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Abstract: Herbal drugs have been attracting much scientific interest in the last few decades and
nowadays, phytoconstituents-based research is in progress to disclose their unidentified medicinal
potential. Daidzein (DAI) is the natural phytoestrogen isoflavone derived primarily from leguminous
plants, such as the soybean and mung bean, and its IUPAC name is 4′,7-dihydroxyisoflavone. This
compound has received great attention as a fascinating pharmacophore with remarkable potential for
the therapeutic management of several diseases. Certain pharmacokinetic properties of DAI such as
less aqueous solubility, low permeability, and poor bioavailability are major obstacles restricting the
therapeutic applications. In this review, distinctive physicochemical characteristics and pharmacoki-
netics of DAI has been elucidated. The pharmacological applications in treatment of several disorders
like oxidative stress, cancer, obesity, cardiovascular, neuroprotective, diabetes, ovariectomy, anxiety,
and inflammation with their mechanism of action are explained. Furthermore, this review article com-
prehensively focuses to provide up-to-date information about nanotechnology-based formulations
which have been investigated for DAI in preceding years which includes polymeric nanoparticles,
solid lipid nanoparticles, nanostructured lipid carrier, polymer-lipid nanoparticles, nanocomplexes,
polymeric micelles, nanoemulsion, nanosuspension, liposomes, and self-microemulsifying drug
delivery systems.

Keywords: daidzein; nanotechnology; polymeric nanoparticles; pharmacological applications; solid
lipid nanoparticles; polymer-lipid nanoparticles

1. Introduction

Therapies based on compounds derived from plants that grow in nature have always
been a symbol of the extraordinary phenomenon of symbiosis in the body. Moreover, herbal
medicines have their ancestry in every culture all over the world [1,2]. The severe adverse
effects of allopathic treatments on individual health have encouraged the emergence of
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natural remedies as potential therapeutics for acute and chronic disorders. The thousands
of medicinal plants are utilized around the planet, which is attributed to their contribution
towards potent therapeutic agents with numerous potential therapeutic effects, without
producing serious side effects and, therefore, herbal medicines, by implicating plant-based
compounds, have been accepted as being useful a remedy for numerous diseases [3–5].

Additionally, medicinal plants offer a rich source of beneficial phytoconstituents that
could be investigated for the development of novel drug delivery systems [6]. Alkaloids,
tannins, flavonoids, and phenolic compounds are significant bioactive plant components
which play an explicit role in the mitigation of a range of health issues as well as chronic
diseases [7,8]. The investigations of secondary plant products have progressed compre-
hensively in the last few decades. Flavonoids are a group of secondary plant metabolites
with polyphenolic structure and are generally found in fruits, vegetables, and certain
drinks [9]. Flavonoids are classified into subgroups such as catechins, anthocyanins,
chalcones, flavones, flavonols, flavanones, flavanonols, and flavanols [10,11]. Numerous
studies have revealed that flavonoids have potential to avert several bacterial and viral
infections [12], cancer [13], arthritis [14], osteoporosis [15], diabetes [16], skin disorders [17],
cardiovascular disease [18], and other age-related illnesses [19].

Daidzein (DAI) belongs to the isoflavone class of flavonoids which are commonly
consumed by Western populations such as North Americans and Europeans in relatively
modest amounts and in relatively high concentrations by Asian populations such as the
Chinese and Japanese [20]. DAI is a type of naturally occurring, non-steroidal isoflavone
that is typically derived from leguminous plants such as the soybean and mung bean [21].
Food products from soy, such as tofu, tempeh, miso, textured soy protein, soy flour, and soy
protein isolates, contain DAI. The amount of DAI in a cup of soy milk is 7 mg, a half-cup of
miso is 22 mg, three ounces of tempeh is 15 mg, and three ounces of tofu is 8 mg [22].

The physicochemical properties and pharmacokinetics profile of DAI has been re-
vealed in the current review. This article summarizes the pharmacological applications and
mechanisms of action of DAI in the management of many disease conditions, including
oxidative stress, cancer, obesity, cardiovascular, neuroprotective, diabetes, ovariectomy,
anxiety, and inflammation. In addition, the objective of the current review article is to
provide up-to-date knowledge on the nanotechnology-based approaches investigated in
the past to increase the solubility and permeability of DAI. These approaches include poly-
meric nanoparticles, solid lipid nanoparticles, nanostructured lipid carriers, polymer-lipid
nanoparticles, nanocomplexes, polymeric micelles, nanoemulsion, nanosuspension, lipo-
somes, and self-microemulsifying drug delivery system. For this purpose, a comprehensive
literature survey was conducted using the Google Scholar, PubMed, and ScienceDirect
databases. The research and review papers published in peer-reviewed journals between
the years 2000 and 2022 served as the basis for the literature review.

2. Physicochemical Properties and Pharmacokinetics Profile of Daidzein

DAI has the IUPAC name 4′, 7-dihydroxylisoflavone and is a water-insoluble isoflavone,
existing as pale yellow crystalline prisms and having a partition coefficient of 2.55; its sol-
ubility in the different solvents was in the sequence like propanone > methanol > ethyl
ethanoate > hexane > trichloromethane > water [23], and in aqueous buffer (with pH 6.0)
was found 18.76 nmol/mL [24].

Some of DAI’s unfavorable physicochemical characteristics (poor solubility, low parti-
tion coefficient, and high intestine and hepatic metabolism) lead to low oral bioavailability.
According to animal model studies, absolute bioavailability of DAI suspension after oral ad-
ministration to rats was 6.1%, which seems to be the greatest constraint limiting therapeutic
and pharmacological uses. There have been numerous approaches investigated to make
DAI more bioavailable by derivatizing ionizable groups (such as sulfation, phosphating, or
glycosylation of DAI) to more water-soluble forms [25–30].
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DAI was administered to healthy premenopausal women, and the results showed that
it has a low bioavailability and non-linear pharmacokinetics with higher intakes, showing
that its absorption is rate-limited and saturated [31,32].

Intestinal microbiota has a significant effect on the metabolism and bioavailability
of isoflavones, and it has been discovered that isoflavones cannot be absorbed without
microbiota [33]. The bioavailability and absorption of isoflavones may be influenced
by the bacterial flora of the stomach. Some isoflavones are ingested in their chemically
modified form because the stomach may convert relatively weak molecules into stronger
forms. DAI can be converted by intestinal microbiota into a number of substances, such as
odesmethylangolensin, dihydrodaidzein, and 7-hydroxyisoflavan [34].

The blood–brain barrier allows daizein-8-C-apiosyl-(1-6)-glycoside to enter the brain
quickly, and it may be detected in the brain within an hour of administration [35,36].

The diet of the human population is largely composed of soy products. As opposed
to less than 2 mg in Western countries, the Asian population can consume up to 50 mg of
isoflavones per day, although this number may be higher in menopausal women [20].

DAI has a 336.25 L volume of distribution, a 30.09 L/h clearance rate, and a 7.75 H
half-life, respectively [37,38]. Absolute and relative bioavailability of DAI suspension
(20 mg/kg i.v. vs. 50 mg/kg i.p.) and complexed form (0.54 mg/kg i.v. vs. 1.35 mg/kg
i.p.) were evaluated. DAI complexed was absorbed more quickly (tmax = 15 min) and to
a greater extent (Cmax = 615 vs. 173 ng/mL) following intraperitoneal administration than
DAI in suspension (tmax = 45 min). DAI’s i.v. half-life was longer in the complex of DAI
when compared to DAI in suspension (t0.5 = 80 min vs. 230 min) [31].

The physicochemical characteristics and pharmacokinetic profile of DAI have been
summarized in Table 1 and Figure 1 depicts the chemical structure of DAI and its various
analogs [21].

Table 1. Description of physicochemical characteristics and pharmacokinetic profile of Daidzein (DAI).

Profile Description

Physicochemical characteristics

Source In Soy products

Empirical Formula C15H10O4

Molecular Weight 254.54 g/mol

Solubility Sparingly soluble in aqueous buffers; soluble in organic solvents like ethanol, dimethyl
sulfoxide and dimethyl formamide.

Partition coefficient 2.55

Physical appearance Pale yellow prisms

Melting point 315 ± 5 ◦C

(Lambda maximum) 250 nm

Pharmacokinetics

Absorption

Research showed that DAI exhibits passive, unsaturable transport absorption mechanism
predominantly from distal part of small intestine of rats in comparison to proximal and
medial parts. This was found that total DAI intestinal absorption was approximately 6%
in 60 min [39]

Distribution Volume of distribution: 336.25 L; Clearance rate: 30.09 L/h [37,38]

Metabolism DAI is converted by the body to its aglycone form (without the glucose side chain) [40];
the main metabolite of DAI was found daidzein-7-O-glucuronide [25]

Excretion Approximately, between 30 and 40 percent of DAI is excreted in urine [41]
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3. Mechanism of Action and Pharmacological Applications of Daidzein

Numerous pharmacological effects of DAI include anti-carcinogenesis [42], anti-
inflammatory [43], antioxidant [44], anti-diabetic [45], cholesterol-lowering [46], and car-
diovascular activity [47,48].

DAI imitates human estrogen, which has a substantial impact on the prevention of
osteoporosis, cancer, and postmenopausal disorders. Soy products are highly recommended
for cancer prevention due to high content of anticarcinogens in them [49–51].

Matrix metalloproteinase-2 activity is inhibited by DAI to produce an anticancer effect,
and its non-toxic concentration is also extensively used to modulate Hedgehog signaling to
prevent tumor necrosis factor-induced migration and the invasion of human breast cancer
cells [52].

DAI significantly raises high density lipoprotein cholesterol (HDL-C) levels, lowers
levels of circulating triglycerides (TGs) and low density lipoprotein cholesterol (LDL-C),
and thus, prevents heart attack or stroke [53]. Additionally, it increases the expression of
bone morphogenetic protein (BMP) in primary osteoblast cells, promoting the development
of osteoblast, which ultimately exhibited anti-osteoporosis activity [54]. Moreover, DAI
increases the ratio of glucose transporter-4 (GLUT4) to Na+/K+ ATPase levels, which
facilitate in glucose absorption and maintain the proper balance of reactive oxygen species
to free radicals [55,56].

Different analogs of DAI (such as equol, 17 β-estradiol, 7, 3′, 4′-THIf and daidzin)
exhibited the similar mechanism as DAI by binding with the protein kinase B, estrogen
receptors, mitogen-activated protein kinase, and epidermal growth factor receptor kinase,
nuclear factor kappa-light-chain-enhancer of activated B cells, and other intracellular
signaling mechanisms [30,57]. Figure 2 illustrates the numerous mechanisms through
which DAI exerts its therapeutic potential in a variety of essential body organs.

3.1. Anticancer Activity

Polycyclic phenolic phytochemicals known as phytoestrogens have characteristic struc-
tures that resemble steroidal estrogen. Their ability to treat and prevent cancer has recently
received a lot of attention. Increased consumption of foods and herbal remedies containing
phytoestrogens plays a crucial part in lowering estrogen levels and the prevalence of breast
cancer [58,59].
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By reducing the activity of matrix metalloproteinase-2, DAI prevented the MDA-MB-
231 breast cancer cell lines from attacking them, indicating a significant function for DAI in
the development of breast cancer [52,60].

TNF-induced nuclear localization of the gene glioma-associated oncogene homologue-1
(Gli1) and genetic expressions into mRNA and protein that inhibited TNF-induced migra-
tion and invasion in human breast cancer cells have been studied extensively using DAI to
control Hh-signaling [52,61]. DAI inhibited the proliferation of cell lines originated from
cancer, and as a result, apoptosis was induced in cancer cells. Depending on the kind of
cancer cell, it can be used to increase apoptosis linked to G0/G1 cell cycle arrest. Direct
apoptosis is caused by the S- or G2-phase without altering cell distribution [62].

The impact of DAI’s antiproliferative properties on human breast cancer cell lines,
i.e., MCF-7 and MDA-MB-453, at dosages ranging from 1 to 100 mM for 24, 48, and 72 h,
showed reduced cell proliferation in both types of cells in a dose- and time-dependent
manner [63].

Wang et al. demonstrated that 145 mg/kg of DAI administered orally for 22 days
causes breast cancer cells to undergo apoptosis via the Fas/FasL-initiated mitochondrial
apoptosis signaling pathway in bearing-4T1 mice [64].

Numerous studies have demonstrated that DAI has therapeutic advantages for the
treatment of malignancies other than breast cancer. Moreover, it demonstrated anti-
proliferative activities in three prostate cancer cell lines (DU 145, LNCaP, and PC-3), modu-
lating the gene expression associated with the cyclin-dependent kinase-related pathway,
resulting in cell cycle arrest at the G0/G1 phase, and suppressing angiogenesis. A few
of these genes are involved in the angiogenesis process and the DNA damage signaling
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mechanism, which can lower levels of the epidermal growth factor and insulin-like growth
factor and therefore prevent the development of tumors [65].

LoVo cells displayed a tumor-suppressing impact as a consequence of cell cycle arrest
at the G0/G1 phase and caspase-3-dependent apoptosis, which had no effect on differen-
tiation. In numerous murine as well as human neuroblastoma cell lines, DAI exhibited
its anticancer potential by inhibiting cell growth, arresting the cell cycle during the G2/M
phase, and promoting cell death [66].

Due to the biotransformation of DAI, this can be utilized as a chemo-preventive drug in
skin cancer despite its lack of effect on cyclooxygenase 2 (COX-2) expression, its metabolite
directly binding to tumor progression locus and mitogen-activated protein kinase 4 to block
their activity. This significantly lowers the ultraviolet B-induced COX-2 expression and,
subsequently, prevents tumor growth, development, and enlargement [57].

3.2. Cardiovascular Diseases

While postmenopausal women have a greater incidence of cardiovascular disorders
than premenopausal women [67], males aged 35 to 50 had a higher incidence of cardiovas-
cular diseases than women of equivalent ages [68].

The endothelium’s ability to produce nitric oxide is activated by estrogen receptors,
and blood vessels are also relaxed by prostacyclin and hyperpolarizing factor. It is possible
that using natural phytoestrogens in small doses has advantages over using synthetic
estrogen [69]. Low levels of HDL-C, as well as high levels of TGs and LDL-C, are important
risk factors for cardiovascular disease. Six months of DAI therapy in hypercholesterolemic
patients can considerably lower triglyceride and uric acid levels in blood, but not in
a dose-dependent way [53].

Caveolin, a transmembrane protein, is present in the minute caveolae that project
from the plasma membrane. Caveolin-1, a specific marker of caveolae, tends to up-regulate
expression in response to conditions such elevated levels of oxidized low density lipopro-
tein, estrogen deficiency, and hyperglycemia [70]. It functions as a protein that binds to
cholesterol and makes it easier for cholesterol to go from the endoplasmic reticulum to the
plasma membrane’s endothelial cells via the Golgi apparatus. DAI functions as a caveolin-1
inhibitor, which has the potential to raise endothelial nitric-oxide synthase (eNOS) activity
and to improve the vascular endothelium due to an increase in nitric oxide generation and
stimulation of eNOS through caveolin-1 inhibition [71].

3.3. Anti-Osteoporosis Activity

Menopause causes the condition of equilibrium in the body to shift in favor of greater
resorption, which lowers the bone mineral density and disturbs the bone microarchitec-
ture [72]. The metabolism of bones and the growth of bone mass are influenced by systemic
hormones, genetics, and environmental factors [73].

According to the conventional view, osteoporosis is a “breakable bone” disorder that
primarily affects post-menopausal Caucasian women and those who consume insufficient
levels of calcium and vitamin D [74].

DAI has received the most scientific attention among soy phytoestrogens, and nu-
merous studies have demonstrated that it may have antiosteoporosis potential. DAI
stimulates osteoblast formation in mouse osteoblast-like MC3T3-E1 cells via increasing
BMP expression in primary osteoblast cells, which in turn promotes cell differentiation and
mineralization [75].

DAI treatment prevents bone mass loss in both juvenile and adult ovariectomized
rats and appears to promote protein synthesis and alkaline phosphatase in bone devel-
opment. Phosphatase mineralization, which has been examined after being cultivated
in osteoblast-like MC3T3-E1 cells, is an indication of osteoblast-induced matrix matura-
tion [76]. Additionally, DAI greatly increases the activity of alkaline phosphatase, sodium-
deoxyribonucleic acid, and calcium in bone tissue [54].
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3.4. Antidiabetic Activity

Diabetes is currently posing a challenge upon India because it is progressively acquir-
ing the position of a possible epidemic [77]. The significant mortality and cardiovascular
morbidity of diabetes patients also contributes to the rise in demand for bio compounds
with antidiabetic characteristics [78].

DAI inhibits the rise in blood glucose levels and promotes glucose absorption in
adipocytes and muscle cells. Additionally, it increases the ratio of GLUT4 to Na+/K+

ATPase in the plasma membrane portion of L6 myotubes, indicating that this phytocon-
stituent may promote glucose absorption by GLUT4 translocation from intracellular micro
vesicles [56,79].

DAI has a lower risk of hypoglycemia due to its minimal effect on insulin production
and lack of influence on fasting blood sugar levels, significantly decreasing blood sugar
levels and raising oral glucose tolerance when administered orally to diabetic mice, which
had a significant impact on hyperglycemia. It evidently reduces blood levels of total choles-
terol, triglycerides, and LDL-c while modestly raising blood levels of HDL-c. Therefore,
this was disclosed that oral administration of DAI is effective in treating hyperglycemia
and diabetes-related disorders [80].

3.5. Antioxidant Activity

Soybeans contain large amounts of the isoflavone DAI and is consumed in enormous
quantity by Asian populations. Isoflavones have been associated with beneficial health
effects as a result of their antioxidant properties due to their ability to cause chelation of
toxic metal ions [81].

Dietary DAI is frequently transformed by intestinal bacteria into substances like
3′-OH-daidzein and 6′-OH-daidzein, which have powerful antioxidant potential compared
to the parent molecule DAI. The antioxidant effects of DAI-induced antioxidant benefits
may be mediated by DAI metabolites generated in the gut [82].

The potential of DAI to chelate copper ions results in its antioxidant activity. The
Cu2+ has a propensity to stimulate lipoprotein oxidation in serum, which causes the LDL
particles to aggregate and fuse. The chelation of Cu2+ has an antioxidant effect and protects
against the oxidative transformation of LDL [83].

3.6. Anti-Inflammatory Activity

Inflammation is a biological response triggered upon by infections, damaged cells, and
irritants [84]. Anti-inflammatory drugs, whether steroidal or nonsteroidal, are frequently
used to treat inflammation, but they frequently have several adverse side effects. Recent
studies have demonstrated that polyphenols derived from plants, in particular flavonoids,
have potent anti-inflammatory activities [85].

Chronic/acute intestinal inflammation are both correlated with abnormal mucosal
immune responses. Inflammatory bowel disease and increased pro-inflammatory chem-
ical production are typically the two main pathogenic factors in chronic inflammatory
diseases [86].

An imbalance between the synthesis of reactive oxygen species and antioxidant ac-
tivity is known as oxidative stress which causes tissue damage. DAI 100 µM decreased
interleukin-1β, interleukin-6, and tumor necrosis factor-α expression by 73.8 ± 5.3%,
58.8 ± 9.0% and 55.5 ± 7.2%, respectively. Through the downregulation of Kelch-like
ECH-associated protein 1 and the upregulation of nuclear factor erythroid 2-related fac-
tor 2 expression, it also decreased the formation of reactive oxygen species caused by
lipopolysaccharide by 23.9 ± 7.8% and enhanced superoxide dismutase activity by
88.4 ± 18.9% [43]. Oxidative stress is a condition that is often brought on by an increase in
free radicals and reactive oxygen species [55,87].

In order to prevent human diseases and maintain proper health conditions by avoiding
oxidative stress, an increase in antioxidant intake is required. DAI’s gut microbial metabo-
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lites O-desmethylangolensin (O-DMA), equol, and daidzin have antioxidant properties in
the following sequence: DAI > equol > O-DMA > daidzin [88].

3.7. Neuroprotective Activity

DAI can prevent the progression of neurodegenerative diseases. Beta-secretase and
cholinesterase are scientifically identified targets of Alzheimer’s disease, and both have
benefited significantly from bio compounds. Given that Alzheimer’s disease is a serious
public health issue, it requires the use of multiple-targeted drugs to be treated [89].

Stroke has a high morbidity rate globally, and there are currently no viable treat-
ments for this disease [90]. Strokes are known to be associated with brain damage that
permanently harms the body, while DAI aids in neuroprotection and functional recovery
following a stroke [91].

DAI has neuroprotective effects in stroke conditions and has shown peroxisome
proliferator-activated receptor gamma (PPAR-γ)-dependent therapeutic effects in brain
cells and has huge potential to improve synaptic functioning in cultured neurons. An exper-
imental study found that DAI increased PPAR-γ transcriptional activity while suppressing
selective PPAR-γ antagonist [92].

In ischemic, neurodegenerative, and inflammatory brain disorders, PPAR activity
assists in preventing neuronal death [93]. DAI treatment produced an anxiolytic effect
in treated males by significantly increasing locomotor activity, improving harmonious
behavior, reducing hostility, and reducing sexual behavior during social interaction [94].

Table 2 provides a systematic summary of pre-clinical investigations carried over the
past few decades exploring the pharmacological applications of DAI in conditions such as
oxidative stress, cancer, obesity, cardiovascular, neuroprotective, diabetes, ovariectomy,
anxiety, and inflammation. It also includes information on animal models used and
study outcomes.

Table 2. Recapitulation of the outcomes of DAI’s pharmacological studies in several pre-clinical
investigations for various disease conditions.

Route Disease Dose/Duration Outcomes Animal Model Ref.

i.p. Oxidative stress 200 mg/kg for 2 days
Effective in reducing glutathione reserve,

glutathione peroxidase activity and superoxide
dismutase’s activity

Mice [51]

i.p. Inflammation 1, 5, 10 mg/kg once
a day for 7 days

DAI produced significant anti mucosity activity at
10 mg/kg against 5-Fluorouracil induced mucositis Mice [95]

p.o. Memory impairment 5 mg/kg Administration of DAI acts on estrogen receptor to
improve the memory loss condition Mice [96]

p.o. Obesity 50 and 100 mg/kg for
30 consecutive days

Reduced the body and white adipose tissue weight
of obese mice and ameliorated the hyperlipoidemia

induced by high fat diet
Mice [97]

p.o. Parkinson 50, 100 mg/kg
per day for 5 days

Significant improvement in neuronal degeneration
in brain tissue Rats [98]

s.c. Cardiovascular 200 mg/day for
7 days

Effective in enhancement of endothelial
dependent relaxation Rats [99]

p.o. Memory impairment 5 kg/mg
Improvement in the dysfunction due to scopolamine

and enhanced learning capacity as compared to
control group

Mice [100]

p.o. Diabetes 10 mg/kg Potential antidiabetic activity showed via inhibitory
effect on α-glucosidase and α-amylase Mice [101]

p.o. Blood pressure 20 mg/kg for
2 weeks daily

Induced hypotensive and vasodilator effects by
inhibiting Ca2+ influx Rats [102]

s.c. Ovariectomy 0.2, 0.4 and 0.8 mg/kg
per day for 1 week

Improved vascular endothelial dysfunction by
inhibiting caveolin-1 and activation of

PI3K-PKB/Akt pathway
Rats [103]
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Table 2. Cont.

Route Disease Dose/Duration Outcomes Animal Model Ref.

p.o. Diabetic retinopathy 25, 50, 100 mg/kg for
28 days

Prevented from the damage of retina in
hyperglycemia condition by reducing

oxidative stress
Rats [45]

p.o. Neuroprotective 2 or 20 mg/day for
4 weeks

DAI significantly decreased the concentration of
malondialdehyde and act as pro-oxidant Rats [104]

p.o. Anxiety 200 mg/kg Long-term DAI ingestion produced considerable
impact on social behavior, mood, and locomotion Mice [105]

i.p. Inflammation 10 mg/kg/day

Significantly reduced the severity of
L-arginine-induced acute pancreatitis while the

anti-inflammatory and strong antioxidative
properties are responsible for improvement

Rats [106]

p.o. Inflammation 1.0 g/kg chow for
12 weeks

Effective in decreasing MCP-1, TNF-α, and increased
expression of adiponectin Mice [107]

p.o. Immunomodulation 20 mg/kg biweekly Significantly reduced IgG1 production, while
increased the T-helper cells Mice [108]

p.o. Neuroprotective 200 mg/kg for
15 days

Study showed neuroprotective effect when
interacted with the receptor neurotensin1 and

interleukin-10 pathways
Rats [109]

i.p. Obesity 50 mg/kg for 14 days

Significantly reduced body weight in rats and, as
well, ameliorate the condition of hyperlipidemia,

which can partially explain the anti-steatotic,
cholesterol-lowering and insulin sensitizing effects

Rats [110]

p.o. Fatty liver 0.1 g per kg diet for
12 weeks

Effective in inhibiting the adiposity by the
upregulation of genes involved in fatty acid

β-oxidation and the anti-adipogenesis
Mice [111]

p.o. Diabetes 50 mg/kg for
4 weeks

Demonstrated that it is effective in decreasing blood
glucose level and no effect on resistin level Rats [112]

p.o. Diabetes 0.2 g/kg for 6 weeks
Effectively act as anti-hyperglycemic through the

activation of glucokinase and inhibition of G6Pase,
PEPCK, FAS, β-oxidation, and CPT in the liver

Mice [113]

i.p. Oxidative stress 100 mg/kg for
11 days

Effective in imparting protection against the
nephrotoxic effect Rats [114]

p.o.: per oral; i.p.: intraperitoneal; s.c.: subcutaneous; PI3K-PKB/Akt: phosphatidylinositol-3-OH kinase/protein
kinase B; MCP-1: Monocyte chemoattractant protein-1; TNF-α: tumor necrosis factor alpha; IgG1: Immunoglob-
ulin G1; G6Pase: Glucose 6-phosphatase; PEPCK: Phosphoenolpyruvate carboxy kinase; FAS: death receptor
involved in apoptosis expressed by insulin-producing beta cells; CPT: carnitine palmitoyl transferase.

4. Outline of Nanotechnological Aspects Explored for Daidzein in Therapeutics

DAI has limited clinical applications because of poor aqueous solubility and less
permeability which causes low oral bioavailability. In the light of available information,
the development of nanoparticles is a suitable strategy to address issues of low solubility,
permeability, and bioavailability.

A significant role of nanomedicine in the treatment of many disorders has been
demonstrated in research conducted in this field. Utilizing nanotechnology enables early
diagnosis and more effective drug administration. Nanomaterials range in diameters
between 1 and 1000 nm and have a large surface area to volume ratio. According to
their structural properties, nanomaterials can be classified as either nanostructured or
nanocrystalline. Nanostructured materials can be divided into three categories: lipid-based,
polymer-based, and non-polymer-based depending on the type of material used [115–117].

The numerous applications of nanotechnology in the pharmaceutical sector have been
demonstrated in areas such as targeted diagnostics, therapy, delaying drug release, en-
hancing drug solubility and bioavailability, reducing drug adverse effects, and overcoming
barriers in the human body [118].

Table 3 summarizes the recent advancements in the field of nanotechnology-based
drug delivery systems of DAI which has been investigated to improve solubility and
bioavailability (Table 3).
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Table 3. Review of up-to-date progression in development of nanocarriers based drug delivery of
DAI for solubility and bioavailability enhancement.

Technique Excipients Study Outcomes Ref.

Polymeric nanoparticles

Solvent evaporation method
Poly (lactic-co-glycolic),
Phosphatidylcholine,
Hydroxypropyl-β-cyclodextrin

Relative bioavailability of phospholipid complex based PLGA
nanoparticles improved by 5.57 while cyclodextrin complex based
PLGA nanoparticles showed 8.85-fold enhancement of relative
bioavailability in comparison to DAI suspension at dosage of
10 mg/kg in Sprague Dawley rats via p.o. administration

[26]

Antisolvent method Zein, Coumarin-6, TPGS-1000
Cmax and AUC0–12h was increased by 2.64-fold and 2.4-fold,
respectively as compared to daidzin solution on p.o. administration of
zein nanoparticles in mice

[119]

Emulsion solvent diffusion method PLGA, Polyvinyl alcohol
Nanoparticles exhibited sustained drug release. Neurotoxic effects at
high dosages of DAI (200 µM and 300 µM) was decreased while
maintaining cytotoxic effects on U87MG glioma cell lines

[120]

Solid lipid nanoparticles

Hot homogenization method
Egg phosphatidylcholine, Compritol
800, polyethylene glycol,
phosphatidylethanolamine

AUC0–∞ from i.v. administration of DAI NPs and free DAI was found
83.62 ± 1.89 µg·h/mL and 28.29 ± 1.29 µg·h/mL, respectively, which
illustrated bioavailability enhancement in Sprague Dawley rats. SLNs
(i.v.) exhibited superior result on CVS of Beagle dogs via reduction of
myocardial oxygen consumption and coronary resistance in heart in
contrast to DAI suspension (p.o.) or i.v. solution. SLNs also revealed
superlative action on cerebrovascular system through enhancing
cerebral blood flow and decreasing cerebrovascular resistance in
Beagle dogs

[121]

Nanostructured lipid carriers

Emulsification and low temperature
solidification method

Azone, lecithin, Triethanolamine,
Capric triglyceride, Tetrahydrofuran

NLC-nanofibers achieved high permeation of 21.71 µg/cm2 at 60 h
using rat skin which was 3.78-folds greater than pure drug [122]

Film homogenization technique Glycerol monostearate, Sodium oleate,
Soybean phospholipids

AUC0-t from NLCs was increased by 6.87-times while from
phospholipid complexes was enhanced 3.62-folds in comparison to
pure DAI in rat model and therefore, NLCs were found effective
nanocarriers to increase oral absorption of poorly absorbed lipophilic
and hydrophilic compounds

[29]

Polymer-lipid nanoparticles

Emulsification method PLGA, egg lecithin, azone, tween 20
In vivo skin retention study using rat skin showed that steady state
flux (Jss) from polymer-azone-lipid NPs was enhanced 1.44-folds and
6.01-folds in comparison to polymer-lipid-NPs and DAI solution

[123]

Micelles

Solvent evaporation technique Lecithin, sodium bile

Intestinal absorption of DAI from lecithin micelles was significantly
improved in Sprague Dawley rats and AUC0-t value in rats receiving
micelles treatment was twenty times higher than that of free DAI
solution

[124]

Nanosuspension

Precipitation-high pressure
homogenization method

TPGS, carboxylated chitosan,
Poloxamer 188, PVP-K30, Cremophor,
PEG 600, β cyclodextrin, Soy lecithin,
sodium dodecyl sulphate

In vivo pharmacokinetic study of nanosuspension formulations in
Sprague Dawley rats illustrated bioavailability enhancement by 1.63 to
2.19 times than crude drug suspension via p.o administration at
14 mg/kg dose

[125]

Media milling techniques Pluronic, sodium dodecyl sulphate,
PVP-K30

The saturation solubility and dissolution rate of DAI was increased
through fabrication of nanosuspension. Enhanced cytotoxicity effect
was observed in RG2-GBM tumor cells

[27]

Nanocomplexes

Thermal treatment Whey protein isolate Effectively inhibited crystallization, induced 2-fold solubility
enhancement and increased DAI stability [126]

Nanoemulsion

High-pressure homogenization
Lipoid S100, Tween 80, sodium
dodecyl sulfate, Fetal bovine
Serum, Ethyl oleate

Cell viability assay using melanoma cell lines (SKMEL30) revealed that
nanoemulsion induced significant cell death in comparison to pure
DAI (p < 0.05) for 48 h of incubation period. However, insignificant
(p > 0.05) cytotoxic effects were shown by nanoemulsion in human
dermal fibroblast (PCS-201-012, normal) cell lines in comparison to DAI
solutions and blank formulations for 24 and 48 h of incubation period

[127]

Liposomes
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Table 3. Cont.

Technique Excipients Study Outcomes Ref.

Ultrasonication and lipid film
hydration

Soybean phosphatidylcholine,
cholesterol, DSPE-mPEG2000

In vivo pharmacokinetic of liposome in Sprague Dawley rats
demonstrated that t1/2, MRT0-t and AUC0-t of DAI increased by 1.8-,
1.6- and 2.5-fold in comparison to free DAI

[128]

Self-Micro Emulsifying Drug Delivery System

Emulsification Cremophor RH 40, Tween 80,
Polyethylene glycol 400

The dissolution rate of SMEDDS was significantly enhanced in contrast
to tablets. In vivo pharmacokinetic study in Sprague Dawley rats
revealed that AUC0-12h from SMEDDS and DAI suspension (10 mg/kg,
p.o.) were 954.32 ± 158.30 ng/mL·min and 380.98 ± 67.59 ng/mL·min,
respectively which showed 2.5-fold amplification in bioavailability.

[129]

AUC0-t: Area under the plasma concentration-time curve; % CDR: percentage cumulative drug release; DSPE-
mPEG2000: PEGylated derivative of 1,2-distearoyl-sn-glycero-3-phosphoethanolamine; MRT0-t: mean residence
time; PVP-K30: Polyvinylpyrrolidone K-30; PEG 600: Polyethylene glycol 600; SLN: solid lipid nanoparticles;
NLCs: nanostructured lipid carriers; PLGA: Poly (lactic-co-glycolic); t1/2: half-life, TPGS: Tocopherol Polyethylene
Glycol Succinate.

There are several methods for encapsulating DAI nanoparticles, including the solvent
evaporation method [26], antisolvent method [119], emulsion solvent diffusion [120], hot
homogenization [121], film homogenization [29], media milling [27], ultrasonication/lipid
film hydration method [129], and emulsification [123].

The experimental study showed that poly(lactic-co-glycolic acid) (PLGA) and PLGA-
Gelucire nanoparticles loaded with DAI were used to treat glioblastoma multiforme, and
it led to the conclusion that the formulation used was effective for sustained delivery,
reducing neurotoxic effects, and maintaining cytotoxic effects against cancer cells [120].

DAI is a very useful medication for the treatment of cardio-cerebrovascular illnesses,
but it is not as effective as it might be because of its poor oral absorption and bioavail-
ability. A group of researchers prepared solid lipid nanoparticles for treatment of cardio-
cerebrovascular diseases. The prepared solid lipid nanoparticles released the drug in
a sustained manner and demonstrated over 90% release within 120 h [121].

The structural composition of several nanocarriers investigated for innovative delivery
of DAI is shown in Figure 3.
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4.1. Polymeric Nanoparticles

Polymeric nanoparticles (PNPs) are a type of particle with sizes ranging from 1 to
1000 nm, that are comprised of active compounds that have been entrapped inside the
polymeric core or surface-adsorbed onto the polymeric core [130].

PNPs’ ability to protect drugs and their potential for controlled release can increase
drugs’ bioavailability and therapeutic index [131]. PNPs, which contain a variety of
therapeutic compounds, are produced with biodegradable materials such as poly-(D, L-
lactic acid), PLGA, polycaprolactone, and its copolymers such as polyethylene glycol [132].

PNPs can be synthesized from two methods, i.e., (i) dispersion of performed polymers
and (ii) polymerization of monomers. Dialysis, nanoprecipitation, solvent evaporation,
supercritical fluid technology, emulsification, solvent diffusion, and salting out are the
methods utilized to disperse the performed polymers. Another method for producing PNPs
using microemulsion polymerization, controlled radical polymerization, and interfacial
polymerization involves the polymerization of monomers [133–135].

A group of researchers formulated DAI PLGA nanoparticles using the emulsion-
solvent evaporation method, and relative bioavailability was enhanced about 5.57- and
8.85-fold, respectively, in comparison to the control group [26]. By employing the anti-
solvent approach, Zou and Gu synthesized TPGS 1000 emulsified zein nanoparticles, and
they discovered that nanoparticles had increased Cmax of DAI by 2.64-fold and are under
the curve (AUC) (0–12 h) by 2.4-fold compared to free drug [119].

4.2. Solid Lipid Nanoparticles

Solid lipid nanoparticles (SLNs) are efficient colloidal carriers which have fascinating
characteristics such as small size, large surface zone, high drug entrapment, and the capacity
to improve the therapeutic performance of pharmaceuticals [136,137].

Aqueous surfactant is coated over a solid core of high melting point lipid in SLNs.
Triglycerides, acyl glycerol, glyceryl monostearate, waxes, cetyl palmitate, soy lecithin, and
egg lecithin are among the several lipid types employed in the production of SLNs [138,139].

A number of techniques are employed to prepare SLNs, including double emul-
sion (w/o/w), ultrasound dispersion, high shear homogenization, solvent emulsification-
diffusion, solvent injection, and high pressure homogenization (cold and hot homogeniza-
tion) [140–142]. A group of researchers developed DAI solid lipid nanoparticles using
hot homogenization method and it demonstrated sustained drug release with cumulative
release over 90% within 120 h [121].

4.3. Nanostructured Lipid Carriers

Lipid-based formulations, such as nanostructured lipid carriers (NLCs), are regarded
to be superior to conventional lipid-based nanocarriers, which have a rigid matrix at room
temperature. NLCs are created by combining liquid lipid and solid lipid in such a way
that prevents the oil molecules from contributing to the crystalline structure [143]. In order
to overcome the drawbacks of SLNs, NLCs have been developed which demonstrated
better loading capacity for active chemicals as compared to SLN. Moreover, there is less
possibility of drug discharge from NLCs during storage [144].

The methods that are typically employed for the production of NLCs include film-
ultrasonic, evaporation-low temperature solidification, high-pressure homogenization,
microemulsion, supercritical fluid, membrane contactor, solvent dispersion, microchannel,
and microtubes [145].

By using emulsification and low-temperature solidification technique, Song and his
colleague produced DAI-loaded nanostructured lipid carriers for transdermal application.
Researchers found that the permeation rate was 3.78 times higher than that of pure DAI
solution [122].
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4.4. Polymeric Micelles

Polymeric micelles are amphiphilic co-polymers that have formed into nanoscale
colloidal particles with sizes between 5 and 100 nm above the critical micelle concentration.
The aqueous media is used for the production of micellar core–shell structure in order to
reduce hydrophobic segment’s interaction with the single chains of polymers [146].

Additionally, polymeric micelles have a unique core–shell structure with an inner core
that serves as a nanocontainer for hydrophobic drugs and an outer shell that is surrounded
by hydrophilic polymer shell. Numerous advantages of polymeric micelles include ease of
production, efficient drug loading without chemical alteration of the parent molecule, and
controlled drug release [147].

Researchers synthesized DAI micelles using the anti-solvent technique and demon-
strated that the AUC0-t was 20 times higher than it was for the free drug [124].

4.5. Nanosuspension

The colloidal dispersion containing drug particles with a submicron size is known
as nanosuspension. A pharmaceutical nanosuspension is comprised of colloidal biphasic
particles that are stabilized by surfactants and polymers and are free of matrix components.
According to research, nanosuspension boosts bioavailability and absorption, which results
in a dose reduction for oral dosage forms [148,149].

Homogenization, wet milling, emulsification, solvent evaporation, precipitation or
microprecipitation are common methods for manufacturing nanosuspensions [150,151].

The stability of the particles created by the nanosuspension depends on their size.
When compared to other delivery methods, nanosuspensions have the benefit of being
simpler and have the ability to overcome concerns with poorly lipid- and water-soluble
compounds [152].

A group of researchers synthesized DAI nanosuspension by precipitation high-pressure
homogenization and concluded that oral bioavailability increased by 1.63–2.19 times greater
than that of crude DAI [125].

4.6. Nanoemulsion

Nanoemulsions are colloidal particle systems with submicron sizes (10–1000 nm)
that serve as drug carriers. Solid spheres with an amorphous, lipophilic, and negatively
charged surface constitute these carriers. These usually improve drug delivery systems by
increasing the therapeutic potency of drugs and minimizing their adverse effects [153]. The
primary applications of nanoemulsions include the treatment of reticuloendothelial system
infections, liver enzyme replacement therapy, cancer treatment, and vaccination [154]. The
phase inversion method, sonication method, and high pressure homogenization are the
techniques utilized to create nanoemulsions [155].

Drugs that are poorly water soluble can have their bioavailability increased by using
oil-in-water nanoemulsion. However, the difficulties in reducing droplet size and the re-
quirement for specialized equipment and manufacturing procedures make the development
of nanoemulsion an expensive operation [156].

Researchers formulated a nanoemulsion of DAI using high-pressure homogenization,
and a study revealed that it significantly increased cell death as compared to pure DAI [127].

4.7. Liposomes

Liposomes are spherical, uni lamellar or multilamellar vesicles that are used to de-
liver drugs into cells through the cell membrane, which is made up of cholesterol and
a phospholipid bilayer [157].

Hand shaking techniques, sonication techniques employing probe or bath sonicators,
reverse phase evaporation techniques, and freeze dried rehydration techniques are all used
to produce liposomes [158,159].

Liposomes are effective for intracellular delivery of deoxyribonucleic acid, ribosome,
proteins, and peptides. Targeted drug delivery to diseased sites is facilitated by the long
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circulation residence times of liposomes. Compared to free complements, liposomal drugs
are more efficacious and have reduced toxicities [160,161]. Researchers prepared DAI-
loaded liposomes using ultrasonication and lipid film hydration and found that the t1/2,
mean residence time0-t and AUC0-t of DAI in the liposomes were 1.8, 1.6, and 2.5 times
higher than those in free DAI [128].

4.8. Self-Micro Emulsifying Drug Delivery System (SMEDDS)

The Self-Micro Emulsifying Drug Delivery System (SMEDDS) refers to isotropic com-
positions of synthetic or natural oils, liquid or solid surfactants, or hydrophilic solvents/co-
solvents which possess the remarkable ability to generate fine oil-in-water (o/w) microemul-
sions on gentle agitation accompanied by dilution in an aqueous environment such as
gastrointestinal fluids [162].

SMEDDS is a cutting-edge method for making lipophilic drugs more soluble in wa-
ter, which eventually increases their bioavailability. SMEDDS is an ideal carrier that has
great potential for producing drug delivery across intestinal aqueous boundary and conse-
quently tends to improve the bioavailability because it can carry out drug delivery to the
gastrointestinal tract (GIT) in the form of globules with sizes ranging from 1 to 100 nm and
enormous specific surface area. Peptides that are susceptible to enzymatic hydrolysis may
be transported to the GIT via SMEDDS. To obtain sustained drug release, polymer can be
added to the SMEDDS formulation [163].

The main advantages that distinguish SMEDDS from other nanocarriers when com-
pared to other drug delivery systems are its simplicity in manufacturing and scaling up. For
large-scale production, SMEDDS requires relatively low-cost manufacturing equipment,
such as a conventional mixer with agitator and volumetric liquid filling machinery [164].

Researchers synthesized SMEDDS of DAI using the emulsification process, and the
results showed that the bioavailability was increased by about 2.5 times when compared to
the control group [129].

5. Clinical Status of Daidzein

On the official website of ClinicalTrials.gov, a search was conducted for the clinical
trials including DAI and its medicinal uses that have been completed to date. According to
research, DAI has undergone four successful clinical studies. Table 4 summarizes study
tile, sponsor condition, study type/allocation/intervention model, and number of clinical
trials (NCT) [165].

Table 4. The state-of-the-art about clinical trial status related to DAI and its therapeutic applications.

Study Tile Sponsor Condition Study Type/Allocation/
Intervention Model NCT no.

Whole soy and DAI on reduction
of blood pressure in
postmenopausal Chinese women

Chinese University of
Hong Kong Hypertension Interventional/Randomized/

Parallel assignment 01270737

Effects of soy isoflavones on
menopausal hot flashes

Beth Israel Deaconess
Medical Center Menopausal symptoms Interventional/Randomized/

Parallel assignment 00179556

Effect of two different isoflavone
supplement preparations on
gene-expression in
postmenopausal women (ISOII)

Wageningen University Post menopause Interventional/Randomized/
Crossover assignment 01556737

The effects of soy isoflavones to
improve the metabolism of
glucose and lipids

Sun Yat-sen University Type 2 diabetes mellitus Interventional/Randomized/
Parallel Assignment 00951912

6. Conclusions and Future Perspectives

DAI, an isoflavone flavonoid, has attracted a lot of attention in recent years due to
its wide range of therapeutic benefits on oxidative stress, cancer, obesity, cardiovascular
disease, neuroprotection, diabetes, ovariectomy, anxiety, and inflammation. Despite the
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wide range of biological activities that this phytoconstituent exhibits, there are certain
limitations to DAI’s administration, including its poor water solubility, slow absorption,
and limited oral bioavailability.

This review revealed a number of nanocarriers that have been investigated for the
delivery of DAI, including polymeric nanoparticles, solid lipid nanoparticles, nanostruc-
tured lipid carriers, polymeric micelles, nanocomplexes, nanosuspension, nanoemulsion,
liposomes, and self-micro emulsifying drug delivery systems. Additionally, our paper
highlighted the results of several studies that focused into generating nanocarrier-based
DAI to increase its pharmacological potential, and it ultimately showed that nanotechnol-
ogy might be quite helpful in resolving solubility and permeability challenges faced by
phytoconstituents in therapeutic applications. The use of soy products has expanded over
the last few years due to DAI’s vital role in therapeutic applications.

On the other hand, a long-term high soy product diet could reduce the secretion of
serum testosterone and, therefore, can cause complications in male fertility. Additionally,
research is required to examine a novel extraction technique to produce DAI analogues
with a greater bioavailability.

Nano formulations present a tremendous opportunity for investigating the effective-
ness and bioavailability of DAI because of their small particle size, high specific surface
area, increased surface reactivity, and superior adsorption capacity.
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