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Abstract: Aloesone is a major metabolic compound in Aloe vera, which has been widely used as a food
source and therapeutic agent in several countries. Our recent study demonstrated that aloesone has
anti-epileptic effects on glutamate-induced neuronal injury by suppressing the production of reactive
oxygen species (ROS). Unless ROS are naturally neutralized by the endogenous antioxidant system,
they lead to the activation of inflammation, polarization, and apoptosis. This study aimed to identify
the multiple beneficial effects of aloesone and explore its molecular mechanism in macrophages.
Hence, the murine macrophage cell line RAW264.7 was pretreated with aloesone and then exposed
to lipopolysaccharides (LPS). The results demonstrated that aloesone, within a dosage range of
0.1–100 µM, dramatically decreased the LPS-induced elevation of ROS production, reduced nitric
oxide (NO) release, inhibited the M1 polarization of RAW264.7 cells, and prevented cells from entering
the LPS-induced early and late phases of apoptosis in a dose-dependent manner. Simultaneously,
aloesone significantly decreased the mRNA expression of inflammation-related genes (iNOS, IL-1β,
TNF-α) and increased the expression of antioxidant enzymes (Gpx-1 and SOD-1). The core genes
HSP90AA1, Stat3, Mapk1, mTOR, Fyn, Ptk2b, and Lck were closely related to these beneficial effects
of aloesone. Furthermore, immunofluorescence staining and flow cytometry data confirmed that
aloesone significantly repressed the activation of mTOR, p-mTOR, and HIF-1α induced by LPS
and inhibited the protein expression of TLR4, which is the target of LPS. In conclusion, aloesone
demonstrated multiple protective effects against LPS-induced oxidative stress, inflammation, M1
polarization, and apoptosis in macrophages, suggesting its potential as a prodrug.

Keywords: aloesone; anti-apoptosis; anti-inflammation; anti-M1 polarization; antioxidant stressK

1. Introduction

Inflammation is the host’s immune response to chemicals, physical injury, and infec-
tion. However, excessive inflammation induces an unpredicted increase in inflammatory
mediators, such as cytokines (tumor necrosis factor-α (TNF-α), interleukins, inducible
nitric oxide synthase (iNOS)), chemokines, and reactive oxygen species (ROS). Inflam-
matory mediators have implications in heart disease (ischemic heart failure and cardiac
ischemia/reperfusion injury) [1,2], brain disorders (depression and anxiety) [3,4], and lung
disease (chronic obstructive pulmonary disease and acute lung injury) [5,6]. Recent studies
have confirmed that ROS could also cause oxidative stress, leading to the activation of
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inflammatory pathways, the stimulation of macrophage polarization, and the triggering of
cell damage [7,8].

Traditionally, Aloe vera has been widely used as a food source and therapeutic agent in
several countries, such as Egypt, India, Greece, and China [9,10]. Various compounds from
A. vera, including anthrones, alkaloids, anthraquinones, chromones, and flavonoids [11],
have been shown to exhibit anti-tyrosinase [12], anti-cancer [13,14], anti-diabetic [15],
and anti-inflammation effects. Overall, the ethanol extraction of A. vera leaves inhib-
ited the release of interleukin (IL)-6 induced by the neuropeptide substance in glioblas-
toma/astrocytoma U373 MG cells [16] and significantly suppressed inflammatory cell
infiltration and serum secretion of TNF-α and nitric oxide (NO) in rats with trinitrobenzene-
sulfonic acid-induced colitis [17]. Additionally, gavaging A. vera gel for eight weeks could
inhibit hepatic malondialdehyde and lower glutathione levels in high fat, high fructose-
diet fed rats [18]. Notably, 100–200 µg/mL of aloin dramatically decreased the release of
cytokines and ROS in lipopolysaccharide (LPS)-induced macrophages [19]. Concentrations
of aloe emodin from 25 to 100 µM inhibited palmitic acid-induced inflammatory cytokine
(TNF-α, IL-1β, and IL-6) production in H9C2 cells [20]. Furthermore, 80 and 150 mg/Kg of
aloe emodin suppressed sepsis-associated inflammatory cytokine production, including
TNF-α and IL-6 [21]. Barbaloin, the major anthraquinone in A. vera, ameliorated dextran
sulfate sodium salt (DSS)-induced excessive release of TNF-α, IL-1β, IL-6, and IL-4 [22].
Aloesone, a major metabolic compound in A. vera, shows both antioxidation and inflam-
mation in vitro [23]. Our recent study demonstrated that aloesone caused an anti-epileptic
effect in glutamate-induced neuron injury by suppressing the production of ROS [24].
Unless ROS are naturally neutralized by the endogenous antioxidant system, they lead to
the activation of inflammation. Hence, we hypothesized that aloesone can potentially exert
antioxidant and anti-inflammation effects in peripheral tissues.

Macrophages are a central component of the innate peripheral immune system and
play a vital role in inflammation [25]. The membranes of Gram-negative bacteria contain
LPS, which activates the host Toll-like receptor 4 (TLR4) and triggers an inflammatory
response, ultimately leading to the release of pro-inflammatory mediators [26,27]. The
LPS-induced murine macrophage cell line RAW264.7 model has been commonly used to
explore inflammation, oxidative stress, and apoptosis [28–30]. The aim of the present study
was to explore the effects of aloesone on LPS-induced macrophages by evaluating the main
markers of oxidative stress, inflammation, polarization, and apoptosis. The molecular
mechanism of aloesone was further studied.

2. Results
2.1. Aloesone Inhibited LPS-Induced Oxidative Stress in RAW264.7 Cells

Aloesone concentrations of 0.1, 1, 10, 100, and 1000 µM were used to verify its ef-
fect on the survival of RAW264.7 cells using the Cell Counting Kit-8 (CCK8). Results
demonstrated that these concentrations of aloesone did not affect the survival of RAW264.7
cells (Figure 1A,B). According to our previous study, concentrations varying from 0.1 to
100 µM of aloesone were shown to ameliorate glutamate-induced neuron injury, and these
concentrations were applied in subsequent experiments [24].

In the present study, pretreatment with aloesone for 2 h dramatically reduced the
LPS-stimulated elevation of ROS production in a dose-dependent manner (Figure 1C,D). In
contrast, aloesone significantly increased the mRNA expression of Gpx-1 (Figure 1E) and
SOD-1 (Figure 1F), which could clear the overloaded ROS, compared with the LPS group.
These results confirmed the antioxidant effect of aloesone.
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of aloesone administered at concentrations ranging from 0.1 to 1000 µM for 2 h on the survival rate 
of RAW264.7 cells, n = 6. (C) Fluorescent figures of 2, 7-dichlorodi-hydrofluorescein (DCFH) among 
treatment groups. (D) Mean fluorescent intensity analyzed by flow cytometry, n = 3–4. (E) The 
mRNA expression of antioxidant enzyme Gpx-1. (F) The mRNA expression of antioxidant enzyme 
SOD-1.; # p < 0.05 compared with the LPS group; n = 3–4. Results were expressed as mean ± standard 
deviation, ** p < 0.01, *** p < 0.001 compared with the control group; # p < 0.05, ### p < 0.001 compared 
with the LPS group. ns: no significance. 

2.2. Aloesone Suppressed Inflammation Induced by LPS 
In the present study, the NO level was significantly increased in LPS-induced 

RAW264.7 cells (11.62 ± 0.38 µg/mL), compared with that in the control group (4.49 ± 0.33 
µg/mL). Aloesone decreased the NO release induced by LPS (the 0.1, 1, 10, and 100 µM 
aloesone doses corresponded to 10.94 ± 0.37, 11.17 ± 0.48, 10.82 ± 0.50, and 8.90 ± 0.48 
µg/mL NO, respectively, Figure 2A) and suppressed the mRNA expression of inflamma-
tory cytokines, including iNOS (Figure 2B), IL-1ꞵ (Figure 2C), and TNF-α (Figure 2D). 
These results suggested that aloesone caused anti-inflammatory effects in the RAW264.7 

Figure 1. Antioxidant effect of aloesone in RAW264.7. Cells were treated with aloesone for 2 h,
followed by 1 µg/mL of LPS for an additional 12 h. (A) Chemical structure of aloesone. (B) The
effect of aloesone administered at concentrations ranging from 0.1 to 1000 µM for 2 h on the survival
rate of RAW264.7 cells, n = 6. (C) Fluorescent figures of 2, 7-dichlorodi-hydrofluorescein (DCFH)
among treatment groups. (D) Mean fluorescent intensity analyzed by flow cytometry, n = 3–4. (E) The
mRNA expression of antioxidant enzyme Gpx-1. (F) The mRNA expression of antioxidant enzyme
SOD-1.; # p < 0.05 compared with the LPS group; n = 3–4. Results were expressed as mean ± standard
deviation, ** p < 0.01, *** p < 0.001 compared with the control group; # p < 0.05, ### p < 0.001 compared
with the LPS group. ns: no significance.

2.2. Aloesone Suppressed Inflammation Induced by LPS

In the present study, the NO level was significantly increased in LPS-induced RAW264.7
cells (11.62 ± 0.38 µg/mL), compared with that in the control group (4.49 ± 0.33 µg/mL).
Aloesone decreased the NO release induced by LPS (the 0.1, 1, 10, and 100 µM aloesone
doses corresponded to 10.94 ± 0.37, 11.17 ± 0.48, 10.82 ± 0.50, and 8.90 ± 0.48 µg/mL NO,
respectively, Figure 2A) and suppressed the mRNA expression of inflammatory cytokines,
including iNOS (Figure 2B), IL-1β (Figure 2C), and TNF-α (Figure 2D). These results
suggested that aloesone caused anti-inflammatory effects in the RAW264.7 macrophage.
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Figure 2. Anti-inflammatory effects of aloesone on LPS-induced RAW264.7 cells. Cells were treated
with aloesone for 2 h, followed by 1 µg/mL of LPS for an additional 12 h. (A) Release of NO, n = 6.
(B) mRNA expression of inflammatory cytokine iNOS, n = 3–4. (C) mRNA expression of IL-1β, n = 3–4
(D) mRNA expression of TNF-α, n = 3–4. Results were expressed as mean ± standard deviation,
* p < 0.05, ** p < 0.01, *** p < 0.001 compared with the control group; # p < 0.05, ## p < 0.01, ### p < 0.001
compared with the LPS group.

2.3. Aloesone Inhibited the M1-Polarization of RAW 264.7 Cells Induced by LPS

As shown in the micrographs (Figure 3A), the administration of LPS for 12 h stim-
ulated the polarization of RAW264.7 cells, with apparent antenna, a characteristic of the
M1 phenotype, while aloesone inhibited this polarization. Furthermore, we confirmed the
effect of aloesone on the polarization of RAW264.7 cells by detecting the specific surface
phenotype marker of M1 (cluster of differentiation, CD86) [31]. The results demonstrated
that LPS induced the membrane overexpression of CD86, while aloesone significantly inhib-
ited the membrane expression of CD86, indicating that aloesone inhibited the polarization
of RAW264.7 to M1 (Figure 3B).
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Figure 3. Aloesone inhibited the polarization of RAW264.7 to M1 macrophages when stimulated by
LPS, n = 4. (A) The representative graphs of RAW264.7 when administered with LPS alone or with
aloesone. (B) Percentage of CD86-positive cells among treatment groups. Results were expressed as
mean ± standard deviation, *** p < 0.001 compared with the control group; ### p < 0.001 compared
with the LPS group.

2.4. Aloesone Suppressed LPS-Induced Apoptosis in RAW 264.7 Cells

In the present study, the administration of aloesone within the 0.1 to 100 µM dosage
range prevented the LPS-induced early phase of apoptosis (4.42 ± 0.70%) in a dose-
dependent manner (0.1 µM, 3.58 ± 1.15%; 1 µM, 2.63 ± 1.17%; 10 µM, 1.92 ± 0.81%;
100 µM, 1.26 ± 0.22%, Figure 4A,B). Furthermore, aloesone decreased the ratio of LPS-
induced cells in the late phase of apoptosis from 16.66 ± 0.21% to 9.13 ± 1.38% (0.1 µM),
12.61 ± 1.99% (1 µM), 9.80 ± 2.35% (10 µM), and 7.89 ± 2.02% (100 µM, Figure 4A,C).
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Figure 4. Aloesone inhibited the LPS-induced early and late apoptosis of RAW264.7 cells, n = 3–4.
Cells were treated with aloesone for 2 h, followed by 1 µg/mL of LPS for an additional 12 h.
(A) Representative graphs from flow cytometry. (B) Early phase apoptotic rate. (C) Late phase
apoptotic rate. Results were expressed as mean ± standard deviation, * p < 0.05, ** p < 0.01 compared
with the control group; # p < 0.05, ## p < 0.01, ### p < 0.001 compared with the LPS group.
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2.5. Mammalian Target of Rapamycin (mTOR)/Hypoxia Inducible Factor-1α (HIF-1α) and TLR4
Are Involved in the Protective Effects of Aloesone Post LPS Stimulation

To explain the molecular mechanism of aloesone in oxidative stress, inflammation,
M1 polarization, and apoptosis, overlapping genes were collected from Genecards and
SwissTargetsPrediction. The results demonstrated that 86 genes were closely associated
with the antioxidant stress, anti-inflammation, anti-polarization, and anti-apoptotic ef-
fects of aloesone (Figure 5A,B), of which seven targets—heat shock protein HSP 90-alpha
(HSP90AA1), signal transducer and activator of transcription 3 (Stat3), mitogen-activated
protein kinase 1 (Mapk1), mTOR, fyn proto-oncogene (Fyn), protein tyrosine kinase 2 beta
(Ptk2b), and lck proto-oncogene (Lck)—were the hub genes (Figure 5C). Moreover, path-
way enrichment analysis demonstrated that these seven hub genes were enriched in Th17
cell differentiation, PD-L1 expression, and PD-1 checkpoint pathways in cancer, acute
myeloid leukemia, pancreatic cancer, epidermal growth factor receptor (EGFR) tyrosine
kinase inhibitor resistance, natural killer cell-mediated cytotoxicity, prostate cancer, T cell
receptor signaling pathway, hypoxia inducible factor (HIF)-1 signaling, and phospholipase
D signaling pathway (Figure 5D).
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Figure 5. Predicted targets of aloesone. (A) Venn diagram of genes affected by aloesone and those
involved in oxidative stress, inflammation, M1 polarization, and apoptosis. (B) Overlapping genes
(86 genes). (C) Hub genes. Core genes were analyzed using CytoNCA of Cytoscape3.6.1, with the
criteria of median value of betweenness, closeness, and degree centrality. (D) Enrichment pathway of
hub genes.

Results from immunofluorescent staining (IF) illustrated that aloesone significantly
repressed the LPS-induced activation of mTOR (Figure 6A,B), p-mTOR (Figure 6A,C), and
HIF-1α (Figure 6A,D). Furthermore, aloesone decreased the membrane expression of TLR4,
the specific receptor of LPS (Figure 6E). These results suggest that the mTOR/HIF-1α
pathway and TLR4 may be involved in the protective effects of aloesone.
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Figure 6. Potential molecular mechanism of aloesone. (A) Immunofluorescent figures of mTOR,
p-mTOR, and HIF-1α expression. Cells were treated with aloesone for 2 h, followed by 1 µg/mL of
LPS for an additional 12 h. (B–D) Fluorescent intensity of mTOR, p-mTOR, and HIF-1α, respectively;
n = 3–4. (E) Fluorescent intensity of TLR4 in the control, LPS, 0.1, 1, 10, and 100 µM group; n = 3–4.
Results were expressed as mean ± standard deviation, *** p < 0.001 compared with the control group;
## p < 0.01, ### p < 0.001 compared with the LPS group.

3. Discussion

Traditional medicine (TM) is commonly used worldwide. According to the prediction
of the World Health Organization (WHO), 80% of the global population utilizes TM as a
complementary or alternative medicine [32]. To date, many herbal extracts and specific
natural compounds have shown anti-inflammation and antioxidant effects, including those
in A. vera [33,34]. In the present study, we demonstrated that aloesone, a major metabolic
compound of A. vera, has multiple protective effects against oxidative stress, inflammation,
M1 polarization, and apoptosis.

Macrophages play a vital role in the pathogenesis of many chronic diseases, including
fibrosis, asthma, and inflammatory bowel disease [35]. Macrophages are an important
source of many key inflammatory cytokines that drive autoimmune inflammation, such as
IL-12, IL-18, IL-23, and TNF-α. ROS are normally produced within the body in limited quan-
tities and are important compounds involved in the regulatory processes of cell homeostasis
and functions, including signal transduction, gene expression, and receptor activation [36].
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An imbalance in ROS results in oxidative stress, which induces inflammation by damaging
DNA, proteins, and lipids [37,38]. Herein, synthesized aloesone repressed LPS-stimulated
ROS production and induced the mRNA expression of vital antioxidant enzymes (Gpx1
and SOD1), suggesting the antioxidant stress effect of aloesone in RAW264.7 cells, which is
consistent with a previous study in which aloesone scavenges radial DPPH and has high
oxygen radical absorbance capacity at concentrations of 351 ± 35 µM and 66± 1 µM Trolox
equivalents, respectively, in vitro [23].

Excessive ROS produced in the process of oxidant metabolism, as well as some natu-
ral or artificial chemicals, have been reported to stimulate macrophage M1 polarization,
the proinflammatory phenotype [39], and subsequently initiate the inflammatory pro-
cess. M1 macrophages tend to promote the synthesis and secretion of proinflammatory
cytokines, such as iNOS, IL-1β, and TNF-α. These cytokines have also been documented
to play critical roles in the inflammatory process, especially by causing macrophages
apoptosis [40], leading to several chronic diseases [41]. In the present study, aloesone
inhibited the M1 polarization of macrophages and alleviated the LPS-stimulated excessive
release of NO and the overexpression of iNOS, IL-1β, and TNF-α in these cells, illustrating
its anti-inflammatory effect. Furthermore, aloesone suppressed both the early and late
phase of apoptosis. Overall, the multiple beneficial effects of aloesone on macrophages
were confirmed.

Elucidating the mechanism of aloesone is vital for its further application. The mam-
malian target rapamycin (mTOR) is a serine/threonine kinase involved in gene regulation
in inflammation [42]. The phosphorylation of mTOR can regulate the phosphorylation of
various transcription factors, including p70S6K and 4E-BP1, which can further promote the
expression of HIF-1α [43]. The mTOR/HIF-1α pathway participates in cellular responses,
such as survival and polarization [44–46]. Aloesone inhibits the mTOR/HIF-1α pathway,
which could be one of the potential mechanisms involved in its therapeutic effects regarding
inflammation, oxidative stress, polarization, and apoptosis in RAW264.7 cells. Moreover,
LPS binds to TLR4, leading to oxidative stress, inflammation, and M1 polarization. In
the present study, we demonstrated that aloesone significantly decreased the membrane
expression of TLR4, which can also be regulated by HIF-1α [47]. In contrast, the facilitation
of HIF-1α by LPS is regulated by TLR4 [48]. Moreover, LPS-induced oxidative stress could
induce HIF-1α expression and is central to determining the phenotype of macrophages [49].
Therefore, HIF-1α may be the core mediator of aloesone in protecting macrophages from
oxidative stress, inflammation, polarization, and apoptosis.

4. Materials and Methods
4.1. Synthesis of Aloesone

Aloesone was synthesized in accordance with the methods of a previous study [50],
and was obtained as a white solid powder. In brief, β-diketone was derived from an ace-
tophenone derivative, by coupling it with 1, 3-dioxolane-proted acetoacetic acid, followed
by treating it with hydrochloric acid and isopropanol to afford the aloesone. Nuclear
magnetic resonance (NMR) spectra were obtained on a 400 MHz ECZ400S spectrometer
(JEOL, Tokyo, Japan, 400 MHz for 1H and 100 MHz for 13C): 1H NMR (400 MHz, dimethyl
sulfoxide (DMSO)-d6) δ 10.61 (s, 1H), 6.62 (s, 1H), 6.60 (s, 1H), 6.03 (s, 1H), 3.85 (s, 2H), 2.65
(s, 3H), 2.21 (s, 3H); 13C NMR (100 MHz, DMSO-d6) δ 203.37, 178.69, 161.57, 161.10, 159.75,
142.13, 117.19, 114.88, 113.41, 101.06, 47.91, 30.38, 22.97 (Figure 7). Aloesone was dissolved
in DMSO to prepare a stock solution (100 mM).
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4.2. Study Design
4.2.1. Cell Culture

RAW264.7 cells were purchased from Procell (Wuhan, Hubei, China) and cultivated
in high glucose Dulbecco’s Modified Eagle Medium (DMEM; Gibco, Carlsbad, CA, USA),
with the addition of 10% fetal bovine serum (CLARK Bioscience, Richmond, VA, USA) and
1% streptomycin/penicillin antibiotics (Biosharp, Hefei, China) in a humidified incubator
with a stable CO2 (5%) supply and temperature (37 ◦C).

4.2.2. Cell Viability

RAW264.7 cells (10,000 cells) were inoculated in 96-well microplates for 24 h and
treated with 0.1, 1, 10, 100, and 1000 µM aloesone for 12 h. After removing the culture
medium, cells were incubated with fresh culture medium containing 20 µL CCK8 (Biosharp)
reagent for 30 min at 37 ◦C. Cell proliferation was evaluated by measuring the absorbance
(450 nm) in a microplate reader (Spectra MAX 190, Molecular Devices, San Jose, CA, USA),
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according to the previously described method [51]. The survival rate was calculated by
ODaloesone/ODcontrol × 100%.

4.2.3. Groups

RAW264.7 cells were divided into six groups, as follows:

(1) Control group: Cells were treated for 2 h with DMEM containing 0.1% DMSO as a
vehicle, followed by DMEM with 0.1 M phosphate buffered saline (PBS, Gibco, New
York, NY, USA) for 12 h.

(2) LPS group: Cells were treated with DMEM containing 0.1% DMSO for 2 h, followed
by DMEM with 1 µg/mL of LPS for an additional 12 h.

(3) Aloesone groups: Cells were pretreated with various concentrations (0.1, 1, 10, and
100 µM) of aloesone in DMEM for 2 h, followed by DMEM with 1 µg/mL of LPS for
an additional 12 h (Figure 8).
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4.3. Evaluation of Oxidative Stress
4.3.1. Measurement of ROS Generation

ROS accumulation was detected using a radical probe, 2,7-dichlorodi-hydrofluorescein
diacetate (DCFH-DA, Sigma, Saint Louis, MO, USA). RAW264.7 cells pretreated with
aloesone and LPS were incubated with DCFH-DA (diluted to 1:1000 with serum-free
medium) at 37 ◦C for 30 min in the dark. Then, the excess DCFH-DA that had not entered
the cells was cleared using PBS. Thereafter, graphs were obtained by a magnification
microscope (Zeiss X-Cite, Oberkochen, BW, Germany) and the mean fluorescence intensity
was measured using flow cytometry (Agilent NovoCyte, Santa Clara, CA, USA) at the
fluorescein isothiocyanate (FITC) channel.

4.3.2. Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR)

Total RNA was extracted from RAW264.7 cells using TRIzol Reagent (Invitrogen,
Waltham, MA, USA), according to the manufacturer’s instructions. Then, it was reversed to
cDNA in a total volume of 20 µL (HiScript Reverse Transcrptase, Vazyme, Nanjing, China).
PCR was performed using a real-time PCR system (Bio-Rad, Hercules, CA, USA), with
the following amplification conditions: 95 ◦C initial denaturation for 5 min, followed by
39 cycles of 95 ◦C for 15 s and 60 ◦C for 30 s. Relative expression levels of the antioxidant
enzymes Gpx-1 and SOD-1 were calculated based on the 2−∆∆Ct method, according to the
manufacturer’s specifications, using the actin gene as a reference housekeeping gene. The
sequences of primers used for qRT-PCR are shown below (Table 1), according to a previous
study [52].
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Table 1. Sequence of primers.

Gene Names Primer-F (5′-3′) Primer-R (5′-3′) Length (bp)

Actin CCACAGCTGAGAGGGAAATC AAGGAAGGCTGGAAAAGAGC 193
iNOS TTGGGTCTTGTTCACTCCACG GGCTGAGAACAGCACAAGGG 201
IL-1β TGCCACCTTTTGACAGTGATG GGAGCCTGTAGTGCAGTTGT 351
TNF-α GTAGCCCACGTCGTAGCAA GTGAGGAGCACGTAGTCGG 191
Gpx-1 GGAGAATGGCAAGAATGAAGA CCGCAGGAAGGTAAAGAG 139
SOD-1 CCATCAGTATGGGGACAATACA GGTCTCCAACATGCCTCTCT 109

4.4. Assessment of Inflammation
4.4.1. Detection of NO

Supernatant was used to detect the content of NO using a commercial kit based on
the Griess reaction (Beyotime, Shanghai, China), as described previously [53]. The reaction
was measured at 450 nm using a microplate reader (Spectra MAX 190).

4.4.2. Detection of mRNA Expression of Inflammation Associated Genes

Relative expression levels of inflammatory cytokines, including iNOS, IL-1β, and
TNF-α, were detected by qRT-PCR and calculated based on the 2−∆∆Ct method, according
to the manufacturer’s specifications, using the actin gene as a reference housekeeping gene.

4.5. Evaluation of Macrophage Polarization

The cells were washed with 0.1 M PBS, harvested using trypsin (Biosharp, Hefei,
China), and centrifuged at 1500 rpm for 5 min at 4 ◦C. Aliquots of 100,000 cells were
suspended in PBS and incubated with an FITC-conjugated monoclonal antibody against
M1 marker CD86 (1 µg, Abcam, Cambridge, UK). The cells were resuspended with PBS
and analyzed using a flow cytometer.

4.6. Detection of Apoptosis

The anti-appotic effect of aloesone was evaluated using the annexin V-FITC/propidium
iodide (PI) apoptosis assay. Briefly, cells were harvested using trypsin and centrifuged at
1500 rpm for 5 min at 4 ◦C. Aliquots of 100,000 cells were suspended in 500 µL binding
buffer and 5 µL staining reagent (Boster, Wuhan, Hubei, China). After incubation in the
dark at 37 ◦C for 5 min, the fluorescent intensity of FITC and PI were analyzed by flow
cytometry [54].

4.7. Predicting Targets and Pathways of Aloesone

The canonical simplified molecular input line entry system (SMILES) of aloesone were
retrieved from PubChem (https://pubchem.ncbi.nlm.nih.gov/, accessed on 28 Septem-
ber 2022) and used for target identification in the Swiss Target Prediction database (http:
//www.swisstargetprediction.ch, accessed on 28 September 2022). Simultaneously, the
target genes associated with inflammation, oxidative stress, macrophage polarization, and
apoptosis were obtained from GeneCards (https://www.genecards.org/, version 4.9.0, ac-
cessed on 28 September 2022). Overlapping genes associated with aloesone, inflammation,
oxidative stress, macrophage polarization, and apoptosis were retrieved using the EVenn
(http://www.ehbio.com/test/venn/#/, accessed on 28 September 2022) tool [55], while
the protein–protein interaction (PPI) network of the target was obtained using the STRING
online tool (https://string-db.org/, accessed on 28 September 2022). Core genes were
analyzed using CytoNCA of Cytoscape3.6.1 (https://www.cytoscape.org/, accessed on
28 September 2022), with the criteria of median value of degree centrality (DC), closeness
centrality (CC), and betweenness centrality (BC) [56]. Biochemical pathways enriched
by the core targets were determined using the web-based annotation tool DAVID v6.8
(https://david.ncifcrf.gov/tools.jsp, accessed on 28 September 2022). Statistical signifi-
cance was set at p < 0.05.

https://pubchem.ncbi.nlm.nih.gov/
http://www.swisstargetprediction.ch
http://www.swisstargetprediction.ch
https://www.genecards.org/
http://www.ehbio.com/test/venn/#/
https://string-db.org/
https://www.cytoscape.org/
https://david.ncifcrf.gov/tools.jsp
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4.8. Confirmation of Targets of Aloesone
4.8.1. IF Staining

The expression of the targets (mTOR, p-mTOR, and HIF-1α) was detected by IF.
Briefly, cells mounted on slides were retrieved and incubated for 30 min in 5% bovine
serum albumin and incubated with rabbit monoclonal antibodies overnight at 4 ◦C (mTOR,
1:50, Abcam; p-mTOR, 1:50, Santa Cruz, CA, USA; and HIF-1α, 1:50, Abcam). Next, the
cells were washed with PBS and stained with an FITC-conjugated secondary antibody
(Boster) for 2 h at 37 ◦C, followed by 4′,6-diamidino-2-phenylindole (DAPI, Boster) for
5 min in the dark. A magnification microscope (Zeiss X-Cite) was used to observe the
stained cells at a 200× magnification [24,57]. Subsequently, ImageJ software (1.52a, Wayne
Rasband, Bethesda, MD, USA) was used to process the fluorescent images [58].

4.8.2. Membrane Distribution of TLR4

Cells were washed with PBS. After the cells were collected, the phycoerythrin-conjugated
monoclonal antibody of TLR4 (1 µg per 100,000 cells, Santa Cruz) were applied to stain the
cells. The cells were resuspended with PBS and analyzed using a flow cytometer.

4.9. Statistical Analysis

All data are expressed as mean ± standard deviation (SD). The normal distribution
of data was tested using the Shapiro–Wilk test, after which data that distributed normally
were analyzed by one-way analysis of variance (ANOVA) with Benjamini’s test for multiple
groups. Otherwise, non-normally distributed data were analyzed using the Kruskal–Wallis
test. The results were considered to be significant with p < 0.05. Statistical analysis and
figures were generated using GraphPad Prism (version 9.0.0).

5. Conclusions

In summary, we first demonstrated that aloesone significantly inhibited ROS produc-
tion, NO release, and surface expression of CD86, and suppressed the early and late phase
of apoptosis in RAW264.7 cells; this confirmed the multiple protective effects of aloesone
on oxidative stress, inflammation, M1 polarization, and apoptosis of the macrophages.
Furthermore, the mTOR/HIF-1α pathway and TLR4 were closely related to these effects.
This study confirmed the potential use of aloesone as a therapeutic agent.
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