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Abstract: The presented work shows the antibacterial activity of TiO2 photocatalysts modified by 3-
aminopropyltriethoxysilane (APTES). The APTES-functionalized TiO2 samples were obtained by the
solvothermal process followed by calcination. The antibacterial activity of APTES/TiO2 samples was
evaluated with two species of bacteria, Escherichia coli and Staphylococcus epidermidis, under artificial
solar light (ASL) irradiation. The used bacteria are model organisms characterized by negative zeta
potential (approx. −44.2 mV for E. coli and −42.3 mV for S. epidermidis). For the first time, the
antibacterial properties of APTES-functionalized TiO2 were evaluated against mono- and co-cultured
bacteria. The high antibacterial properties characterized the obtained APTES-modified nanomaterials.
The best antibacterial properties were presented in the TiO2-4 h-120 ◦C-300 mM-Ar-300 ◦C sample
(modified with 300 mM of APTES and calcined at 300 ◦C). The improvement of the antibacterial
properties was attributed to a positive value of zeta potential, high surface area, and porous volume.

Keywords: photocatalysis; titanium dioxide; APTES; antibacterial activity; mixed bacteria cultures

1. Introduction

With the continuous development of science and technology and people’s awareness,
more and more attention is being paid to aspects of environmental protection. It relates,
in particular, to the pollutants present in water systems. Drinking water is one of the
most strictly monitored resources as it is controlled by many quality standards [1–3].
Nonetheless, water purity is still a scientific and technical challenge due to widespread
pathogenic microorganisms that are difficult to remove using conventional disinfection
methods (such as chlorination). Moreover, the number of microorganisms resistant to the
commonly used antibiotic and antimicrobial agents is also increasing [4,5]. Additionally,
aquatic environments are considered ideal for acquiring and disseminating antibiotic
resistance, simultaneously representing an additional human health risk [6–9].

Numerous disinfection systems and technologies characterized by varied effectiveness
are currently applied for water treatment. Unfortunately, their applications can be limited
to some deficiencies. The most widely used method for disinfecting water is chlorination.
However, chlorine may also oxidize natural organic matter (NOM) in water, which leads to
the production of unwanted disinfection byproducts (DBPs) [10]. Ozone-based disinfection
systems are expensive (they require system equipment with unique corrosion-resistant
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materials, ozone generation, and use lots of energy) [11]. The use of photo-assisted technolo-
gies based, e.g., on UV disinfection, given the risk of bacteria regrowth in the water supply
network, usually requires secondary residual disinfectants (such as chlorine as mentioned
above) [12]. This requires the search for alternative methods of water disinfection.

Advanced Oxidation Processes (AOPs), including photocatalytic oxidation with TiO2,
are promising methods that have received much research attention in water
treatment [13–15]. These processes include various technologies destroying a broad spec-
trum of organic and inorganic contaminants and undesirable water microorganisms. One
of the main advantages of photocatalysis is the efficient degradation of pollutants without
any chemical additives. Additionally, it can be used in various applications such as water
treatment, air purification, or self-cleaning glass coating. It also is a relatively low-cost
method [14,16]. Unfortunately, TiO2 exhibits some limitations. For example, due to a large
band gap (3.2 eV), TiO2 can be activated only by UV light [14]. On the other hand, the
rapid recombination of the photogenerated hole–electron pairs reduced TiO2 photocatalytic
efficiency [17]. Therefore, many attempts have been performed over the past few decades
to improve TiO2 activity and sensitivity under visible light [18,19].

A literature review reveals that TiO2 co-modifications have been presented as a promis-
ing and inexpensive choice for improving photocatalytic activity [20,21]. Co-modification
improves photocatalytic activity and specific characteristics compared to single-element
modification [20]. Many authors reported that incorporating nitrogen or carbon into
TiO2 materials led to obtaining photocatalysts with enhanced efficiency and activity un-
der UV and visible light [22–24]. In turn, adding silica can increase the crystal stability
and surface area and enhance the overall TiO2 photocatalytic activity [25]. According to
Klarysri et al. [26], 3-aminopropyltriethoxysilane (APTES) is one of the most commonly
used organic silica sources that can be used for co-modifying the TiO2 surface.

Most research on photocatalytic inactivation of microorganisms is carried out under
laboratory conditions using pure cultures, single strains, or bacterial species (monocultures).
Exceptions include Van Grieken et al. [27], who investigated the photocatalytic inactivation
of the mixture of Escherichia coli and Enterococcus faecalis in a suspension simulating sewage
treatment plant leachate. Rincón and Pulgarin [28] examined the photocatalytic disinfection
of water polluted by a mixture of Escherichia coli and Bacillus sp. and wastewater contain-
ing a broad bacterial community. Therefore, the impact of TiO2 on bacteria co-culture
in water is not as well investigated. Since microorganisms such as bacteria form dual
and multispecies co-cultures in almost all natural environments, it has been decided to
examine the photocatalytic disinfection of water containing a mixed culture of two bacteria.
Additionally, our previous works [29,30] showed that the modification of titanium dioxide
using APTES resulted in the preparation of the modified photocatalysts, which exhibited
good antibacterial properties. Based on the research, the optimal dose of APTES in the
solution used for modification was selected: 300 mM of APTES. In this study, the impact of
annealing at temperatures up to 500 ◦C was also examined. The main goal of this study
is to evaluate the antibacterial properties of APTES-modified TiO2 (calcined in the range
of 200–500 ◦C) against the co-cultures of Escherichia coli (ATCC 29425) and Staphylococcus
epidermidis (DSM 1798).

2. Results and Discussion
2.1. Characterization of Materials

The diffraction patterns of all the examined photocatalysts (both reference and
APTES/TiO2) obtained from the XRD analysis results are shown in Figure 1. In turn,
the crystallite size and anatase phase content are summarized in Table 1. The primary
phase of all the samples is anatase (regardless of the annealing temperature or by APTES
modification). According to Figure 1, the XRD peaks for 25.3, 37.8, 48.1, 53.9, 55.1, 62.7,
68.9, 70.3, and 75.1◦ correlate to the (101), (004), (200), (105), (211), (204), (116), (220), and
(215) anatase reflection indexed by JCPDS 01-070-7348. As was presented in Table 1, the
amount of anatase in all photocatalysts was approximately 95–96%. Additionally, some



Molecules 2023, 28, 1655 3 of 17

peaks (located at 27.4, 36.0, and 41.2◦, corresponded to (110), (101), and (111) indexed by
JCPDS 01-076-0318, characteristic for the rutile phase, were observed. The presence of rutile
in samples results from obtaining raw TiO2 (caused by adding the rutile nuclei during the
raw TiO2 pulp production process using the sulphate method) [31]. The modification of
photocatalysts in the temperature range from 200 ◦C to 500 ◦C did not cause the trans-
formation of the anatase-to-rutile phase. This is typical because anatase transforms into
a rutile phase above 600 ◦C [32]. The anatase reflexes developed and are more intense
(especially in the case of unmodified reference materials), indicating that the non-crystalline
amorphous phase transformed into the anatase phase. However, the observed changes
were relatively small and, therefore, the presented XRD patterns of TiO2 materials are very
similar, following the results obtained by Klaysri et al. [26].
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Figure 1. X-ray diffraction patterns of starting TiO2, reference calcined photocatalysts (a) and
APTES/TiO2 nanomaterials (b).

Table 1. Physicochemical properties of starting, reference, and APTES-modified TiO2 photocatalysts.

Name Sample
Anatase in
Crystallite
Phase [%]

Anatase
Crystallite
Size [nm]

Carbon
Content
[wt.%]

Nitrogen
Content
[wt.%]

Silica
Content
[wt.%] **

Starting TiO2 95 14 - 0.18 -

TiO2-Ar-200 ◦C 96 14 - * -

TiO2-Ar-300 ◦C 96 18 - * -

TiO2-Ar-400 ◦C 95 18 - * -

TiO2-Ar-500 ◦C 95 22 - * -

TiO2-4 h-120 ◦C-300 mM 96 15 4.11 1.43 2.39

TiO2-4 h-120 ◦C-300
mM-Ar-200 ◦C 96 15 3.45 1.19 2.30

TiO2-4 h-120 ◦C-300
mM-Ar-300 ◦C 96 14 2.66 0.69 2.31

TiO2-4 h-120 ◦C-300
mM-Ar-400 ◦C 96 14 0.81 0.24 2.10

TiO2-4 h-120 ◦C-300
mM-Ar-500 ◦C 96 15 0.65 0.12 2.51

* beyond the detection level; ** results from EDS mapping analysis.
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The average crystallite size of the APTES-modified samples was estimated at ap-
prox. 14–15 nm. On the other hand, the crystallite size of the reference materials in-
creased with the calcination temperature (from 14 nm for starting TiO2 to 22 nm for
TiO2-Ar-500 ◦C). Generally, the average crystallite size of the samples heated at the same
temperature was smaller for APTES/TiO2 than for unmodified reference materials. Ac-
cording to the literature [33,34], adding silicon could effectively inhibit the growth of TiO2
particles during the calcination process.

The FT-IR analysis has been conducted to illustrate the functional groups of the surface
of obtained photocatalysts. The DRIFT spectra of the starting TiO2 and reference samples
were presented in Figure 2a and the spectra of the APTES-modified samples were shown
in Figure 2b. In all the presented spectra, the characteristic peaks for TiO2-based photocat-
alysts can be observed. The broad peak around 3700–2600 cm−1 and the narrow band at
1622 cm−1 correspond to O–H stretching vibration and the molecular water bending mode,
respectively [35,36]. The samples also presented the low-intensity peak at 3630 cm−1,
attributed to the stretching mode of various free –OH groups. In turn, the peak that can
be observed at 960 cm−1 is attributed to the self-absorption of titanium (Ti4+) [37]. Ac-
cording to Figure 2b, the new bands at 2926, 2870, 1605, 1386, 1155, 1070, and 920 cm−1

were observed for the APTES-modified photocatalysts. Two small peaks located around
2926 cm−1 and 2870 cm−1 are attributed to the asymmetric and symmetric stretches of
−CH2 groups on the alkyl chain [38,39]. The band at around 1605 cm−1 is assigned to NH
bending vibration of primary amine. The peaks around 1386 cm−1 indicate the presence of
a C−N bond [40]. The Si−O−Si stretching vibrations and Si–O–C stretching mode were
attributed to the peak values at 1155 cm−1 and 1070 cm−1, respectively [38,41,42]. The
peak at around 920 cm−1 suggests that the condensation reaction occurred between silanol
and the surface –OH groups [39]. As shown in Figure 2b, some bands in APTES-modified
photocatalysts (attributed to alkyl groups, –NH3

+, and C–N bonds) faded with the in-
creasing calcination temperature. As confirmed in previous work, these groups were not
permanently attached to the TiO2 surface and an increase in the annealing temperature led
to the destruction of these bonds [43].

The decomposition of N- and C-containing functional groups were also confirmed
using elemental analysis. The existence of carbon and nitrogen in the APTES-modified
samples is shown in Table 1. It has been observed that the amount of carbon and nitrogen
decreased with the increasing annealing temperature of the samples. The presence of
nitrogen (0.18 wt.%) in starting TiO2 was due to the preliminary modification of raw
material [31]. In the unmodified reference samples, the amount of nitrogen fell below the
detection level of the device.

The BET surface area and pore volume of photocatalysts were summarized in Table 2.
As expected, as the modification temperature increased, the BET surface area and total
pore volume of the reference materials decreased (from 207 m2/g and 0.326 cm3/g for
the starting TiO2 to 75 m2/g and 0.223 cm3/g for TiO2-Ar-500 ◦C). In the case of APTES-
modified photocatalysts, a different relationship was observed. The BET surface area of
TiO2-4 h-120 ◦C-300 and TiO2-4 h-120 ◦C-300 mM-Ar-200 ◦C did not practically change
(125 and 126 m2/g, respectively). In turn, further increasing the modification temperature
increased the specific surface area of samples to approx. 155–165 m2/g. The increase in the
specific surface area and the total pore volume of the samples prepared at 300–500 ◦C could
be explained by the decomposition of APTES molecules. Sienkiewicz et al. [43] noted that,
with the increase in the modification temperature, the APTES molecules started degrading
and both the external surface of TiO2 and pores could be unblocked.
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Table 2. Structural parameters of starting, calcined, and APTES-modified TiO2 photocatalysts.

Name Sample SBET
[m2/g]

Vtotal(0.99)
[cm3/g]

Vmeso(DR)
[cm3/g]

Vmicro
[cm3/g]

Zeta Potential
δ [mV]

starting TiO2 207 0.326 0.072 0.254 +6.83

TiO2-Ar-200 ◦C 166 0.250 0.059 0.191 +12.02

TiO2-Ar-300 ◦C 112 0.288 0.041 0.247 +14.08

TiO2-Ar-400 ◦C 95 0.249 0.060 0.189 +14.74

TiO2-Ar-500 ◦C 75 0.223 0.030 0.193 +15.01

TiO2-4 h-120 ◦C-300 mM 125 0.219 0.047 0.172 +21.66

TiO2-4 h-120 ◦C-300
mM-Ar-200 ◦C 126 0.205 0.156 0.049 +21.08

TiO2-4 h-120 ◦C-300
mM-Ar-300 ◦C 155 0.278 0.056 0.222 +20.38

TiO2-4 h-120 ◦C-300
mM-Ar-400 ◦C 160 0.249 0.060 0.189 +16.53

TiO2-4 h-120 ◦C-300
mM-Ar-500 ◦C 157 0.266 0.059 0.207 +12.09
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The N2 adsorption–desorption isotherms of all the examined samples were shown in
Supplementary Materials as Figure S1. According to the IUPAC classification, the presented
isotherms were identified as typical type IV specific for adsorption on the mesoporous
materials. All the isotherms also presented the same H3 hysteresis loop.

The SEM images of the APTES-modified samples are presented in Figure 3. The
annealing of TiO2-4 h-120 ◦C-300 at temperatures ranging from 200–500 ◦C did not cause
significant changes in its morphology. All the modified photocatalysts presented agglomer-
ated, homogenous, and well-defined nanoparticles.
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The distribution of the elemental composition of the APTES-modified photocat-
alysts was confirmed using EDS mapping analysis and presented in Figure 4 (for
TiO2-4 h-120 ◦C-300 mM) and Supplementary Materials as Figures S2–S5 (for the
remaining APTES-modified photocatalysts). The results of the EDS mapping analy-
sis confirmed the presence of Ti, O, N, C, and Si. All the examined elements were
also uniformly dispersed on the TiO2 surface. The Si content (Table 1) was from 2.02
(TiO2-4 h-120 ◦C-300 mM-Ar-400 ◦C) to 2.51 (TiO2-4 h-120 ◦C-300 mM-Ar-500 ◦C).
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Modifying the TiO2 using APTES has also led to the change of surface charge of
the samples. As was shown in Table 1, the APTES-modified TiO2 nanoparticles were
characterized by a more positive zeta potential value. As was reported previously [30,40],
the cationic amino groups from the APTES bonded to the TiO2 surface and the surface
charge of modified materials became more positive. It was also observed that the zeta
potential values decreased as the temperature of the sample modification increased. An
increase in the modification temperature hindered the binding of positively charged amino
groups to the TiO2 surface (reflected in the DRIFT measurements and elemental analysis
of carbon and nitrogen). As an effect, the modified TiO2 presented a less positive zeta
potential value. Similar findings were also presented in our previous work [43].

2.2. Antibacterial Activity of Photocatalysts

The antibacterial properties of the APTES-modified photocatalysts and reference
materials were evaluated for two types of model bacteria: Gram-negative E. coli and Gram-
positive S. epidermidis in monocultures and co-culture forms. The control experiments
carried out under dark conditions demonstrated that all the examined photocatalysts did
not reduce E. coli and S. epidermidis populations in experiments with mono- and co-culture
bacteria (Supplementary Materials as Figures S6–S9). The presented results indicated that
inactivated photocatalysts were not harmful to bacteria. The results for the experiment
performed in the absence of the TiO2-based samples but under light irradiation (reaction
suspension containing only bacteria in saline solution—named saline solution) showed
that, alone, artificial solar light (ASL) irradiation also did not affect the viability of bacteria
(Figures 5–8). Therefore, the inactivation of bacteria due to photolysis can also be neglected.
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Figures 5–8 show the photocatalytic inactivation of bacteria under ASL irradiation with
all the examined nanomaterials. As was presented, both in an experiment with mono- and
co-culture bacteria, APTES-TiO2 presented better antibacterial properties than unmodified
reference materials. The best antibacterial activity was presented for APTES-modified
photocatalysts obtained using modification at 300 ◦C (TiO2-4 h-120 ◦C-300 mM-Ar-300 ◦C).
The complete inactivation of E. coli with this sample was achieved after 70 min for mono-
and 60 min for co-culture bacteria. In the case of S. epidermidis, the time of total inactivation
amounted to 80 and 75 min for mono- and co-culture bacteria, respectively.

The SEM images presented in Figure 9 demonstrate the morphology of bacterial cells
in the presence of TiO2-4 h-120 ◦C-300 mM-Ar-300 ◦C at the beginning and after 60 min
of the photocatalytic process. As observed, the bacterial cells presented a regular shape
at the beginning of the photocatalytic process. The SEM images registered after 60 min
revealed that the surface of the bacteria cells had undergone significant changes. The
E. coli (Figure 9b) cell was destroyed and lost its characteristic morphology. In the case of
S. epidermidis (Figure 9d), unevenness in the cell wall can be observed. Additionally, cell wall
disruption is visible at the point of contact between the S. epidermidis and the photocatalyst.
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under ASL irradiation.

The good antibacterial properties of APTES-modified photocatalysts can be attributed
to various features. One factor affecting photocatalytic activity is the crystal phase (ap-
prox. 96% of anatase for tested samples). Many studies confirm that the anatase phase is
characterized by higher photocatalytic activity and that photocatalysts mostly containing
this crystalline form present the highest antimicrobial properties [44,45]. Another factor
is the small crystallite size (14–15 nm). Generally, the most preferred are photocatalysts
characterized by small particles (around 11–15 nm or smaller). Many studies confirmed
that small particles presented better antimicrobial activity and could cause more damage in
bacterial cells [46–49]. The higher antibacterial activity of APTES-modified TiO2 materials
was also strongly related to the amount of hydroxyl radicals (•OH) produced on photocata-
lysts’ surfaces (Figure 10). In order to assess the amount of (•OH) produced on the sample
surface, the fluorescence technique using terephthalic acid was used. In this method, tereph-
thalic acid, which easily reacts with •OH radicals, produces a highly fluorescent product,
2-hydroxyterephthalic acid. The intensity of the peak attributed to 2-hydroxyterephtalic
acid is known to be proportional to the amount of formed OH radicals [50]. As was
presented in Figure 10, with increasing the ASL illumination time in suspensions contain-
ing particular photocatalysts, a gradual increase in the fluorescence intensity is observed,
which, in turn, we can attribute to the amount of OH radicals produced on the samples’
surfaces. The APTES-modified photocatalysts generated more hydroxyl radicals than the
starting TiO2 and reference unmodified materials. However, in the group of the APTES-
modified materials, the amount of •OH slightly increases with the increasing modification
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temperature. Our previous studies on APTES-modified TiO2 [29,30] also showed that
the high amount of hydroxyl radicals generated from the surface of the APTES-modified
photocatalysts is one of the main factors that led to faster bacteria oxidization and, finally,
their death.
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A thorough analysis of the obtained results has shown that the best antibacterial
properties of TiO2-4 h-120 ◦C-300 mM-Ar-300 ◦C result from several factors’ actions. In
addition to those mentioned earlier, in this case, the two most important that cause the
enhancement of antibacterial activity could be the large surface area and the positive charge
(zeta potential) of the samples. After APTES modification, the surface of the silanized
samples becomes more positive. Microorganisms such as bacteria carry a negative charge
(in the case of E. coli was approx. −44.2 mV and S. epidermidis was approx. −42.3 mV).
An “electromagnetic” attraction between the negatively charged bacteria cells and the
positively charged surface of APTES-TiO2 led to closer contact and faster inactivation.

Other factors that play a crucial role in photocatalytic activity are surface area and
porous volume. As generally known, a larger surface area can provide more active
sites and, therefore, enhance the photocatalytic activity [48,49]. The BET surface area
and pore volume of TiO2-4 h-120 ◦C-300 mM-Ar-300 ◦C are high (SBET = 155 m2/g,
Vtotal = 0.278 cm3/g), which could significantly favor the photocatalytic inactivation
of bacteria.

Additionally, it was observed that photocatalytic inactivation of the co-cultures of
two bacteria are faster than those noted for the mono-cultures of bacteria. Rincón and Pul-
garin [28] similarly observed this and explained the competition between the two bacteria
species for available nutrients. In our case, the experiment was performed in a sterile saline
solution with no nutritional properties for bacteria. Moreover, the bacteria were washed to
remove the growth medium’s residual. Therefore, we assume that, in our case, this factor
may have a small impact on the difference in bacteria inactivation. Comparing the inactiva-
tion graphs for mono- and co-cultures of bacteria (Figures 5–8), a change in the E. coli inacti-
vation curve was observed. According to the literature, a mechanism of bacteria destruction
in the presence of TiO2 base photocatalysts proceeded in two stages [51]. In the first stage,
the microorganisms could trigger self-defense and self-repair mechanisms. Therefore, the
number of live bacteria in the reaction solution may remain high. In turn, in the second
stage, the mechanisms, as mentioned earlier, are overwhelmed. Highly reactive radicals
generated during the photocatalytic process led to disturbances and damage in bacteria
cells. Leakage of the intracellular cytoplasmic component may also occur. As a result of this,
fast bacteria inactivation was observed. In the case of experiments with monocultures of bac-
teria (Figures 5 and 6), the second stage started at about 45 min of the photocatalytic process.
In an experiment with bacteria co-culture (Figures 7 and 8), this stage began faster—at about
30 min. Since a reaction mixture contains both species of bacteria, the number of each is
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approx. 0.75 × 106 CFU/mL. E. coli inactivation may have occurred first because these
bacteria, according to the cell wall structure (the thin cell wall of Gram-negative bacteria),
are more susceptible to photocatalytic oxidation. In addition, the number of E. coli is less
than 1.5 × 106 CFU/mL (considered the optimum amount of bacteria in photocatalytic
inactivation tests), which could further contribute to faster inactivation of the bacteria. Then,
as the amount of live E. coli decreases, S. epidermidis is exposed to more significant free
radical attack and their faster inactivation also occurs. The SEM images can partially con-
firm this hypothesis. In Figure 11, the SEM images of the bacterial co-culture after 60 min
of the photocatalytic process in the presence of TiO2-4 h-120 ◦C-300 mM-Ar-200 ◦C and
TiO2-4 h-120 ◦C-300 mM-Ar-300 ◦C under ASL irradiation were shown. In both cases,
it can be seen that, after 60 min, the E. coli cells were destroyed. E. coli have lost their
original shape and were significantly damaged. The S. epidermidis cells have also shown
changes resulting from the treatment of photocatalysts (compared to Figure 9c). However,
the damage is not as extensive as in the case of E. coli.
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3. Experimental
3.1. Materials and Reagents

As a raw material for photocatalysts production, the crude TiO2 slurry, provided
by chemical plant Grupa Azoty Zakłady Chemiczne “Police” S.A. (Police, Poland) was
used. Before modification, crude TiO2 had undergone preliminary modification to reach
a pH of 6.8 and the obtained material was denoted as starting TiO2. This stage was
described in a previous article [31]. As a modifier, 3-aminopropyltriethoxysilane (APTES,
C9H23NO3Si, ≥98%) from Merck KGaA (Darmstadt, Germany) was used. As an APTES
solvent, ethanol (purity 96%, pure p.a.) purchased from P.P.H. “STANLAB” Sp.J. (Lublin,
Poland) was applied.

3.2. Preparation of APTES-Modified Photocatalysts

The APTES-functionalized TiO2 nanomaterials were obtained using the solvothermal
process followed by calcination. For starters, 5 g of startingTiO2 was dispersed in 25 mL of
the APTES solution with a concentration of 300 mM. Next, the prepared suspension was
modified in a pressure autoclave at 120 ◦C for 4 h, with continuous stirring at 500 rpm.
Next, to remove all the remaining chemicals, the mixture was rinsed with ethanol and
distilled water and dried in a lab dryer for 24 h at 105 ◦C. Such a prepared photocatalyst
was denoted as TiO2-4 h-120 ◦C-300 mM. Then, the obtained nanomaterial was heated
in an argon atmosphere (purity 5.0, Messer Polska Sp. z o.o., Chorzów, Poland). A
quartz crucible that contained the appropriate sample was placed in a quartz tube in
the center of a GHC 12/900 horizontal furnace (Carbolite Gero, Ltd., Hope, UK). The
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calcination was carried out in the 200–500 ◦C range for ∆t = 100 ◦C. Prior to the heating
step, argon was passed through the quartz pipe for 0.5 h to eliminate all air in the tube. Next,
the furnace was heated up to the specified temperature. The thermal modification was
conducted for 4 h with an argon flow of 180 mL/min. After that time, the furnace gradually
cooled to room temperature. The photocatalysts obtained after the calcination of starting
TiO2 in the argon atmosphere were called reference materials and denoted as TiO2-Ar-T,
while the APTES-functionalized TiO2 samples gained after heat treatment were labelled as
TiO2-4 h-120 ◦C-300 mM-Ar-T, where T means the temperature of calcination.

3.3. Structural Characterization

The obtained samples have been subjected to precise characteristics. The presence of
distinct functional groups on the surface of tested photocatalysts was confirmed using the
spectrometer FT-IR-4200 (number of scans 100, resolution 4.0 cm−1, JASCO International
Co. Ltd., Tokyo, Japan), fitted with a DiffuseIR accessory (PIKE Technologies, Fitchburg,
MA, USA). The crystalline phase identification and crystal structure of the nanomaterials
were performed using the X-ray diffraction analyses (XRD) carried out with a PANa-
lytical Empyrean X-ray diffractometer (Malvern, UK) equipped with Cu Kα radiation
(λ = 0.154056 nm). To identify the phase composition, the PDF-4+2014 International Cen-
tre for Diffraction Data database (for anatase: 04-002-8296 PDF4+ card, and for rutile:
04-005-5923 PDF4+ card) was used. The crystallite size was determined according to
Scherrer’s formula [52]. The Brunauer–Emmett–Teller (BET) specific surface area and pore
volume were determined using nitrogen adsorption using the QUADRASORB evoTM
Gas Sorption analyzer (Anton Paar GmbH, Graz, Austria). Before measurements, all
the photocatalysts were degassed for 12 h at 100 ◦C under a high vacuum prior to mea-
surements to eliminate all the remaining contaminants on the tested samples’ surfaces.
The single-point value determined the total pore volume from the nitrogen adsorption
isotherms at relative pressure p/p0 = 0.99. The micropore volume (Vmicro) was determined
using the Dubinin–Radushkevich method. In turn, the mesopore volume was estimated as
the difference between Vtotal and Vmicro. The elemental contents of nitrogen and carbon
in the TiO2 samples were measured using a CN 628 elemental analyzer (LECO Corpo-
ration, St. Joseph, MI, USA). The certified soil standard (Elemental Microanalysis Ltd.,
Okehampton, UK), containing 0.043 wt.% ± 0.01 of nitrogen and 0.46 wt.% ± 0.15 of carbon,
was utilized to prepare the calibration curve. The error range for the measurements was
maximally ±0.1%. The zeta potential values of nanoparticles were determined using a
ZetaSizer NanoSeries ZS (Malvern PANalytical Ltd., Malvern, UK). The samples were
dispersed in sterile H2O, sonicated for 30 min, and then subjected to analysis. All the
experiments were carried out tenfold and the data were depicted as averages (while the
difference between the considered measurements was not greater than 10%). The morphol-
ogy of the APTES-modified samples was observed using Field Emission Scanning Electron
Microscopy (FE-SEM, JSM 7600F, Jeol Ltd., Tokyo, Japan). In turn, the morphology of the
bacteria cells was evaluated using a Hitachi SU8020 Ultra-High Resolution Field Emission
Scanning Electron Microscope (Hitachi Group, Japan). The surface chemical analysis of
the APTES-modified samples was performed using energy dispersive X-ray spectroscopy
(EDS) analyzed using an EDS system combined with FE-SEM (JSM-7600F, Jeol Ltd., Tokyo,
Japan). The analysis of the hydroxyl radicals (•OH) formation on the photocatalyst surface
under artificial solar light irradiation was determined using the fluorescence technique
with terephthalic acid (Acros Organics B.V.B.A, Geel, Belgium) according to the method
described in our previous work [30]. The analysis was performed using a Hitachi F-4500
fluorescence spectrophotometer (Hitachi Group, Tokyo, Japan).

3.4. Preparation of Microorganisms and Antibacterial Activity Tests

The studies used Gram-negative Escherichia coli (ATCC 29425, LGC Group, Kielpin,
Poland) and Gram-positive Staphylococcus epidermidis (DSM 1798, DSMZ, Braunschweig,
Germany) as microorganisms. The sterile nutrient broth (Biomaxima S.A., Poland) and
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brain infusion broth (Biomaxima S.A., Lublin, Poland) were inoculated with E. coli and
S. epidermidis, respectively, and incubated for 24 h at 37 ◦C. Next, the bacteria cells were har-
vested using centrifugation (at 4000 rpm for 10 min) and washed with 0.9% saline solution
(Merck, Germany) to remove the residues of the growth broth. Finally, the bacteria con-
centration was adjusted to approx. 1.5 × 107 CFU/mL using spectrometric measurements
(optical density measurement, OD600).

3.5. Antibacterial Activity Test

All the glassware used in the experiment was washed with distilled water and ther-
mally sterilized at 150 ◦C for 24 h before each experiment.

The antibacterial tests were carried out in 150 mL glass beakers used as the reactor. The
experiments were conducted both for mono- and co-cultures of bacteria. In the experiments
with monoculture, 10 mL of the bacterial suspension (1.5 × 107 CFU/mL) was transferred
to the beaker containing 90 mL of saline solution (0.9%) and 10 mg of the appropriate
photocatalyst. For the experiments with mixtures of E. coli and S. epidermidis, 5 mL of each
bacteria suspension was transferred into the same beaker. Finally, in each experiment, the
bacteria concentration was approx. 1.5 × 106 CFU/mL and the photocatalyst concentration
amounted to 0.1 g/L. The reaction suspension was irradiated from above using artificial
solar light, denoted as ASL, for 90 min. The employed ASL source comprised a 300 W light
bulb (OSRAM Ultra Vitalux, OSRAM GmbH, Munich, Germany) with a radiation intensity
of 9.0 W/m2 in the spectral range from 300 to 2800 nm and 258.1 W/m2 in the spectral
range from 280 to 380 nm. The distance between the beaker and the light source was fixed
at approx. 40 cm. The bacteria inactivation process was conducted at room temperature and
the temperature of the reaction suspension amounted to approx. 25 ◦C. The light source’s
emission spectra and radiation intensity were presented in Supplementary Materials as
Figure S10. Before the inactivation process, the ASL lamp was preheated for 30 min to
obtain a stable light intensity.

The antibacterial activity of the photocatalysts was evaluated using the standard plate
count method. The reaction suspension (1 mL) was initially measured every 15 min and
then every 5 min. Subsequently, the mixture was diluted to a particular concentration
(10−3 mL) and then 250 µL of the mixture was uniformly coated on the Petri dish’s surface.
First, E. coli was spread over the surface of Lactose Agar TTC with Tergitol 7 (BTL Sp. z
o.o., Łódź, Poland). For the S. epidermis, Mannitol Salt Lab Agar (BioMaxima S.A., Lublin,
Poland) was used. Next, the plates were incubated at 37 ◦C for 24 h (with E. coli) and 48 h
(with S. epidermidis) and the number of colonies was counted by using a bacterial colony
counter LKB 2002 (POL-EKO-APARATURA Sp.j., Wodzisław Śląski, Poland). Simultane-
ously, control experiments under dark conditions and without photocatalysts (only ASL
light) were also performed. All the experiments were carried out in triplicate and presented
as the average, including standard deviation.

4. Conclusions

The photocatalysts were obtained by modification of TiO2 using APTES with a
solvothermal process (at 120 ◦C) followed by calcination (200–500 ◦C). The calcination
of the APTES-modified TiO2 caused a further improvement in the samples’ antibacterial
properties. The received APTES/TiO2 were capable of total Escherichia coli and S. epidermidis
inactivation in the experiments performed with mono- and co-cultures of bacteria under
artificial solar light irradiation. In addition, for the experiments performed with bacterial
co-culture, the bacteria inactivation time was shorter compared to the experiments with
bacteria monocultures. The positive surface charge of the photocatalysts and high SBET
area could be the main factors responsible for the good antibacterial properties of the
APTES-modified photocatalysts, calcined in the range of 200–500 ◦C.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28041655/s1. Figure S1: Adsorption–desorption
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isotherms of starting TiO2 , reference calcined photocatalysts (a), and APTES/TiO2 nanomaterials
(b). Figure S2: EDS mapping and EDS spectrum of TiO2-4 h-120◦C-300 mM. Figure S3: EDS
mapping and EDS spectrum of TiO2-4 h-120◦C-300 mM-Ar-200 ◦C. Figure S4: EDS mapping
and EDS spectrum of TiO2-4 h-120◦C-300 mM-Ar-400 ◦C. Figure S5: EDS mapping and EDS
spectrum of TiO2-4 h-120◦C-300 mM-Ar-500 ◦C. Figure S6: Inactivation of monoculture of E. coli
in the presence of starting TiO2 , reference calcined photocatalysts (a) and APTES/TiO2 samples
(b) under dark conditions. Figure S7: Inactivation of monoculture of S. epidermidis in the presence
of starting TiO2 , reference calcined photocatalysts (a) and APTES/TiO2 (b) samples under dark
conditions. Figure S8: Inactivation of E. coli in co-culture bacteria in the presence of starting TiO2 ,
reference photocatalysts (a) and APTES/TiO2 (b) samples under dark conditions. Figure S9:
Inactivation of S. epidermidis in co-culture of bacteria in the presence of starting TiO2 , reference
photocatalysts (a) and APTES/TiO2 samples (b) under dark conditions. Figure S10: Emission
spectra of artificial solar light (ASL).
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