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Abstract: A growing global emission of engineered nanoparticles (ENPs) into the aquatic environment
has become an emerging safety concern that requires methods capable of identifying the occurrence
and possibly determining the amounts of ENPs. In this study, we employed sector-field inductively
coupled mass spectrometry to assess the presence of ENPs in coastal seawater samples collected from
the Black Sea in regions suffering different anthropogenic impacts. Ultrafiltration through commercial
3 kDa membrane filters was shown to be feasible to separate the ENPs from the bulk seawater, and
the subsequent ultrasound-mediated acidic dissolution makes the metals constituting the ENPs
amenable to analysis. This procedure allowed the ENPs bearing Cu, Zn, V, Mo, and Sn to be for the
first time quantitated in seashore surface water, their concentration ranging from 0.1 to 1.0 µg L−1 (as
metal) and related to the presence of industry and/or urban stress. While these levels are decreased
by natural dilution and possible sedimentation, the monitored ENPs remain measurable at a distance
of 2 km from the coast. This can be attributed not only to local emission sources but also to some
natural backgrounds.

Keywords: engineered nanoparticles; seawater; ICP-MS; sample preparation; contamination

1. Introduction

Increasing pollution of aquatic environments is a growing concern with global rel-
evance. Of a large number of chemicals posing considerable risks to aquatic biota and
human health, nanomaterials are assumed to be an emerging class of contaminants [1–3].
Engineered nanoparticles (ENPs) are produced in large quantities and in a wide range
of products, with increasing consumption in a variety of industries (Table 1). Recent esti-
mates [4] predict that the global nanotechnology market will exceed USD 125 billion by
2024. The disposal of ENPs leads to their massive emission into the aquatic environment,
where their exact behavior, fate, and ecological implications are still uncertain. It goes with-
out saying that to effectively manage the ENP contamination, an accurate quantification in
various marine compartments is imperative. However, these data remain largely elusive
due to the analytical difficulties of measuring the ENPs, particularly in a complex seawater
matrix. Major barriers exist in two aspects. First, these are low (or very low) concentrations,
at which the ENPs arrive and are consumed by the sea. The second obstacle is the extremely
high salinity of this type of aquatic sample.

Our recent overview of the relevant literature [5] revealed that nano-sea analysis is still
in its infancy and that high-efficiency analytical methods are required to reliably measure
the concentrations of ENP pollutants. Another general conclusion is that inductively
coupled mass spectrometry (ICP-MS) is the only method capable of targeting seawater
concentrations of ENPs. However, the majority of published accounts deal so far with
negative (spiked) samples. The only exclusion is the work by Sanchís et al. [6] and de
Vega et al. [7], who used a special measurement mode, single-particle (SP) ICP-MS, to
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differentiate the signal of NPs from the corresponding ion signal. Such an approach makes
the direct quantification of ENPs possible, provided that a sample or aerosol is sufficiently
diluted. Nonetheless, only a limited assortment of ENPs, such as CeO2- and TiO2-NPs [6] or
TiO2- and Pb-based NPs [7], were determined in some coastal seawater samples collected in
the metropolitan areas strongly affected by river fluxes. However, consistent measurements
of certain target isotopes (e.g., 48Ti) and likely of other metals constituting the ENPs (like
64Zn) with a quadrupole mass analyzer are hampered by spectral interferences. Apparently,
the introduction of high-resolution ICP-MS technology [8,9] may be a step to eliminate this
hindrance and streamline the sensitivity of ENP analysis. For instance, by using dynamic-
reaction cell methodology, interference-free ICP-MS determination of TiO2-, CuO-, Cu-,
and ZnO-NPs was proved feasible [10]. However, no attempt to analyze these ENPs in
seawater was made in that contribution.

Table 1. Major types and modern uses of ENPs a.

ENPs Main Fields of Application

Ag Medicine, textiles, cosmetics, home appliances, environment
TiO2 Cosmetics, construction, textiles, renewable energies
SiO2 Construction, textiles, automotive, cosmetics
ZnO Cosmetics, skin care
CuO Batteries, sensors, superconductors, coatings
Cu2O Coatings and paints
CeO2 Fuel additives, abrasive material

Quantum dots Electronics
Au Electronics, medicine

MoO3 Batteries, fuel additives, coatings, catalysts
SnO2 Batteries, coatings, catalysts, sensors

a See https://www.futuremarketsinc.com/the-global-market-for-nanomaterials-2010-2022 (Accessed on
2 December 2022) for more detail.

An alternative and highly promising approach recently examined by the authors
of [11] is applying sector-field (SF) ICP-MS, following the ultrafiltration isolation of the
nanoparticle fraction from matrix salts and background dissolved metal ions. To meet this
practice, we have developed a unified protocol for the preparation of seawater samples for
examination in a laboratory setting. The absence of ENP loss or transformation, as well as
the compromise of measured results, were confirmed using negative, open-sea samples
spiked with the relevant ENP concentrations. The objective of the present study was to
verify the applicability of an ICP-SFMS-based methodology for the analysis of real seawater
samples. These were sourced from different locations of the Black Sea around and at a
distance from various industrial facilities and populated urban areas, i.e., with varying
anthropogenic pressure.

2. Results and Discussion
2.1. Sample Treatment Conditions

A schematic illustration of the sample preparation workflow is given in Figure 1 and
detailed in the Materials and Methods section below. It is important to note that we used
ultrafiltration to separate the ENPs from bulk seawater samples so that the retained particles
are then brought into solution after dissolution directly in the filtration unit and analyzed as
the respective metal ions [11]. This approach allows for easy discrimination of signals from
nanoparticulate matter and an ionic background. Previously, it was shown that commercial
membrane filters prove useful for nanoparticle separation [11–13], and the 3 kDa filter units
seem to be preferable than other molecular mass cut-offs [11,14,15] (at least for the particles
larger than 10 nm in diameter). However, it is essential to precondition the filter membrane,
e.g., with 0.1 M copper nitrate [11,13], to avoid ionic metal adsorption. Since such treatment
might compromise the determination of copper-based NPs, we prefer a nickel nitrate
solution in this case. It should be noted that copper-containing nanomaterials find more
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common industrial use and are expected to occur in seawater at higher concentrations than
Ni-NPs (see also Section 2.3). The fact that nickel nitrate can well substitute Cu(NO3)2 was
verified experimentally, and the comparative recovery data for the test ENPs are shown in
Table 2.
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Figure 1. Sample preparation for the ICP-SFMS analysis.

Table 2. Recovery of selected ENPs from seawater after using the different preconditioning agents.

ENPs a Recovery (%)

0.1 M Copper Nitrate 0.1 M Nickel Nitrate

Ag-NPs 85 ± 8 88 ± 9
Ti-NPs 107 ± 12 109 ± 11
Zn-NPs 109 ± 13 98 ± 11

a 0.5, 4.6, and 41.2 µg L−1 Ag, Ti, and Zn (or 10 times the limit of quantification), respectively.

2.2. Metal Concentrations in Seawater

Next it was important to analyze the seawater samples under examination to define
the levels of metals that appear to constitute the ENPs and it this way, be relevant regarding
the expected ENP contents. Another purpose of these measurements was to assess the
method’s detectability as the basis for a more proper data interpretation for ENPs (see
below). Table 3 summarizes the analytical results, together with the limits of detection
(LODs) defined as specified in the footnote. Notably, sample dilution to avoid interference
from the high-salt matrix has not impeded quantification. This is no analytical challenge
when using ICP-SFMS due to the method’s combination of high sensitivity and relative
freedom from spectral interferences offered by high resolution capabilities.

As can be expected, in the coastal seawater collected close to the region known for
industrial production activities, the concentration levels are markedly higher than for the
seaside area with lesser inputs from anthropogenic sources (cf. S0 and K0 data), particularly
for common metals such as iron, zinc, or chromium. Concentrations measured in the
samples taken at a noticeable, two kilometer distance from the coastline are in most cases
lower than the seashore concentrations, though they are still not free from contamination
from different industrial or natural sources. This follows from a comparison with the data
for distant open-sea water sampled far from natural or anthropogenic influences (e.g.,
0.020 and 0.012 µg L for Cd and Pb, respectively [16]).

2.3. ENPs in Seawater

The application of ICP-SFMS in combination with ultrafiltration isolation identified
the presence of ENPs and even made it possible to quantify some particles. It should be
mentioned that only those samples containing ENPs at concentrations higher than three
times the LOD were considered positive (field blank data are shown in the Materials and
Methods section). More specifically, Ag- and Ti-based NPs were found to occur in the con-
taminated coastal seawater at the level of limits of quantification, viz., 0.04 and 0.33 µg L−1

(as metal), respectively. Of nanotechnology-related materials, these are among the most
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commonly employed products (see Table 1), and in addition, they may escape from wastew-
ater treatment plants into the aquatic environment [17]. However, previous studies have
shown that the Ag-NPs tend to dissolve in seawater [6,15], while for titanium-bearing
NPs, one of the main sources in seawater, sunscreen lotions, is barely a factor beyond the
beach season. The origin of detectable Sb-NPs (about 0.04 µg L−1) is not clear, but potential
sources might be from various industrial as well as natural sources (e.g., weathering of the
stibnite ore). On the other hand, no nanolead was detected, although it was reported that
particulate lead may exist in freshwater at least [18], possibly as a result of the detachment
of lead corrosion products. The most plausible explanation is due to a high salt content
exerting a considerable dissolving action on Pb nanomaterials [7].

Table 3. Concentrations and limits of detection of metals in seawater (µg L−1 ± σ; n = 3) a.

Metal
Measured Value b

LOD c

S0 S4 K0 K4

Ag 0.53 ± 0.03 n.d. d n.d. n.d. 0.009
Bi 0.38 ± 0.02 0.36 ± 0.02 0.42 ± 0.03 0.46 ± 0.04 0.0013
Cd 0.21 ± 0.01 0.21 ± 0.01 0.21 ± 0.01 0.22 ± 0.01 0.004
Co n.d. n.d. n.d. n.d. 0.014
Cr 2.28 ± 0.08 0.64 ± 0.04 0.64 ± 0.08 0.46 ± 0.08 0.029
Cu 2.07 ± 0.05 0.80 ± 0.07 2.83 ± 0.12 0.95 ± 0.06 0.06
Fe 32.7 ± 0.5 5.94 ± 0.08 7.99 ± 0.21 1.86 ± 0.06 0.06
Mn 0.13 0.11 0.08 0.11 0.05
Mo 5.60 ± 0.12 0.76 ± 0.02 5.07 ± 0.28 0.87 ± 0.02 0.007
Ni n.d. n.d. n.d. n.d. 0.13
Pb 0.78 ± 0.06 0.58 ± 0.07 0.73 ± 0.06 0.55 ± 0.04 0.005
Sb 0.37 ± 0.01 0.31 ± 0.05 0.42 ± 0.04 0.39 ± 0.03 0.008
Sn 0.36 ± 0.01 0.21 ± 0.03 0.46 ± 0.03 0.26 ± 0.03 0.009
Ti 0.65 ± 0.04 0.44 ± 0.03 0.74 ± 0.07 0.44 ± 0.07 0.079
V 0.44 ± 0.03 0.11 ± 0.004 0.28 ± 0.02 0.11 ± 0.01 0.009

Zn 24.0 ± 0.4 5.64 ± 0.20 11.7 ± 0.4 4.50 ± 0.30 0.10
a Ten times diluted with 3% HNO3. b For sampling station codes here and below, see Materials and Meth-
ods. c Method detection limit, defined here as three times the standard deviation of blank signal intensity.
d n.d. = not detected.

The suspended ENPs of Cu, Zn, V, Mo, and Sn were measured not only within the
metropolitan area but also in the area with little anthropogenic pressure (see the left-
hand bars in Figure 2), and this is the key outcome of the present study. The fact that no
such nanomaterials were detected in previous research based on using SP-ICP-MS [6,7]
can be rationalized by taking into account the substantial sample (or aerosol) dilution
used to reduce the introduction of salt into the plasma (let alone the order-of-magnitude
sensitivity advantage of the SF system over quadrupole-based mass spectrometers). In
our approach, samples are analyzed undiluted, and furthermore, the nanoparticulate
analytes could be even enriched when large-volume filtration units are employed. For the
mass-produced and frequently employed Zn- and Cu-NPs, the concentrations in coastal
samples reach 1.0 µg L−1 and higher. However, similar levels found in the sea section
without any expected industrial impact demonstrate that the presence of NPs produced
through natural pathways should not be neglected. It is also worth noting that the method
cannot differentiate between Cu(I)- and Cu(II)-bearing nanomaterials. The unusually high
concentrations of nano-Mo in the samples taken in the vicinity of urbanized areas can be
attributed to its industrial usage, e.g., in steel products [19].

Figure 2 shows the ENP concentrations in the samples collected at increased distances
from the coast. Regardless of the ENP type, the dependences are of the same character, and
such longitudinal distribution is presumably triggered by natural dilution in combination
with agglomeration/aggregation effects. Similarly, for the total metal concentrations, the
content of each sort of ENP, while fading with distance, is still high enough to make the
determination in offshore samples possible. Therefore, the issue to be addressed in future
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studies is whether the monitored concentration levels might pose an environmental risk.
Special attention from the ecotoxicological viewpoint should also be paid to the size and
exact composition of detected particles, neither of which are discernible with ICP-SFMS.
Neither can the method distinguish between anthropogenic and natural nanomaterials
unless the isotopically labeled ENPs are involved [20].
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3. Materials and Methods
3.1. Sample Location and Collection

All samples were taken in May 2022 from the Black Sea. Sampling locations are
schematically represented in Figure 3. The studied areas are with different levels of anthro-
pogenic pressure, a bay area vs. a close proximity of a highly urbanized city with notable
industries, a large port facility and cover a distance up to 2000 m from the shore. Under
flat sea conditions, the collected surface seawater samples were filtered through 0.45 µm
polycarbonate membrane filters (Sigma-Aldrich, St. Louis, MO, USA) to remove larger
particulate matter, slightly acidified with ultrapure nitric acid (65%, Merck, Germany; to
pH 7.5), and placed in acid-cleaned low-density polyethylene bottles (Nalgene General
Oceanics, Miami, FL, USA). For preservation, the samples were refrigerated in the dark at
4 ◦C. Such sample treatment/storage conditions were proven to ensure particle stability
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prior to analysis [11]. Used as a field blank, Milli-Q water was stored, treated, and analyzed
in the same way as the real samples [6].
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K3, and K4 from Kerch Bay at a distance of ~5, 100, 200, 500, and 2000 m from the coast, respectively.

3.2. Chemicals and Materials

Reference ENPs, silver, titanium dioxide, and zinc oxide NPs (of <100, 21, and <50 nm
nominal sizes, respectively) were purchased from Sigma-Aldrich. Each type of particle
was suspended in 0.5 M NaCl by vortexing for 5 min to provide standard suspensions
of 0.81, 120.5, and 27.7 mg L−1 Ag, TiO2, and ZnO, respectively. Primary metal stan-
dards (10 mg L−1) used to prepare mixed standard solutions and the internal standard
(High-Purity Standards, Charleston, SC, USA) were diluted appropriately with 3% HNO3,
prepared from nitric acid and ultrapure water. Amicon Ultracel 0.5 mL units with cut-off
molecular masses of 3 kDa used for ultrafiltration experiments were obtained from Milli-
pore (Molsheim, France). The units were preconditioned with 0.1 M copper or nickel nitrate
(Sigma Aldrich) and rinsed with Milli-Q water upon centrifugation before use.

3.3. Sample Preparation

Individual seawater samples were first taken for total metal analysis carried out after
a 10-fold dilution with 3% HNO3 (as validated in [16]). Then the undiluted samples
were vortexed for 5 min, and aliquots were filtrated through the filters with a 3 kDa cut-
off for 15 min at 10,000 rcf (Sigma 1–14k, Sigma Laborzentrifugen GmbH, Osterode am
Harz, Germany) to separate the nanosized fraction of the particulate matter. The latter was
washed twice with water by repeating the centrifugation to remove dissolved metal species,
and the remaining particles were treated with 30% HNO3 (upon a 10 min sonication). The
resulting solution was subjected to short ultrafiltration, and the filtration membrane was
washed with water upon centrifugation. Finally, the combined filtrates were diluted to
achieve an acid concentration of 3–5%. Each sample was analyzed at least three times. A
field blank was carried out to check for potential sample contamination, and the results are
shown in Table 4. Positive blank concentrations were subtracted from real samples.

Table 4. Metal concentrations in field blank sample (µg L−1 ± σ; n = 3) a.

Metal Measured Value

Cr 0.11 ± 0.05
Cu 0.40 ± 0.05
Fe 0.72 ± 0.05
Mn 0.20 ± 0.05
Zn 0.70 ± 0.10

a Other metals were not detected.
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3.4. ICP-SFMS Analysis

The metal concentrations in acidified samples were determined using an Element 2
instrument (Thermo Fisher Scientific, Waltham, MA, USA), operating in low (R = 300) or
medium resolution setting (R = 4000), and the following instrumental settings: plasma
gas flow, 14 L min−1; auxiliary gas flow, 0.9 L min−1; nebulizer gas flow, 0.9 L min−1;
analyzed sample flow, 0.8 L min−1; RF power, 1250 W; and dwell time, 20 ms. The internal
standard 115In was analyzed to correct for non-spectral interferences during analysis. As
was shown in our previous research [16], under the mentioned conditions, the isotopes of
the ENP-constituting metals can be monitored in seawater without spectral interferences.
This is particularly important in the case of titanium, whose signal cannot be fully released
from the interference of Ca when using quadrupole-based ICP-MS [7].

4. Conclusions

Whatever measurement mode or mass analyzer is used, ICP-MS is the one and only
method suitable for the quantification of very low seawater concentrations of ENPs. We
demonstrated the potential and applicability limits of ICP-SFMS for testing coastal seawater
for these as-yet unidentified targets. A number of ENPs, such as those bearing Cu, Zn,
V, Mo, and Sn, were reliably determined by employing a versatile analytical protocol
for the storage, preparation, and measurement of seawater samples. The benefits of
the developed technique are due to the high sensitivity of the SF-based system and the
ability to analyze the nanoparticulate matter without sample dilution. Some assumptions
are made about the origin of target nanomaterials in tested aquatic areas, accounting
for anthropogenic and natural contributions. Our upcoming research will be aimed at
comparing the performance of ICP-SFMS as a nano-sea analysis tool with that of triple-
quadrupole and SP-ICP-MS techniques.
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