction of 1-Methoxynaphthalene and Diazoester

In a dried glass tube, copper catalyst CuCl (0.02 mmol, 5 mol%), 1-methoxynaphthalene
5 (189.6 mg, 1.2 mmol, 3 equiv), and DCM (1 mL) was added at room temperature. Then a
solution of methyl phenyl diazaester 2 (76.2 mg, 0.4 mmol) dissolved in 1 mL DCM was
introduced into the reaction mixture by a syringe. The resulting mixture was continually
stirred at room temperature until product 6 was consumed completely, determined by TLC
analysis. After being filtrated through celite and concentrated, the residue was purified
by column chromatography on silica gel to obtain the desired product. The yield was
determined by 1H NMR of crude product by using CH2Br2 as internal standard.

3.3. Computational Methods

All DFT calculations are performed using the Gaussian09 program package [68]. The
geometric structures of intermediates and transition states are directly optimized in the
solution phase by using theωB97XD functional [69,70]. The SDD basis set [71] combined
with the effective core potential is used to describe the metal element Cu, and the large
6-31 + G** basis set [72] is utilized to describe the nonmetallic elements C, H, O, N and
Cl. Frequency analyses are also performed at the same computational level to confirm
that the intermediates are local minima and the transition states have only one imaginary
frequency. The intrinsic reaction coordinate (IRC) [73,74] calculations are performed to
make sure that all transition state structures connect the correct reactants and products
in the forward and backward reaction directions. The solvent effect of dichloromethane
is evaluated using the SMD [75] model with a dielectric constant ε = 8.93 in Gaussian09.
All the calculated energies refer to the Gibbs free energies in the units of kcal mol−1 at the
temperature of 298.15 K. Further structure details about the intermediates and transition
states are provided in Supporting Information.

4. Conclusions

The detailed mechanisms of the C(sp2)-H bond functionalization of naphthols and
α-aryl-α-diazoacetates by the catalysts CuCl and CuCl2 are studied through the combined
experimental and computational methods. The DFT calculations reveal that the ortho-
selective products catalyzed by CuCl are obtained from the C-H insertion of naphthols by
the bimetallic carbenes. Also, the optimized TS structures of the steps of addition and (1,3)-
H transfer reveal that the H-bonds formed by the OH groups of naphthols and the Cl atoms
of metal catalysts play an important role in stabilizing the TSs and lowering their energies.
In the reaction catalyzed by CuCl2, the DFT results indicate that the monometallic carbenes
insert into the C(sp2)-H bonds of naphthols, rather than the bimetallic species. It is proposed
that the H-bond interactions between the Cu carbenes and substrates play an essential role
in stabilizing the site-selectivity-determining TSs in all cases, resulting in a lower energy
barrier and generating the experimentally observed ortho-selective products. The proposed
H-bonds assisted insertion by Cu catalysts are supported by our further experiments of the
C-H insertion of 1-methoxynaphthalenes catalyzed by the CuCl/CuCl2 catalysts as well as
the corresponding DFT calculations. Our studies systematically provide the mechanistic
insights into the unprecedented C-H functionalization by the CuCl/CuCl2 catalysts, which
is instructive in designing Cu-catalyzed chemo- and site-selective transformations.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28041767/s1, Figure S1: Calculated reaction path-
ways of diazoacetates and copper catalyst CuCl monomer, the (CuCl)2 dimer and CuCl2 monomer;
Scheme S1 C(sp2)-H bond functionalization of 1-methoxynaphthalene with α-diazoesters catalyzed
by CuCl or CuCl2
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