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Abstract: Steroids and their derivatives have been the subject of extensive research among investiga-
tors due to their wide range of pharmacological properties, in which steroidal oximes are included.
Oximes are a chemical group with the general formula R1R2C=N−OH and they exist as colorless
crystals and are poorly soluble in water. Oximes can be easily obtained through the condensation
of aldehydes or ketones with various amine derivatives, making them a very interesting chemical
group in medicinal chemistry for the design of drugs as potential treatments for several diseases. In
this review, we will focus on the different biological activities displayed by steroidal oximes such
as anticancer, anti-inflammatory, antibacterial, antifungal and antiviral, among others, as well as
their respective mechanisms of action. An overview of the chemistry of oximes will also be reported,
and several steroidal oximes that are in clinical trials or already used as drugs are described. An
extensive literature search was performed on three main databases—PubMed, Web of Science, and
Google Scholar.
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1. Introduction

Steroids belong to a class of natural or synthetic organic compounds, whose basic
molecular structure is typically composed of 17 carbon atoms, bonded in four “fused” rings:
three six-member cyclohexane rings (rings A, B and C) and one five-member cyclopentane
ring (the D ring). (Figure 1). They play a crucial role in the human body, being responsible
for the regulation of several biological processes. This fact, together with their interesting
biochemical properties, such as the ability to penetrate cell membranes and bind to the
nuclear and membrane receptors, makes them extremely attractive in the design of new
potential drugs for the treatment of several diseases [1,2]. In fact, since their discovery in
1935, steroids have been widely used in the treatment of several conditions in the most
variable areas of medicine, for example, for the treatment of autoimmune and inflammatory
diseases and for the treatment of cancer [3,4]. Given the privileged scaffold of steroids
and their suitability for structural modifications, steroidal derivatives have been arousing
interest among medicinal chemists in the hunt for novel drug candidates. Slight alterations
in the basic ring structure of steroids can elicit an enormous change in biological activity,
giving rise to steroidal derivatives with a wide range of therapeutic activities [5,6].
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Oximes are one of the most popular and extensively hailed nitrogen-containing 
biological compounds, presenting several biological and pharmacological applications 
[7]. They have achieved popularity due to their application as antidotes against nerve 
agents, which is attained by their capacity to reactivate acetylcholinesterase (AChE) [8]. 
Since that, these hydroxy-imine derivatives have also been associated with several other 
biological activities such as antibacterial, antifungal, anti-inflammatory, antioxidant, and 
finally, anticancer as described [7,9]. 

Employing the hydrophobic steroid core with a hydroxyimino group constitutes an 
advantage since this chemical group can increase the molecules’ ability to interact with 
cell membranes, paving the way for enhanced biological activity [10]. For these reasons, 
in the last 20 years, a reasonable number of new steroidal oximes has been designed and 
synthesized and then evaluated for their biological activity. This review will focus mainly 
on the most active steroidal oximes developed as antitumor and antimicrobial agents. 
Additionally, a few examples of steroidal oximes with anti-inflammatory activity are also 
considered. 

 
Figure 1. General structure of steroidal scaffold (left). Unless implied or stated to the contrary, the 
configuration of hydrogen atoms at the bridgehead positions 8, 9 and 14 are oriented as shown in 
the right formula (i.e., 8β, 9α, 14α). 

2. Chemistry of Steroidal Oximes 
Oximes (R1R2C=N−OH) (Figure 2) are a nitrogen-rich group of compounds, which 

are produced in nature in the plant and animal kingdom. In plants, oximes and their 
derivatives play a fundamental role in the metabolism of plant growth and development 
and in a variety of biosynthetic pathways [9,11]. In animals, oximes are most commonly 
known for their participation in the olfactory communication between animals [12]. 
Oximes exist as colorless crystals, are poorly soluble in water, and are easily accessible in 
laboratories and in industry, which makes them very appealing [13,14]. Additionally, they 
are extensively used not only as protectors of carbonyl groups but also as intermediates 
in the Beckmann rearrangement to synthesize several lactam derivatives [9,15,16]. 
Furthermore, oximes have the particularity of being easily transformed into different 
chemical groups such as amines, nitro, and other heterocyclic compounds [16,17]. 

 
Figure 2. General structure of the hydroxyimino group of the oximes. 

There are several ways to produce oxime derivatives and some reviews have been 
published regarding the chemistry of oximes [13,16,18]. The most classical method of 
oxime synthesis, which is the most used in the synthesis of steroidal oximes, involves the 
reaction of a carbonyl compound, a ketone or an aldehyde with hydroxylamine (NH2OH) 
or a hydroxylammonium salt in the presence of a base (Figure 3). This type of reaction 
with aldehydes and non-symmetrical ketones can originate the two E or Z isomeric oxime 
forms, which can exist both as single compounds and or in mixture. Such chemical aspects 
can have a great impact on biological activity [7,12]. 

Figure 1. General structure of steroidal scaffold (left). Unless implied or stated to the contrary, the
configuration of hydrogen atoms at the bridgehead positions 8, 9 and 14 are oriented as shown in the
right formula (i.e., 8β, 9α, 14α).

Oximes are one of the most popular and extensively hailed nitrogen-containing biolog-
ical compounds, presenting several biological and pharmacological applications [7]. They
have achieved popularity due to their application as antidotes against nerve agents, which
is attained by their capacity to reactivate acetylcholinesterase (AChE) [8]. Since that, these
hydroxy-imine derivatives have also been associated with several other biological activities
such as antibacterial, antifungal, anti-inflammatory, antioxidant, and finally, anticancer
as described [7,9].

Employing the hydrophobic steroid core with a hydroxyimino group constitutes an
advantage since this chemical group can increase the molecules’ ability to interact with
cell membranes, paving the way for enhanced biological activity [10]. For these reasons,
in the last 20 years, a reasonable number of new steroidal oximes has been designed
and synthesized and then evaluated for their biological activity. This review will focus
mainly on the most active steroidal oximes developed as antitumor and antimicrobial
agents. Additionally, a few examples of steroidal oximes with anti-inflammatory activity
are also considered.

2. Chemistry of Steroidal Oximes

Oximes (R1R2C=N−OH) (Figure 2) are a nitrogen-rich group of compounds, which are
produced in nature in the plant and animal kingdom. In plants, oximes and their derivatives
play a fundamental role in the metabolism of plant growth and development and in a
variety of biosynthetic pathways [9,11]. In animals, oximes are most commonly known for
their participation in the olfactory communication between animals [12]. Oximes exist as
colorless crystals, are poorly soluble in water, and are easily accessible in laboratories and
in industry, which makes them very appealing [13,14]. Additionally, they are extensively
used not only as protectors of carbonyl groups but also as intermediates in the Beckmann
rearrangement to synthesize several lactam derivatives [9,15,16]. Furthermore, oximes
have the particularity of being easily transformed into different chemical groups such as
amines, nitro, and other heterocyclic compounds [16,17].
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There are several ways to produce oxime derivatives and some reviews have been
published regarding the chemistry of oximes [13,16,18]. The most classical method of oxime
synthesis, which is the most used in the synthesis of steroidal oximes, involves the reaction
of a carbonyl compound, a ketone or an aldehyde with hydroxylamine (NH2OH) or a
hydroxylammonium salt in the presence of a base (Figure 3). This type of reaction with
aldehydes and non-symmetrical ketones can originate the two E or Z isomeric oxime forms,
which can exist both as single compounds and or in mixture. Such chemical aspects can
have a great impact on biological activity [7,12].
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Apart from the most commonly used synthetic strategy, there are other methods
to prepare oximes involving non-carbonyl compounds, which consist of the reduction
of nitroalkenes to create aldoximes and ketoximes. The reduction of α,β-unsaturated
nitroalkenes gives rise to different oxime derivatives, depending if the nitro group is
terminal or internal. More specifically, when the nitro group is terminal, aldoximes are
produced, in mildly acidic conditions, in good yields. On the contrary, if the nitro group
is internal, under basic conditions ketoximes are formed also in good yields [9,16]. Other
variants of oxime synthesis include oxime ethers, esters, and amidoximes, all of which are
of great biological and pharmacological importance. Oximes can act both as weak acids and
weak bases. For this reason, the oxime anions can behave as ambident nucleophiles, which
means that they can attack through two different sites, allowing them to be widely used for
the synthesis of the above-mentioned class of compounds (ethers, nitrones, etc.) [13].

Another aspect of this chemical group is that it can behave both as hydrogen-bond
donor (via OH group) and as hydrogen-bond acceptor (via nitrogen and oxygen atoms),
which together with the high polarity of the oxime moiety can have a tremendous impact
on the interaction with the receptor binding sites, enhancing biological activity, when
compared to the carbonyl group [7,9]. This premise will be the focus of our review, in
which we discuss several synthesized steroidal oximes with enhanced biological activity
when compared with the parent carbonyl compounds.

3. Steroidal Oximes as Antitumor Agents

Steroidal compounds have been associated with antitumor activity for many years.
Several reports focusing on their interesting properties as anticancer agents have been
published [19–33]. The oxyimino group of oxime compounds is also a structural feature
that confers very interesting biological properties among them antitumor activity [7,34].
For this reason, cytotoxic steroidal oximes have been extensively studied throughout the
years [14,34]. In this review, we focused on the most active steroidal oximes, described in
the literature, against several types of cancer. They are divided according to their steroidal
motif: androstane, estrane, pregnane, cholestane, diosgenin, and bile acid derivatives.

3.1. Androstane Derivatives

5α-Reductase inhibitors have been widely studied for the treatment of diseases that
are exacerbated by 5α-dihydrotestosterone (DHT). Finasteride and dutasteride are two
5α-reductase inhibitors approved by the FDA with several therapeutic applications such as
for the treatment of benign prostatic hyperplasia and prostate cancer. Bearing this in mind,
Dhingra et al. developed a series of 17-oxyimino -5-androsten-3β-yl esters and evaluated
their cytotoxic activity against prostate cancer cells [35]. Compound 1a (Figure 4) was the
most active in DU145 prostate cancer cells with a percentage of growth inhibition of almost
91% at 5 µg/mL and an IC50 value of 3.8 µM (Table 1), being more active than finasteride
(78.51% of growth inhibition and IC50 = 3.9 µM). Moreover, the authors also evaluated the
compounds’ acute toxicity using mouse macrophages, which indirectly allowed them to
test for the compounds’ selectivity towards cancer cells. The toxicity index value (LC50)
presented by compound 1a was very high (LC50 = 89.4 µM), proving that 1a was non-toxic
to mouse macrophages.
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The introduction of a heteroatom or the substitution of one or more carbon atoms in
the steroid scaffold by a heteroatom can have a great impact on the compound’s biological
activity. Aza-homosteroids are a class of compounds with unusual structures, which have
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been associated with a wide range of biological activities such as antiparasitic, antifungal,
and anticancer [36–38]. Following this line, Huang et al. synthesized a series of 17a-aza-
D-homoandrostan-17-one derivatives, namely oximes 1b and 1c (Figure 4) [39]. Further
cytotoxicity analysis by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
(MTT) method revealed that both compounds were active against HeLa and SMMC7404
cells, being that compound 1b stood out in HeLa cells with an IC50 of 15.1 µM (Table 1).
Moreover, these oxime derivatives were in general more active than the compounds without
the oxyimino group in their structure, which proves that this chemical group is important
in conferring cytotoxicity.

Gomes et al. [34] designed and synthesized two novel steroidal oxime derivatives and
evaluated them and two other previously synthesized oximes [40,41] in several cancer cell
lines to assess their antiproliferative profile. Initial screening in WiDr, PC3, HepG2, and
H1299 cancer cell lines revealed that oximes 1d and 1e (Figure 4) were able to decrease all
cancer cells proliferation, being especially active against PC3 (IC50 = 13.8 µM for 1d and
14.5 µM for 1e) and WiDr (IC50 = 9.1 for 1d and 16.1 µM for 1e) cells (Table 1). Moreover,
both oximes were even more potent than some of the chemotherapeutic drugs currently in
clinical use for these types of cancer. Both oximes were able to induce cell cycle arrest at
different phases, accompanied by cell death by apoptosis/necroptosis and oxidative stress
(detected by an increase in ROS production) in both cell lines. Selectivity against cancer
cells was also assessed by testing the compounds in normal human colon cells. Results
demonstrated that both compounds are selective toward colon cancer cells [34].

Several novel oxime derivatives, such as (17E)-(pyridin-2-yl)methylidene 3-oximes
1f–1h were designed and synthesized (Figure 4) [42]. After the synthesis, the antiprolif-
erative activity of both compounds was assessed in a series of several human cancer cell
lines (MCF7, MDA-MB-231, PC3, HeLa, HT29, A549) and a normal human cell line, MRC5.
A549, HT29, and MDA-MB-231 cancer cells were the most sensitive cell lines to both oximes
being that A549 was the one with the best IC50 values for all compounds, 1f (IC50 = 1.5 µM)
1g (IC50 = 1.8 µM) and 1h (IC50 = 2.0 µM) (Table 1). Apoptosis induction analysis showed
that these oximes induced apoptosis in A549 cells, while at the same time being non-toxic
to normal lung fibroblasts MRC5. These results were very encouraging since lung cancer
remains one of the most difficult cancers to treat.

Some steroidal compounds with a hydroxyimino group at position C-7 conjugated
with an α,β-double bond in position C-5 were designed and synthesized [43]. After the
synthesis, their antitumor activity was evaluated against several types of cancer such as
cervical, gastric, epidermoid, and breast cancer. Results demonstrated that compounds
1i and 1j (Figure 4) were both able to decrease KB, HeLa, MKN-28, and MCF7 cancer
cell proliferation (Table 1) and were more active than the corresponding parent ketones.
Moreover, compound 1i was especially active against MCF7 cells presenting an IC50 value
of 10.2 µM.

Dubey et al. designed and synthesized novel dioximes of 16-benzylidene substituted
derivatives [44]. The antitumor activity of these dioximes was then evaluated in terms of
the percentage of growth inhibition of NCI-H460, MCF7, and SF268 cancer cells. Results
demonstrated that compounds 1k–1o (Figure 4) were considered active against these three
cell lines, which encourages the need for further and more detailed studies.

A group of investigators focused their attention on androstene oximes and their
O-alkylated derivatives [45]. These compounds and two previously synthesized oxime
derivatives, compounds 1p [46] and 1q [47] (Figure 4) were evaluated in leukemia, colon,
melanoma, and renal cancer cell lines. Only compounds 1p and 1q showed considerable
cytotoxicity in all cell lines (percentages of growth of 10.07 to 75.01% at 10 µM), being this
effect more pronounced in the leukemia cell lines, K562, HL60, and SR.

Aiming to evaluate the combined effect of the 17-heterocyclic ring and hydroxyimino
function, a group of investigators designed and synthesized modified 17α-picolyl and
17(E)-picolinylidene androstane derivatives and their antiproliferative activity against
breast, prostate, cervical, colon and lung adenocarcinoma, as well as normal fetal lung
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fibroblasts was assessed [48]. MTT assay results (Table 1) demonstrated that compound 1r
(Figure 4) was the most active compound in PC3 cells (IC50 = 6.6 µM), while compound 1s
(Figure 4) was more active, not only against PC3 cells (IC50 = 8.7 µM) but also against MCF7
cells (IC50 = 1.7 µM). Given these encouraging results, the authors went further ahead and
studied deeply the potential mechanisms of action of compound 1s in MCF7 cells. Results
showed that 1s induced apoptosis in breast cancer cells, assessed by alterations in the cells
morphology, such as nuclear condensation, vacuolated cytoplasm, degradation of nuclei
and cytoplasm, membrane blebbing, and apoptotic bodies formation [48].

Savić et al., designed and synthesized some novel D-homo lactone androstane deriva-
tives and evaluated their antiproliferative activity against several cancer cell lines [49].
Among these compounds, the oxime derivative 1t (Figure 4), demonstrated to have high
activity (Table 1). Moreover, 1t also revealed selectivity towards cancer cells since it presents
a much higher IC50 in the normal human cell line, MRC5. A few years later, the same
group of investigators designed, synthesized and evaluated the antitumor activity of some
more new D-homo lactone androstane derivatives [50]. In vitro cytotoxicity assessment
against cancer cells revealed that the steroidal oxime 1u (Figure 4) was able to decrease the
proliferation of PC3 (IC50 = 27.94 µM) and HeLa (IC50 = 13.86 µm) cells (Table 1).

Table 1. IC50 values (µM) of the synthesized androstane oxime derivatives.

Cell Line
Compounds

1a 1b 1c 1d 1e 1f 1g 1h 1i 1j 1r 1s 1t 1u

DU145 3.9 - - - - - - - - - - - - -

HeLa 15.1 75.7 - - >100 >100 22.6 12.8 22.2 >100 81.8 36.0 13.9

SMMC7404 - >200 184 - - - - - - - - - - -

WiDr - - - 9.1 16.1 - - - - - - - - -

PC3 - - - 13.8 14.5 >100 57.7 77.1 - - 6.6 8.7 36.7 27.9

HepG2 - - - 23.9 18.2 - - - - - - - - -

H1299 - - - 18.6 19.2 - - - - - - - - -

MCF7 - - - - - 41.0 44.9 >100 10.2 19.8 50.4 1.7 81.3 >100

MDA-MB-231 - - - - - 47.3 5.2 4.7 - - 25.3 40.1 11.9 >100

HT29 - - - - - 4.4 10.6 3.3 - - >100 10.3 4.0 >100

A549 - - - - - 1.5 1.8 2.0 - - >100 56.0 - -

MRC5 - - - - - >100 >100 >100 - - >100 >100 >100 >100

CEM - - - - - >50 >50 30.4 - - - - - -

G361 - - - - - 45.3 46.6 8.9 - - - - - -

BJ - - - - - >50 >50 25.3 - - - - - -

KB - - - - - - - - 26 28.5 - - - -

MKN-28 - - - - - - - - 18.1 36.1 - - - -

Ref. [35] [39] [34] [42] [43] [48] [49] [50]

These values were obtained through different techniques such as MTT and SRB assays.

3.2. Estrane Derivatives

Estrogen-3-O-sulfamates (EMATEs) are a class of steroidal compounds, which act as
irreversible inhibitors of steroid sulfatase (STS), an enzyme involved in the development of
estrogen-dependent breast cancer [51]. Given this, Leese et al. decided to design and synthe-
size D ring-modified 2-substituted EMATEs and evaluated their in vitro anticancer activity
in MCF7 cancer cells [52]. Antiproliferative activity evaluation of the steroidal oximes 2a–2j
(Figure 5) revealed that in general, all oximes were very effective in inhibiting MCF7 cancer
cell proliferation (Table 2). These results reinforce the importance of the modifications in
the 17-position of the 2-substituted EMATEs, particularly the introduction of an oxyimino
group, which increased the antiproliferative activity of this class of compounds [52].
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A series of novel estrone-16-oxime ethers were designed and synthesized, and their
antitumor activity was evaluated in HeLa, MCF7, and A431 cancer cells [53]. From all the
synthesized compounds, oxime 2k and 2l (Figure 5) decreased cancer cell proliferation
in a more pronounced way, being HeLa cells the most susceptible to both compounds
(IC50 = 4.41 µM for 2k and 4.04 µM for 2l) (Table 2). Further evaluation to characterize
the mechanisms of action of these compounds revealed both of them interfered with the
cell cycle at G1 phase and induced apoptosis in HeLa cells, by the activation of caspase-3.
Following this study, the same authors continued their research on this topic and designed
and synthesized a series of novel D-secooxime derivatives in the 13β- and 13α-methyl-
estrone series [54]. After MTT assays to assess antiproliferative activity in HeLa, MCF7,
A2780, and A431 cancer cell lines, compounds 2m–2o (Figure 5) stand out for displaying
high cytotoxicity against all cell lines and being, generally, even more active than cisplatin
as it can be seen in Table 2. Furthermore, compound 2n was selected for additional analysis
in A2780 cells, namely cell cycle analysis. Results showed that 2n induced cell cycle arrest
at the S phase, which in turn might be responsible for apoptosis induction [54].

Cushman et al. investigated several estradiol analogs to improve the anticancer
activity of 2-methoxyestradiol, a naturally occurring tubulin polymerization inhibitor [55].
Starting from 2-ethoxyestradiol, an analog previously synthesized by the same group, from
2-methoxyestradiol [56], two novel steroidal oximes 2p and 2q (Figure 5) were designed
and synthesized and their antitumor activity was assessed. Results revealed that both
compounds were extremely toxic to all the cell lines studied (HOP62, HCT116, SF539,
UACC62, OVCAR-3, SN12C and DU145) with GI50 (half growth inhibition) at values
ranging from 0.010 to 0.066 µM (Table 2). Furthermore, 2p and 2q were able to inhibit
tubulin polymerization. The oxime derivatives were the most active among all compounds
synthesized, which points out the importance of the oxyimino functionality.

Aiming to develop new steroidal oximes with potential application in cancer treatment,
a group of scientists designed and synthesized a series of estrone oxime derivatives and
evaluated them in six cancer cell lines [57]. MTT results proved that compound 2r (Figure 5)
is the most active against all cell lines, being LNCaP cells the most sensitive to this molecule
(IC50 = 3.59 µM) (Table 2). Given this, the cytotoxicity of this steroidal oxime was mediated
by a cell cycle arrest at G2/M phases accompanied by cell death by apoptosis, with evidence
of condensed and fragmented nuclei. Moreover, the authors speculated that this compound
might interfere with β-tubulin [57].
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Table 2. IC50 values (µM) of the synthesized estrane oxime derivatives.

Cell Line
Compounds

2a 2b 2c 2d 2e 2f 2g 2h 2i 2j 2k 2l 2m 2n 2o 2p 2q 2r

MCF7 5.87 6.47 0.24 0.17 0.23 0.23 1.33 5.14 0.17 >30 >30 2.6 2.6 >30 2.1 - - 25.63

HeLa - - - - - - - - - - - - 1.2 7.1 1.7 - - -

A431 - - - - - - - - - - - - 0.8 0.9 0.9 - - -

A2780 - - - - - - - - - - - - 0.9 1.4 0.7 - - -

HOP62 - - - - - - - - - - - - - - - 0.017 1.2 -

HCT116 - - - - - - - - - - - - - - - 0.031 2.1 -

SF539 0.021 2.8

UACC62 - - - - - - - - - - - - - - - 0.015 0.88 -

OVCAR3 - - - - - - - - - - - - - - - 0.016 5.4 -

SN12C - - - - - - - - - - - - - - - 0.045 17 -

DU145 - - - - - - - - - - - - - - - 0.049 17 -

MDA-MB-231 - - - - - - - - - - - - - - - 0.010 6.5 -

MGM - - - - - - - - - - - - - - - 0.066 4.2 -

T47D - - - - - - - - - - - - - - - - - 43.45

LNCaP - - - - - - - - - - - - - - - - - 3.59

HepaRG - - - - - - - - - - - - - - - - - 18.35

Caco - - - - - - - - - - - - - - - - - 24.33

NHDF - - - - - - - - - - - - - - - - - 30.84

Ref. [52] [53] [54] [55] [57]

These values were obtained through different techniques such as MTT assays and specific assay kits.

3.3. Pregnane Derivatives

Bearing in mind the importance of pregnenolone in biological systems, Choudhary
et al. synthesized a series of novel pregnenolone derivatives, being that some of which
were oximes [58]. After synthesis, the authors came up with compound 3a (Figure 6) which
was further evaluated in HepG2 and MDA-MB-231 cancer cells. Results demonstrated that
this compound was quite active against both cell lines with IC50 values of 4.50 and 6.76 µM
in HepG2 and MDA-MB-231 (Table 3), respectively, which makes it very promising to be
further analyzed.
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Table 3. IC50 values (µM) of the synthesized pregnane oxime derivatives.

Cell Line
Compounds

3a 3b 3c 3d 3e 3f 3g 3h

HepG2 4.50 - - - - - - -

MDA-MB-231 6.76 - - - - - - -

T24 - 2.41 1.94 1.99 2.62 1.90 - -

HT29 - - - - - - 2.35 2.37

HCT15 - - - - - - 0.31 0.65

SF295 - - - - - - 1.67 5.44

HOP62 - - - - - - 3.57 0.81

A549 - - - - - - 3.56 7.17

MCF7 - - - - - - 0.60 1.91

Ref. [58] [10] [59]

These values were obtained through different techniques such as MTT, MTS, and SRB assays.

Chen and collaborators did their research in 4-azasteroidal derivatives, namely 4-azasteroidal-
20-oxime derivatives using progesterone as starting material [10]. The compounds were then
evaluated by the MTS assay for their anticancer activity in human bladder carcinoma. After
the synthesis, the authors came up with five very active oxime compounds (3b–3f, Figure 6), in
T24 cells (Table 3). After structure-activity relationships (SAR) analysis, Chen et al. concluded
that the methyl and ethyl oxime-ether derivatives were more active against the referred cell
line when compared with the aryl oxime-ester derivatives.

Using pregnenolones as precursors, a group of scientists designed and synthesized a
series of benzylidene pregnenolones and their oximes and further evaluated their potential
antitumor activity in several cancer cell lines, namely HT29, HCT15, SF-295, HOP62, A549
and MCF-7 [59]. From all the synthesized oximes, compounds 3g and 3h (Figure 6) were
the most active against HCT15 (IC50 = 0.31 µM for 3g and 0.65 µM for 3h) and MCF7
(IC50 = 0.60 µM for 3g and 1.91 µM for 3h) (Table 3) cancer cells, revealing a cell specificity.
Moreover, the oxime derivatives were more potent than the corresponding precursors,
which points out the importance of the oxyimino functionality in conferring cytotoxicity
against cancer cells.

3.4. Cholestane Derivatives

Krstić et al. reported the design and synthesis of two novel steroidal oximes from
cholesterol, compounds 4a and 4b (Figure 7) [60]. A few years later, the same group of
scientists decided to evaluate the potential antitumor activity of these two oximes [61]
against two human cancer cell lines (HeLa and K-562) and against non-stimulated and PHA-
stimulated peripheral blood mononuclear cells (PBMC’s) from healthy donors to assess
selectivity. Both compounds showed a dose-dependent decrease in the proliferation of
HeLa cancer cells (IC50 = 35.24 ± 4.09 for 4a and IC50 = 20.68 ± 3.10 for 4b) and K-562 cancer
cells (IC50 = 28.05 ± 10.18 for 4a and IC50 = 11.16 ± 1.24 for 4b), while showing almost
no effects in normal immunocompetent cells (Table 4). Further evaluation revealed that
compound 4b exerted its cytotoxicity by inducing apoptosis in HeLa cells. On the contrary,
compound 4a showed no evidence of apoptosis or necrosis, which can be explained by the
difference in the Z/E stereochemistry in the hydroxyimino group of both compounds [61].
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Table 4. IC50 values (µM) of the synthesized cholestane oxime derivatives.

Cell Line
Compound

4a 4b 4c 4d 4e 4f 4g 4h 4p 4q 4r 4s 4t 4u 4v 4w

HeLa 35.2 20.7 - - - 22.8 5.6 - - - - - - - - -

K562 28.1 11.2 - - - - - - - - - - - - - -

PBMC 110 34.6 >100 >100 >100 - - - - - - - - - - -

MCF7 - - 8.2 9.5 7.9 - - - - - - - - - - -

MGC7901 - - - - - 12.8 16.3 - - - - - - - - -

SMMC7404 - - - - - 17.6 17.9 - - - - - - - - -

GNE2 - - - - - 12.1 - - - - - - - - - -

SPC-A - - - - - 74.5 - - - - - - - - - -

Tu686 - - - - - 24.9 - - - - - - - - - -

PC3 - - - - - 14.5 - 15.0 - - - - - - - -

HT29 - - - - - 10.6 - 11.9 - - - - - - - -

SH-SY5Y - - - - - - - 16.8 - - - - - - - -

HepG2 - - - - - - - 13.2 - - - - - - - -

A549 - - - - - - - 15.0 11.6 1.06 11.5 11.5 11.7 19.4 11.5 2.22

ARPE19 - - - - - - - 23.7 - - - - - - - -

BJ - - - - - - - 17.1 - - - - - - - -

HCT116 - - - - - - - - 2.32 0.21 1.15 1.15 2.33 1.94 11.5 2.22

PSN1 - - - - - - - - 2.32 1.06 11.5 23.1 >23.3 19.4 11.5 2.22

T98G - - - - - - - - 23.2 23.2 >23.1 23.1 23.3 19.4 11.5 2.22

Ref. [46] [47] [48,49] [51] [54]

A group of researchers investigated in aza-homosteroids derived from diosgenin and
cholesterol-containing hydroxyimino and lactam groups in the A/B ring with four types
of side chains: cholestane, spirostane, 22-oxocholestane and 22,26-epoxycholestene [62].
These compounds were further evaluated as potential antitumor agents in MCF7 cancer
cells. Antitumor activity assessment revealed that from all the synthesized compounds,
oximes 4c–4e (Figure 7) were the most promising ones with an IC50 of 8.2, 9.5, and 7.9 µM,
respectively (Table 4). MCF7 cancer cells were more sensitive to the compounds containing
a hydroxyimino group in comparison with the compounds without this chemical function.
Moreover, Mora-Medina et al., evaluated these three oximes against PBMCs to test for
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the selectivity index of these compounds. Results showed that 4c-4e were all remarkably
selective for MCF-7 cells, which makes these compounds very promising [62].

Huang et al. synthesized a series of 6-hydroxyimino-substituted-3-aza- and 4-aza-
A-homo-3-oxycholestanes using cholesterol as starting material [63]. Oximes 4f and
4g (Figure 7) were further evaluated in three different cancer cell lines, namely HeLa,
SMMC7404, and MGC7901. Results showed that both compounds displayed cytotoxicity
against these cell lines (Table 4), being more active than the referenced drug, cisplatin, in
HeLa and SMMC7404 cells. Altogether, these results demonstrated that the introduction of
the hydroxyimino group at position 6 was crucial for the compounds’ cytotoxicity against
cancer cells. Given the good outcomes obtained, these investigators decided to further
analyze compound 4f (Figure 7) and evaluated its antitumor activity in five more cancer
cell lines (GNE2, SPC-A, Tu686, PC3, and HT29) [64]. Results indicate that oxime 4f was
also quite active in all cell lines with IC50 values ranging from 10.6 to 74.5 µM (Table 4). Fur-
thermore, the molecular mechanisms by which 4f decreased cancer cell proliferation were
studied. Results unveiled that compound 4f induced cancer cell apoptosis by activation
of the intrinsic pathway, which was demonstrated by the annexin V labeling, activation
of caspase-3, and release of cytochrome C. Moreover, this oxime was also evaluated in an
in vivo model and proved to be able to inhibit tumor growth [64].

Oxysterols are a group of lipids derived from cholesterol, particularly interesting in the
medicinal chemistry field due to their diverse biological effects [65]. Given this, Carvalho
et al. designed and synthesized a series of oxysterols in which oxime 4h (Figure 7), a
3β,5α,6β-trihydroxycholestanol derivative, was included [66]. After the synthesis of 4h,
the compound’s cytotoxicity was studied in five human cancer cell lines (HT29, SH-SY5Y,
HepG2, A549, PC3) and two human normal cell lines (ARPE-19 and BJ). Oxime 4h was
quite active in all cancer cell lines being that HT29 was the most sensitive (IC50 = 11.9 µM).
Moreover, the compound revealed some selectivity towards HT29 cells (selectivity index
of 1.99) since the IC50 displayed was higher in the normal cell lines (Table 4). This work
contributed to deepening the understanding of oxysterols’ cytotoxicity and shed some light
on the SAR of these classes of compounds.

In 1997, two steroidal molecules with very interesting and unusual structures, (6E)-
hydroxyiminocholest-4-en-3-one (4i, Figure 7) and its 24-ethyl analog (4j, Figure 7), were
isolated from Cinachyrella marine sponges [67]. Analysis of their antitumor activity revealed
that only compound 4i was able to decrease the proliferation of P388 (IC50 = 1.25 µg/mL),
A549 (IC50 = 1.25 µg/mL), HT29 (IC50 = 1.25 µg/mL), and MEL28 (IC50 = 2.5 µg/mL) cells
(Table 5). Following this discovery, Deive et al. [68] further explored the SAR of this type of
compound and prepared several derivatives of 4i and 4j with different structural features,
namely with different side chains and degrees of unsaturation on ring A. From all the
synthesized compounds, 4k–4o (Figure 7) stood out with an IC50 ranging from 0.125 to
1.25 µg/mL (Table 5) in the above-mentioned cancer cell lines. These results allowed to
shed some light regarding SAR analysis and demonstrated that the presence of a cholesterol-
type side chain, a ketone group at C-3 and a high degree of oxidation in ring A might play a
major role in the compounds’ cytotoxicity [68]. A few years later, the same group continued
their investigation in 6-hydroxyiminosteroids [69] and, bearing in mind the information
about the SAR of these compounds, a series of new steroidal oximes were synthesized
and evaluated as potential antitumor agents. After biological evaluation in four different
cancer cell lines (A549, HCT116, PSN1, T98G), compounds 4p–4w (Figure 7) were the most
effective in decreasing cancer cell proliferation, demonstrating good IC50 values (Table 4).
Once again, the oxygenation of ring A turned out to be very important in the increased
cytotoxicity of the compounds against cancer cells [69].
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Table 5. IC50 values (µg/mL) of the synthesized cholestane oxime derivatives.

Cell line
Compound

4i 4k 4l 4m 4n 4o 4x 4z 4aa 4ab 4ac 4ad 4ae 4af 4ag 4ag 4ah 4ai 4aj 4ak

P388 1.25 1.25 1.25 0.25 0.25 0.5 - - - - - - - - - - - - -

A549 1.25 1.25 1.25 0.13 0.13 0.13 - - - - - - - - - - - - - -

HT29 1.25 1.25 1.25 0.25 0.25 0.25 - - - - - - - - - - - - - -

MEL28 2.5 1.25 1.25 0.13 0.13 0.13 - - - - - - - - - - - - - -

Sk-Hep-1 - - - - - - 43 43 20.1 37 45 25 76.8 24 57 34.5 39.5 33.7 35.4 48.8

H292 - - - - - - 59.5 59.5 26.2 37 62.5 46 70 33 76 53 41.9 34.2 65.8 78.9

PC3 - - - - - - 44 44 32.5 40.5 41.5 76 >90 36 66 52 49.8 103 60.1 62.7

Hey-1B - - - - - - 37 49 26.3 45 53 38 78 37 51 45 47.9 45.7 56.3 61.5

Ref. [67] [68] [70] [71] [72]

Another study by Cui et al. [70] also reported the synthesis and further biological
evaluation of 6-hydroxyiminosteroidal cholestane derivatives. They not only developed a
facile and efficient synthetic method for the synthesis of the natural compounds 4i and 4j
(Figure 7) but also designed and synthesized a new steroidal oxime (4x, Figure 7). Further
antitumor activity evaluation in four human cancer cell lines, namely Sk-Hep-1, H292, PC3,
and Hey1B revealed that compound 4x presented modest cytotoxicity against these cell
lines with IC50 values ranging from 37 to 59.5 µg/mL (Table 5). Once again and compared
to the cytotoxicity displayed by compounds 4i and 4j, the structure of the side chains
impacts the cytotoxicity of the compounds. The cholesterol-type side chain seems to be
important for biological activity, which goes accordingly to the results obtained by other
research groups [68]. The same group of investigators continued their research on this topic
and synthesized more steroidal oximes with the hydroxyimino groups in different locations
(A ring or B ring) and with different types of side chains at position 17 [71]. From all the
derivatives, compounds 4y–4ag (Figure 7) were the ones with the best antitumor activity
against Sk-Hep-1, H292, PC3, and Hey1B (Table 5). This study reinforced the conclusions
obtained in the previous ones [68–70], where it is stated that for enhanced cytotoxicity the
compounds must have a cholesterol-type side chain, a hydroxyimino group on the B ring,
and a hydroxy group on the A or B ring. The same authors went further ahead in the SAR
and synthesized a series of derivatives similar to the ones synthesized in the previous study
but without the 4,5-double bond [72]. After biological activity evaluation, compounds
4ah–4ak (Figure 7) proved to be the most effective in decreasing Sk-Hep-1, H292, PC3, and
Hey1B cancer cells proliferation with IC50 values ranging from 35.4 to 103 µg/mL (Table 5).
These compounds (without the 4,5-double bond) were more active than the equivalent
ones with the 4,5-double bond [71], which indicates that the double bond in this particular
position confers a negative effect in the biological activity displayed by these derivatives.
All these studies were very important in unraveling the SAR of 6-hydroxyiminosteroids
and might help shed some light on the design of novel chemotherapeutic drugs for the
treatment of different types of cancer.

Gan et al. designed and synthesized some steroidal hydrazone derivatives with 3,6-
disubstituted structure and different side chains at 17-position, being the hydroxyimino
group one of these substitutions, namely in the 3-position [73]. Antiproliferative activity
evaluation was carried out in vitro against gastric and liver cancer cells after 72 h of
incubation. The synthetic routes gave rise to a series of novel molecules among them,
compounds 4al–4an (Figure 7), which were remarkably active against the two cancer cell
lines used, Bel7404 and SGC7901 (Table 6). Compound 4am was particularly active to
Bel7404 cells (IC50 = 7.4 µM) being three times more active than cisplatin (IC50 = 22.3 µM),
which makes 4am a potential antitumor drug.
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Table 6. - IC50 values (µM) of the synthesized cholestane oxime derivatives.

Cell line
Compound

4al 4am 4an 4ao 4ap 4aq 4ar 4as 4at 4au 4av 4aw

HeLa - - - 9.6 14.3 25.3 12.5 - - - - 9.1

MGC7901 - - - 6.5 27.7 >100 33.3 - - - - -

SMMC7404 - - - 12.9 >100 62.2 10.2 - - - - -

GNE2 - - - - - - - - - - - 11.3

PC3 - - - - - - - 39.3 31.0 10.8 12.9 -

SGC-7901 13.2 32.3 26.2 - - - - - - - - -

Bel-7404 11.0 7.4 15.0 - - - - - - - - -

LNCaP - - - - - - - >100 26.2 44.8 13.9 -

Ref. [73] [74] [75] [60]

These values were obtained through different techniques such as MTT, KBR, alamar blue and SRB assays.

Huang et al. published a study describing the synthesis of new sulfated hydroxy-
iminosterols as potential antitumor agents [74]. In vitro antiproliferative activity, assessed
in HeLa, SMMC7404 and MGC7901 cancer cell lines revealed that compounds 4ao–4ar
(Figure 7) were all able to decrease all cancer cell lines proliferation (Table 6). Please
note that compound 4ao was even more cytotoxic than cisplatin against all the cancer cell
lines studied.

A group of investigators from Argentina synthesized three new 6E-hydroxyiminosteroids
and then assessed their antitumor activity against prostate cancer cells (PC3 and LNCaP) [75].
After antiproliferative activity evaluation, compounds 4as–4av (Figure 7) proved to be
quite active in both cancer cell lines with IC50 values ranging from 10.8 to 44.8 µM (Table 6).

Using analogs of compounds 4i and 4j as precursors, Huang et al. designed and
synthesized novel steroidal oximes and then evaluated their anticancer efficacy against a
panel of six cancer cell lines [76]. Of all the synthesized compounds, oxime 4aw (Figure 7)
was the most powerful oxime, especially in HeLa and GNE2 cancer cell lines with IC50
values of 9.1 and 11.3 µM, respectively (Table 6). Remarkably, this compound was even
more active than cisplatin (IC50 = 10.1 and 16.8 µM in HeLa and GNE2 cells, respectively).

3.5. Diosgenin Derivatives

Diosgenin is a natural steroidal sapogenin, which was first isolated from Discorea
tokoro by Takeo Tsukamato in 1936 [77]. This molecule is widely used in the pharmaceutical
industry as the main precursor in the synthesis of steroids. Given this, several investigators
have been focusing their attention on diosgenin derivatives. Sánchez et al. designed and
synthesized two novel oxime derivatives (5a and 5b, Figure 8) using diosgenin as a precur-
sor and then tested their antitumor activity against HeLa and CaSki cancer cell lines [78].
Results revealed that both compounds caused a dose-dependent decrease in HeLa and
CaSki cell proliferation with IC50 ranging from 10.9 to 48.18 µM (Table 7) and compound 5a
was even more active than diosgenin, which reinforces the importance of the hydroxyimino
group, positioned in the side chain, in conferring cytotoxicity. Further analysis of both
compounds demonstrated that they exerted their antitumor activity by interfering with
the cell cycle, and causing cell death by apoptosis mediated by the activation of caspase-3,
which, in turn, is responsible for DNA fragmentation [78].
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Table 7. IC50 values (µM) of the synthesized diosgenin oxime derivatives.

Cell Line
Compounds

5a 5b 5c 5d 5e 5f 5g

CaSki 10.51 48.18 - - -

HeLa 10.9 41.61 37.5 - - 11 19

MDA-MB-231 - - 22.3 9.3 9.3

HCT15 - - 36.2 - -

MCF7 - - - 78.5 78

A549 20 44

HBL-100 19 78

SW1573 22 >100

T47D 12 29

WiDr 14 17

Ref. [78] [79] [80] [81]

These values were obtained through different techniques such as crystal violet staining and XTT assays.

Another group of investigators synthesized a series of diosgenin derivatives by in-
troducing new modifications in rings A and B [79]. Among all these compounds, oxime
5c (Figure 8) was evaluated in HeLa, MDA-MB-231, and HCT-15 cancer cells to assess
its antitumor activity. Results showed that 5c was quite active in all cell lines with IC50
of 18.23, 10.83, and 17.56 µg/mL in HeLa, MDA-MB-231, and HCT-15 (Table 7), respec-
tively. Furthermore, this compound was not toxic to PBMC which can point to a selectivity
towards cancer cells.

Carballo et al. designed and synthesized a series of novel hydroxyimino steroidal
derivatives and evaluated their antiproliferative activity in MCF7 and MDA-MB-231 breast
cancer cells [80]. Compounds 5d–5e (Figure 8) were able to decrease cell proliferation with
IC50 values ranging from 9.3 to 11.8 µM (Table 7). Interestingly, compounds 5d and 5e
(spirostan derivatives) were more active against the triple-negative cells, a subtype of breast
cancer associated with a worse prognosis and fewer therapeutic options.

More recently, a group of scientists designed and synthesized a series of steroidal
oximes from diosgenin and evaluated their antitumor activity against six cancer cell lines
(A549, HBL100, HeLa, SW1573, T47D, and WiDr) [81]. Of all the compounds synthesized, 5f
and 5g (Figure 8) were the most active against all cancer cell lines tested (Table 7). Moreover,
compound 5f was more active than cisplatin in T47D and WiDr cells and 5g was more
active only in WiDr cells. These results encourage more research to unravel the mechanisms
of action behind the cytotoxicity displayed by these compounds against cancer cells.
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3.6. Bile Acids Derivatives

Bile acids have shown good biological and chemical properties, which make them
very useful in the designing of new pharmacological entities [82]. Given this, a group of
investigators reported the synthesis of new 3-aza-A-homo-4-one bile acid and 7-deoxycholic
acid derivatives, among them some with the hydroxyimino group in their structure [83]. Of
all the compounds, 6a and 6b (Figure 9) were the most promising ones being very effective
in decreasing the MGC7901, HeLa, and SMMC7404 cells proliferation. Please note that
the most sensitive cell line to both 6a and 6b was the HeLa, ovarian cancer cell line, with
an IC50 of 14.3 and 24.3 µM, respectively. Compound 6a was even more cytotoxic against
cancer cells than the reference drug, cisplatin (IC50 = 20.6 µM). These results enlighten,
once again, the relationship between the hydroxyimino group and biological activity [83].
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4. Steroidal Oximes as Antimicrobial Agents

Infectious diseases are a public health problem and are among the top ten leading
causes of death worldwide according to WHO [84]. The need for novel therapeutic options
to treat this type of disease is of great importance. Steroids and hydroxyimino group-
bearing compounds have been shown to be effective against bacteria, fungi, and some
viruses [12,85]. In this section, we will describe the most potent steroidal oximes with
antibacterial, antifungal, and antiviral activity.

4.1. Androstane Derivatives

A series of androstane derivatives containing the hydroxyimino group (7a–7e, Figure 10)
were designed, synthesized, and further analyzed as antibacterial and antifungal drug
candidates [86] against different strains of bacteria and fungi. Results demonstrated that all
oximes presented excellent antibacterial and antifungal activity, being in general more toxic
to the pathogens than the referenced drugs, as seen by the minimal inhibitory (MIC) and
minimal bactericidal/fungicidal (MBC/MFC) concentrations described in Tables 8 and 9.
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Table 8. MIC and MBC (mg/mL) values of the synthesized androstane oxime derivatives.
Adapted from [86].

Compound
MIC and MBC (mg/mL)

S. a. MRSA L. m. P. a. P.aO1 E. c. E. c. res S. t.

7a
MIC - 0.020 0.15 0.10 0.10 0.060 0.15 0.20

MBC - 0.040 0.30 0.15 0.15 0.080 0.30 0.30

7b
MIC 0.20 0.030 0.15 0.08 0.10 0.04 0.08 0.15

MBC 0.30 0.040 0.30 0.15 0.15 0.08 0.15 0.30

7c
MIC - 0.20 0.30 0.15 - 0.15 - 0.30

MBC - 0.30 0.60 0.30 - 0.30 - 0.60

7d
MIC 0.30 0.075 0.30 0.10 0.10 0.20 - 0.30

MBC 0.60 0.15 0.60 0.15 0.15 0.30 - 0.60

7e
MIC 0.10 0.0037 0.10 0.075 0.050 0.037 0.015 0.15

MBC 0.15 0.015 0.15 0.15 0.075 0.075 0.037 0.30

Streptomycin MIC 0.10 0.10 0.15 0.10 0.05 0.10 0.10 0.10

MBC 0.20 - 0.30 0.20 0.1 0.05 0.20 0.20

Ampicillin MIC 0.10 - 0.15 0.30 0.2 0.15 0.20 0.10

MBC 0.15 - 0.30 0.50 - 0.20 - 0.20

S. a.—S. aureus; MRSA—methicillin resistant S. aureus; L. m.—L. monocytogenes; P. a.—P. aeruginosa;
P.aO1—P. aeruginosa resistant; E. c.—E.coli; E. c. res—E. coli resistant; S. t.—S. typhimurium.

Table 9. MIC and MFC (mg/mL) values of the synthesized androstane oxime derivatives.
Adapted from [86].

Compound
MIC and MFC (mg/mL)

A. fum. A. v. A. o. A. n. T. v. P. f. P. o. P. v.c.

7a
MIC 0.037 0.015 0.015 0.037 0.007 0.015 0.02 0.05

MFC 0.075 0.037 0.037 0.075 0.015 0.075 0.037 0.037

7b
MIC 0.015 0.015 0.007 0.037 0.007 0.015 0.037 0.05

MFC 0.037 0.075 0.015 0.075 0.015 0.037 0.075 0.075

7c
MIC 0.075 0.015 0.075 0.15 0.10 0.15 0.20 0.20

MFC 0.15 0.037 0.15 0.30 0.15 0.30 0.30 0.30

7d
MIC 0.015 0.037 0.10 0.075 0.015 0.15 0.075 0.15

MFC 0.037 0.15 0.15 0.15 0.037 0.30 0.15 0.30

7e
MIC 0.037 0.037 0.075 0.075 0.050 0.075 0.15 0.10

MFC 0.075 0.075 0.15 0.15 0.075 0.15 0.30 0.15

Ketoconazole
MIC 0.20 0.20 0.15 0.20 1.00 0.20 1.50 0.30

MFC 0.50 0.50 0.20 0.50 1.50 0.50 1.50 0.30

Bifonazole
MIC 0.15 0.10 0.15 0.15 0.15 0.20 0.10 0.10

MFC 0.20 0.20 0.20 0.20 0.20 0.25 0.25 0.20

A. fum.—A. fumigatus; A. v.—A. versicolor; A. o.—A. ochraceus; A. n.—A. niger; T. v.—T. viride; P. f.—P. funiculosum;
P. o.—P. ochrochloron; P. v.c.—P. verucosum var. cyclopium.

4.2. Pregnane Derivatives

Using pregnenolone as starting material, Prabpayak et al. synthesized a novel oxime
derivative (8a, Figure 11) and evaluated its antibacterial activity against a series of different
strains of bacteria [87]. Results revealed that 8a was able to decrease bacterial growth, as
seen by the calculation of the zone of inhibition which was 12.5 mm for S. mutans ATCC
1275 and 25 mm for C. diptheriae.
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Lone et al. designed and synthesized nine oximes of steroidal chalcones (8b–8k,
Figure 11) and screened them for in vitro antimicrobial activity against different strains of
bacteria and fungi [88]. All compounds displayed good antimicrobial activity against all
strains studied (Table 10). Moreover, the oximes showed enhanced antimicrobial activity
when compared with the corresponding chalcones with a carbonyl group instead of a
hydroxyimino group. These results highlight the importance of this hydroxyimino group
for the toxicity displayed against pathogens.

Table 10. MIC values of (µg/mL) of the synthesized pregnane oxime derivatives. Adapted with
permission from Ref [88], 2023, Ana S. Pires.

Compound
MIC (µg/mL)

B. subtilis S. epidermidis P. vulgaris P. aeruginosa A. niger P. chrysogenum

8b ≤64 ≤128 >512 ≤256 ≤128 ≤128

8c ≤128 ≤64 >512 ≤128 ≤64 ≤256

8d ≤64 ≤64 >512 ≤256 ≤128 ≤128

8e ≤128 ≤128 >512 ≤128 ≤64 ≤256

8f ≤64 ≤128 >512 ≤256 ≤128 ≤128

8g ≤128 ≤64 >512 ≤512 ≤128 ≤256

8h ≤64 ≤128 >512 ≤256 - ≤256

8i ≤128 ≤256 >512 ≤128 ≤256 -

8j ≤128 ≤64 >512 ≤256 ≤64 ≤128

8k ≤512 ≤128 >512 ≤512 ≤128 ≤256

Bacteria: Bacillus subtilis (MTCC 619), Staphylococcus epidermidis (MTCC 435), Proteus vulgaris (MTCC 426),
Pseudomonas aeruginosa (MTCC 424). Fungi: A. niger (MTCC 1344), P. chrysogenum (MTCC 947).
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4.3. Cholestane Derivatives

A group of scientists designed and synthesized three novel steroidal oximes (9a–9c,
Figure 12) from cholestane [89]. After synthesis, the antibacterial and antifungal activity
in different strains of bacteria (S. pyogenes, S. aureus, S. typhi, P. aeruginosa and E. coli) and
fungi (P. marneffei, A. fumigatus, T. mentagrophytes, C. albicans and C. krusei) was assessed
through analysis of the diameter of zone of inhibition (mm). Anthelmintic activity was also
analyzed against earthworms. Generally, all compounds presented good antibacterial and
antifungal activity with compound 9c being the most active against both bacterial (zone of
inhibition ranging from 17.3 to 23.9 mm) and fungi strains (zone of inhibition ranging from
15.1 and 25.5 mm). This compound was also the most effective anthelmintic compound
showing great early paralysis and lethal times. Further docking studies demonstrated that
9c had not only better affinity to the receptor, but also presented the best docking score,
making it a very promising antimicrobial [89].
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Oxysterols apart from displaying antitumor activity have also been associated with
antimicrobial activity [90]. Compounds 9d–9g (Figure 12) were designed and synthesized
and further evaluated against a series of fungal strains [91]. In general, all compounds
displayed good antifungal activity against all the strains used in this study (MIC values
ranging from 2 to 64 µg/mL, Table 11). C. neoformans (CN1) was particularly sensitive to
all oximes synthesized, being the MIC values (2–4 µg/mL) presented even lower than the
referenced drugs fluconazole (16 µg/mL) and amphotericin B (32 µg/mL).

Aiming to develop novel therapeutic options for the treatment of herpes simplex virus,
Pujol et al. synthesized a series of sulfated steroids derived from 5α-cholestanes [92]. The
oxime 9h (Figure 12) was the most promising compound, showing the best inhibitory values
of HSV-1, HSV-2, and pseudorabies virus (PrV) strains, including acyclovir-resistant strains
in human and monkey cell lines (EC50 values ranging from 16.7 to 25 µg/mL, Table 11).
Moreover, the authors went further ahead and decided to investigate the mechanism of
action of 9h in HSV-1. After using the virucidal assay, authors concluded that the 9h was
not able to affect the initial steps of virus entry but rather inhibited an ensuing event in the
infection process of this virus [92].
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Table 11. MIC values (µg/mL) of cholestane oxime derivatives.

Microorganism
Compound

9d 9e 9f 9g 9h

C. albicans 64 8 32 32

C. neoformans (CN1) 4 4 4 2

B. poitrasii 32 8 16 16

Y. lipolytica 8 64 16 16 -

F. oxysporum >64 16 8 8 -

HSV-1 strain B2006 - - - - 19.5

HSV-2 strain G - - - - 17.9

PrV strain RC79 - - - - 17.2

HSV-1 strain F - - - - 16.7

Ref. [91] [92]

4.4. Bile Acids Derivatives

Hepatitis B is a major global health problem and is caused by the hepatitis B virus
(HBV). This condition affects the liver, leading to cirrhosis and liver cancer, which can lead to
patient death [93]. In this context, a group of scientists focused their attention on designing
and synthesizing oxime derivatives of dehydrocholic acid as potential HBV drugs [94].
After anti-hepatitis B virus activity evaluation in HepG 2.2.15 cells, compounds 10a–10c
(Figure 13) exhibited more cytotoxicity against the virus than the referenced drug, entecavir,
as seen by the most effective inhibition of HBeAg (hepatitis B -antigen). Compound 10b was
the most active compound showing significant anti-HBV activity on inhibition secretion of
HBeAg (IC50 = 96.64 µM) when compared, once again, with entecavir (IC50 = 161.24 µM).
Moreover, docking studies were also performed to evaluate the potential mechanisms
behind the activity of these compounds. Results point out a possible interaction with
protein residues of heparan sulfate proteoglycan (HSPG) in host hepatocytes and bile
acid receptors [94].
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5. Steroidal Oximes as Anti-Inflammatory Agents
5.1. Cholestane Derivatives

Since inflammation plays a critical role in tumor progression, Díaz et al. designed and
synthesized a series of 22-oxocholestane oximes as potential anti-inflammatory agents in
an acute inflammation mouse ear model [95]. Five oxime derivatives (11a–11e, Figure 14)
stood out from the rest as being the most promising, being able to reduce ear inflammation
and edema. Moreover, these compounds also repressed the expression of pro-inflammatory
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genes such as TNF-α, COX-2, and IL-6, making them very promising lead candidates for
further assessment.
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5.2. Bile Acid Derivatives

The need for anti-inflammatory drugs such as glucocorticoids has been increasing,
especially since the COVID-19 pandemic, because this type of compounds is the stan-
dard treatment for this disease. Bearing this in mind, Bjedov and collaborators designed,
synthesized, and screened the binding activity of a series of bile acid derivatives for the
ligand-binding domain of glucocorticoid receptor (GR-LBD), the main receptor in the
anti-inflammatory process [96]. Of all the synthesized compounds, oxime 12a (Figure 15)
presented the best relative binding affinity for GR-LBD. Even though the authors were
not able to perform molecular docking and predict the interactions between compound
12a and the enzyme, they suggest that this binding affinity could be attributed not only
to the C-24 carboxylic group but also to the hydroxyimino groups. Moreover, the C-12
hydroxyimino group could also be used as an alternative hydrogen donor to the 11β-OH
group of the glucocorticoids and the hydroxyimino group at C-3 may also be beneficial for
glucocorticoid receptor affinity through the establishment of a hydrogen bond. This study
was very important and helped shed some light on the possible interactions of steroidal
oximes with their targets.
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6. Steroidal Oximes in Clinical Development
Istaroxime

Istaroxime (Figure 16) is an inhibitor of sodium/potassium adenosine triphosphatase
(Na+/K+ ATPase), which is currently under phase 2 clinical trial development for the
treatment of acute decompensated heart failure [97,98]. Apart from this, istaroxime has
also been evaluated as a potential antitumor agent in several types of cancer [99,100].
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7.1. Norgestimate

Norgestimate (Figure 17), a steroidal oxime, (brand names, Ortho Tri-Cyclen or,
Previfem, among others) is a progestin, which is used in hormonal contraception and
menopausal hormone therapy for the treatment of some menopausal symptoms [101].
Norgestimate is not available as a single therapy, being used together with ethinylestradiol
in birth control pills and in combination with estradiol in menopausal hormone ther-
apy [102]. It was first introduced in the USA in 1999 and is one of the most prescribed birth
control pills worldwide. This compound is sold as a mixture of the two E and Z conformers.
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This oxime has been subject to further biological evaluation such as antibacterial
assessment and proved to be a promising lead compound to treat biofilm-associated
infections and to resensitize bacterial strains resistant to some antibiotics [103].

7.2. Norelgestromin

Norelgestromin (Figure 18), or norelgestromine (brand names, Evra or Ortho Evra,
among others) is also a progestin used for birth control. Like norgestimate, norelgestromin
is not available as a single drug but rather in combination with an estrogen, ethinyl estradiol
in the form of contraceptive patches [104]. It was first introduced to the market in 2002.
This compound is also sold as a mixture of two E and Z isomers.
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8. Mechanisms of Action of Steroidal Oximes

Throughout this review, we came upon a wide variety of synthesized steroidal oximes,
starting from androstane to estrane, pregnane, cholestane, diosgenin, and bile acids deriva-
tives with very different mechanisms of action.

Most of the compounds summarized here are being evaluated as potential antitumor
agents and exert their cytotoxicity against cancer cells mainly by inducing apoptosis;
however, the pathways leading to it differ from compounds. For example, the androstane
derivatives appear to induce apoptosis [34,42,48] by cell cycle arrest at different phases and
increased ROS production [34]. Necroptosis might also be a mechanism involved in the
compounds’ cytotoxicity against cancer cells [34]. Oxime estrane derivatives induced cell
death by apoptosis through cell cycle interference at G1 [53], S [54] and G2/M phases [57]
and through activation of caspase-3 [53]. This class of compounds also interferes with
microtubules by interfering with β-tubulin [55,57]. These are often related to cell cycle arrest
and, consequently, a decrease in cell division and cell death. Concerning oxime pregnane,
diosgenin, and some cholestane derivatives, they cause cell cycle alterations, and cell death
by the activation of the apoptotic intrinsic pathway mediated by caspase-3 activation [64,78]
and release of cytochrome C [61,64,78]. Additionally, and since inflammation plays an
important role in carcinogenesis, inhibition of pro-inflammatory genes such as TNF-α, COX,
and IL6 is also another important mechanism displayed by these steroidal oximes [95].
Additionally, for some of the cholestane derivatives, their mechanism of action is not well
elucidated since most of the studies were conducted mainly to infer about SAR, rather than
go deeper into their mode of action. However, the breakthroughs reached in this field are
of great importance and encourage the need to further analyze their mechanisms of action.

Aside from antitumor activity, steroidal oximes also display antimicrobial activity.
However, little is known about the mode of action of these compounds. Regarding antiviral
activity, it seems that steroidal oximes exert their effect by inhibition of the infection process
of the virus after it enters the cells [92] and by a possible interaction with protein residues
of heparan sulfate proteoglycan (HSPG) in host hepatocyte and bile acid receptor [94].

Concerning the compounds in clinical trials and already in clinical use, their mech-
anisms are very different. Istaroxime is an inhibitor of the Na+/K+ ATPase pump [98],
whereas norgestimate and norelgestromin, which are already in the market for birth control,
act as progesterone agonists, inhibiting ovulation [101,102].

9. Structure-Activity Relationships of Steroidal Oximes

The biological activity of a compound is closely related to its chemical structure.
Steroidal oximes exert several types of biological activities, which can vary depending
on the position of the oxime functionality on the steroid scaffold. Given this, some SAR
can be elucidated especially for the antitumor and antimicrobial activity to help in the
design and synthesis of novel molecules with pharmaceutical potential (Figures 19–21).
However, the conclusions that can be drawn from Figures 19–21 must be analyzed carefully,
as they are just trends that were observed from the compounds studied in this review
article, which were the most active compounds of each paper, and were evaluated with
different methodologies, different times, and in different cancer cells.
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Regarding the antitumor activity, when comparing the different IC50 values displayed
by the androstane oxime derivatives, and despite the presence of other functional groups,
it seems that position C-3 of the steroidal scaffold is preferable since the compounds with
a hydroxyimino group in this position were, in general, the ones with the lower IC50
values (1f, 1g, 1h). Compound 1h, which has a substituted oxyimino group at position C-3
was generally the compound with the best IC50 values in all cell lines reported in Table 1.
Interestingly, the compounds that, in addition to having a hydroxyimino group at position
C-3, also had another hydroxyimino group at position C-6 (1b, 1c and 1u) or at position
C-17 (1k–1o) were slightly less active, suggesting that only a single hydroxyimino group at
position C-3 is preferable and might be enough for the antitumor activity. Furthermore,
in some types of cancer, namely in breast and prostate cancers, a hydroxyimino group
at position C-2 was also important for the cytotoxicity displayed against cancer cells
(compound 1r and 1s). Compound 1s combines another hydroxyimino group at position
C-4, which proved to be better than with just a single hydroxyimino group at position C-2.
Positions C-17 and C-7 seem to be less favorable than the other positions mentioned above.
Regarding the estrane series, position C-6 seems to be the most preferable concerning
antitumor activity since compounds 2p and 2q were the ones with best IC50 values. In
general, compounds with a hydroxyimino group at position C-17 were also very active.
Concerning the pregnane series, all oximes (substituted or not) present high activity with
very low IC50 values (IC50 values ranging from 0.31 to 7.17 µM. A hydroxyimino group at
position C-6 appears to be the most advantageous position, regarding the cholestane series,
since they present the lowers IC50s. With regard to the diosgenin series, the compounds
with just a single hydroxyimino group were slightly more cytoxic against cancer cells than
the ones containing two hydroxyimino groups (compounds 5b, 5f and 5g present higher
IC50 values than compounds 5a, 5d and 5e). Finally, introduction of a hydroxyimino group
in the B ring was clearly more beneficial than at C-ring, considering that compound 6a
presented a lower IC50 value than compound 6b, for the case of bile acid derivatives.

Considering the antimicrobial activity, the androstane oxime derivatives with just a
single hydroxyimino group were slightly more potent than the compounds with two hy-
droxyimino groups, suggesting that a single hydroxyimino group is better for antimicrobial
activity rather than two hydroxyimino groups. Furthermore, a hydroxyimino group at posi-
tion C-7 might be a better option when designing and synthesizing oximes in the cholestane
series, since the compounds with a hydroxyimino group at this position were slightly
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more toxic against pathogens than compounds with a hydroxyimino group at position C-6.
Pregnane oxime derivatives were more active than the parent pregnane compounds.

To sum up, for the antitumor activity, SAR analysis points out that the pregnane
scaffold might be the best option when designing novel molecules with antitumor activity.
This steroidal oxime series presented the best IC50 values against the cancer cell lines
studied when compared with the other above-mentioned series. As for the antimicrobial
activity, and since the number of studies is considerably less, it turns out to be more difficult
to establish robust SAR, but it seems that the androstane scaffold may be the most favorable
option. In Figure 19 we can see an overview of the most common SAR of steroidal oximes
for the antitumor and antimicrobial biological activities.

As mentioned at the beginning of this chapter, SAR are extremely import for the
design and synthesis of novel drugs. Given this, it is our hope that this review might help
guide researchers to design more potent and selective chemical entities and to help them
understand the pharmaceutical potential of steroidal oximes.

10. Conclusions

This review sums up the work that has been developed regarding the most promising
steroidal oximes in recent years. The oxyimino group is a privileged chemical function
being, for that reason, very popular among the medicinal chemistry community.

Most steroidal oximes in preclinical settings present antitumor activity. In vitro and
in vivo studies have demonstrated the significant antiproliferative activity and elucidated
some of the mechanisms by which steroidal oximes display cytotoxicity against cancer
cells, which include induction of cell cycle arrest, apoptosis, necroptosis, increased ROS
production and interference with microtubules. The described targets for steroidal oximes
exerting antitumor activity are caspase-3 and β-tubulin. Moreover, steroidal oximes also
exert antimicrobial activity, sometimes by interfering with HSPG, resulting in tremendous
cytotoxicity against bacteria, fungi, and viruses. The anti-inflammatory activity is associated
with TNF-α, COX-2, and IL-6 genes expression. Finally, there are currently two steroidal
oximes in the market used as birth control drugs and one in clinical trials for acute heart
failure, acting by progesterone agonists and Na+/K+ ATPase pump inhibitors, respectively.

The acquired knowledge about the diversified biological activities of steroidal oximes
only emphasizes the need to deeper understand the mechanisms behind their activity and
consequently, unravel which are their targets. In addition, molecular interactions with
targets need to be elucidated, robust SAR must be constructed, and ADME properties have
to be studied in order to design more potent and selective compounds. Steroidal oximes can
be, in fact, very promising lead compounds for the development of drugs for the treatment
of several diseases and deserve to be better explored.
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Nomenclature

A2780 human ovarian cancer cell line
A431 human skin epidermoid cancer cell line
A549 human lung carcinoma cell line
Bel7404 human liver cancer cell line
Ca Ski human cervical cancer cell line
DU145 human prostate cancer cell line
GNE2 human nasopharyngeal cancer cell line
H1299 human non-small lung cancer cell line
H292 human lung cancer cell line
HBL100 human normal breast cell line
HCT116 human colon cancer cell line
HCT15 human colorectal cancer cell line
HeLa human cervical cancer cell line
HepG2 human liver cancer cell line
Hey1B human ovarian cancer cell line
HL60 human leukemic cell line
HOP62 human lung cancer cell line
HT29 human colorectal cancer cell line
K562 human leukemic cell line
KB human nasopharyngeal cancer cell line
LNCaP human prostate cancer cell line
MCF7 human breast cancer cell line
MDA-MB-231 human breast triple-negative cancer cell line
MEL28 human melanoma cancer cell line
MGC7901 human gastric cancer cell line
MKN-28 human gastric cancer cell line
NCI-H460 human lung large cell
OVCAR-3 human ovarian cancer cell line
P388 human lymphoma cell line
PC3 human prostate cancer cell line
PSN1 human pancreatic cancer cell line
SF268 human astrocytoma cancer cell line
SF539 human gliosarcoma cancer cell line
SGC7901 human papillomavirus-related endocervical adenocarcinoma cell line
SH-SY5Y human neuroblastoma cell line
SK-Hep-1 human liver cancer cell line
SMMC7404 human liver cancer cell line
SN12C human renal cancer cell line
SPC-A human papillomavirus-related endocervical adenocarcinoma cell line
SR human lymphoma cell line
SW1573 human lung cancer cell line
T24 human urinary bladder cancer cell line
T47D human breast ductal carcinoma cell line
T98G human glioblastoma cancer cell line
Tu686 human laryngeal squamous cell carcinoma cell line
UACC62 human skin cancer cell line
WiDr human colorectal cancer cell line
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