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Abstract: In this study, a series of new heteroleptic copper(I) bis(diimine) complexes are described.
Using one highly hindered phenanthroline ligand and a second less-hindered diimine ligand led to
unexpected results. Following a two-step one-pot method to obtain heteroleptic copper(I) complexes,
an almost perfect tetrahedral coordination geometry around the copper(I) ion was obtained in several
cases, despite the fact that at least one ligand was not sterically encumbered near the coordination
site (at the position α to the nitrogen atoms of the ligand). This was demonstrated in the solid state
by resolution of crystal structures, and these findings, corroborated by calculations, showed that
the non-covalent interactions between the two diimine ligands present in these complexes were
governing these structural features. The electronic properties of all complexes were also determined
and the fluorescence lifetimes of two complexes were compared.
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1. Introduction

Coordination complexes are widely used for potential applications in Dye-Sensitized
Solar Cells (DSSCs) [1–3] or in organic photosynthetic reactions [4,5]. The most widely used
complexes are derivatives of the well-known Ru(bipy)3

2+ or Ir(PhPy)3. These cations are ex-
pensive, and trying to replace them with less-expensive and Earth-abundant metal ions be-
longing to the first row of the transition metals was and still is an active field of research [6,7].
The photochemistry of many metal complexes has been developed in the last fifty years to
improve the lifetimes of these (at the beginning) poorly emitting complexes. Among them,
copper(I) complexes were studied at a very early stage by McMillin and coworkers, who
analyzed the photochemical properties of Cu(2,9-dimethyl-1,10-phenanthroline)2

+ [8,9].
This research topic primarily started after the seminal work of Jean-Pierre Sauvage and
Christiane Dietrich-Buchecker, in which many 2,9-diaryl-1,10-phenanthrolines and their
air-stable homoleptic copper(I) complexes were easily accessible [10–12]. Later on, many
different research groups were involved [13–18], and a remarkable lifetime of 3260 ns was re-
ported for the copper(I) complex obtained from 2,9-ditertbutyl-1,10-phenanthroline [19,20].
The X-ray structure of this complex revealed an almost perfect tetrahedral geometry and
also a restricted access to the copper(I) ion. These two points were deemed to be of fun-
damental importance in order to optimize the excited state properties, as the tetrahedral
geometry and well-protected metal center will prevent nucleophilic attack (potentially from
a solvent molecule) and hence prevent formation of the so-called exciplex; this is the most
efficient way to quench the excited state via non-radiative pathways. The severe drawback
of this complex was its chemical stability. This complex decomposed as soon as a coordinat-
ing solvent (methanol, for example) was added, due to the significant steric hindrance close
to the coordination site. Many other examples were reported more recently, and different
substituents were introduced at the 2,9 positions of the phenanthroline ligands [21–28].
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During the course of these developments, Schmittel introduced the HETPHEN concept,
giving access to stable heteroleptic complexes if the steric hindrance of one phenanthroline
ligand was very high, rendering the formation of homoleptic complexes impossible [29,30].
Firstly, a very hindered phenanthroline was coordinated to a copper(I) ion, giving an
intermediate copper(I) complex bearing one phenanthroline and two labile ligands (in
general acetonitrile), followed by displacement of acetonitrile by a second less-hindered
diimine ligand affording the final heteroleptic copper(I) complex bearing two different
chelating ligands. This approach might be extremely important, because it will allow to
potentially orient the direction of the electron transfer involved when photosensitizers are
grafted onto the semi-conductors used in DSSCs. It is known that the relative rates of the
electron injection and the back-electron transfer are extremely important to obtain efficient
DSSCs [31–33]. Increasing the lifetime of heteroleptic copper(I) complexes is therefore still
an important research goal. In this article, we report the synthesis of several heteroleptic
copper(I) complexes and a new strategy aiming to obtain an almost perfect tetrahedral
coordination geometry around the metal center with “remote steric hindrance” away from
the central metal ion.

2. Results
2.1. Synthesis

The synthesis of the phenanthroline ligand L1, shown in Scheme 1, bearing two very
large aryl groups (sometimes called super-mesityl) at positions 2 and 9, was described
earlier [34]. The heteroleptic complexes were synthesized in a two-step, one-pot synthe-
sis utilizing the HETPHEN process developed by Schmittel and co-workers [34]. One
equivalent of the copper(I) source was added to the sterically hindered phenanthroline
dissolved in distilled dichloromethane (the steric hindrance prevents the formation of the
bis-homoleptic complex) followed by one equivalent of the less-hindered diimine ligand.
On addition of the second phenanthroline, an instantaneous color change was observed
from yellow to red (other colors also formed depending on the diimine used) due to the
presence of a Metal-to-Ligand Charge Transfer (MLCT) electronic transition between the
metal ion and the phenanthroline in the visible region.
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Scheme 1. Formation of heteroleptic copper(I) diimine complexes using ligand L1 and a second
different diimine ligand (see Figure 1 for the exact structures of all complexes C1–C8).

A wide variety of less-hindered ligands was used to synthesize eight heteroleptic
complexes (Figure 1) with varying substituents at the 2,3,4,5,6,7,8,9-positions. The yields
for this process were always high (60–84%) and varied depending on the amount of steric
hindrance on the aforementioned positions. The complexes were then recrystallized by slow
diffusion of diethyl ether/pentane (1:1) into the complex dissolved in dichloromethane.
The air-stable copper(I) complexes are shown below.

This wide range of copper(I) (bis)diimine complexes shows the versatility of the
synthesis. They were chosen in order to optimize the steric hindrance at the coordination
site (addition of methyl groups at the 2,9-positions of the phenanthroline) and to optimize
the electronic properties (addition of phenyl and methyl groups at the 3,4,7,8-positions).
The efficiency of the HETPHEN processes was demonstrated by the high purity of the
complexes (see Supplementary Materials). The signals of the protons of the aryl group were
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shifted upfield from 7.11 to 6.15 ppm due to the ring current of the second phenanthroline,
and those of the phenanthroline were shifted downfield due to the metal complexation.
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Figure 1. Eight heteroleptic copper(I) diimine complexes ( C1–C8).

2.2. Structural Properties

X-ray crystal structures allowed for the coordination geometry of the copper(I) com-
plexes to be determined. The geometry should be tetrahedral; however, other factors are
at play that can influence the geometry. Without steric hindrance, it is preferential for the
phenanthroline to undergo π-π interactions with the aryl group of the neighboring phenan-
throline, leading to what is known as a “pac-man” motif, as one of the phenanthrolines
distorts in order for this π-π interaction to occur. However, introducing steric hindrance at
the coordination site prevents this deformation and consequently leads to a more perfectly
tetrahedral geometry, known as a “centered” motif. The latter motif normally leads to better
electronic properties, as the steric hindrance will prevent the distortion to a square-planar
geometry on excitation to the copper(II) species and consequently prevents non-radiative
decay through the formation of an exciplex, as the fifth coordination site is less available
due to this increased hindrance. It also favors low Singlet-Triplet Splitting and high Spin–
Orbit Coupling that are key parameters for the Thermally Activated Delayed Fluorescence,
a frequent luminescence pathway for copper(I) complexes [35].

The aim was consequently to form near-perfect tetrahedral complexes. Several crystal
structures were obtained in order to verify the geometry. In the literature, the bulky groups
are present close to the metal coordination site (2,9-positions of the phenanthroline). Here, a
new system design for forming almost tetrahedral complexes is presented, where the steric
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hindrance is away from the coordination site (4,7-positions of the phenanthroline). Hence,
despite small groups being present at the 2,9-positions, a near-perfect tetrahedral geometry
was still observed. This was due to the steric interactions between the phenyl groups at
the 4,7-positions of the phenanthroline in complexes C3 and C4 and the tert-butyl groups
of the aryl groups present at the 2,9-positions of the other phenanthroline (Figure 2). This
system design appears to be highly efficient for the formation of near-perfect tetrahedral
copper(I) complexes in the ground state. Proof of concept was demonstrated with C3, as
no steric hindrance was present at the coordination site, however, the geometry remained
close to a tetrahedron. Without these phenyl groups, C2 adopted the “pac-man” motif.
Even if not directly comparable, because the second ligand was not a phenanthroline, the
structures of C6 and C8 corroborated these findings (vide infra in the Section 3). C3 and C4
also proved to be stable in deuterated acetonitrile, with no decomplexation even after a
month in solution, demonstrating the rigidity of these complexes.
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3. Discussion

A standard was chosen as a means to compare the geometries found here with those in
the literature, [copper(I)(2,9-ditert-butylphenanthroline)2]+ (Figure 3, left). This complex is
widely regarded as being the most geometrically optimized complex. Its X-ray parameters
along with those of C2, C3 and C4 are shown in Table 1.

The phenanthroline substituents have a strong influence on the Cu-N bond lengths.
Hence, they can give an inclination as to the stability of the coordination sphere, with
a shorter bond implying a more stable complex. The severity of the distortion from the
“centered” to the “pac-man” motif was evaluated by looking at the X1-Cu-X2 and C1-X1-
X2-C2 angles (parameters in Figure 3, right): values close to 180◦ and 90◦, respectively,
are characteristic of a “centered” motif. The X1-Cu-X2 value determines the distortion in
the vertical plane and the C1-X1-X2-C2 determines the distortion in the horizontal plane.
The angles in Table 1 clearly showed that C3 and C4 were nearly perfectly tetrahedral,
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and C2, lacking the additional phenyl rings at the 4,7-positions, was deformed to the
“pac-man” motif, quantitively demonstrating the effect of this novel remote control. The
efficiency of this remote control was confirmed by comparing the angles found for the
complexes with that of the standard, [copper(I)(2,9-ditert-butylphenanthroline)2]+ (Table 1).
The geometries for the complexes with the remote control were exceedingly close to the
standard, demonstrating the efficiency of the remote control and also that the stability of
the complexes had not been compromised, as seen for the standard which had longer Cu-N
bond lengths. This is therefore a positive result for this new system design, as the ground
state properties appear to be optimal with near-perfect tetrahedral geometries.
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Figure 3. X-ray structures of [copper(I)(2,9-ditert-butylphenanthroline)2]+ (left) [19] and a repre-
sentation of the phenanthroline for analysis in Table 1 (right); Xn is the centroid of the central
phenanthroline ring. Hydrogen atoms and anions omitted for clarity.

Table 1. X-ray parameters of C2, C3, C4 and [copper(I)(2,9-ditert-butylphenanthroline)2]+

([Cu(ditBuphen)2]+) [19].

Experimental C2 C3 C4 [Cu(ditBuphen)2]+

Cu-N1 (Å) 2.015 2.016 2.076 2.096
Cu-N2 (Å) 2.083 2.063 2.049 2.129
Cu-N3 (Å) 1.996 2.038 2.035 2.103
Cu-N4 (Å) 2.085 2.023 2.050 2.120
X1-Cu-X2◦ 148 169 173 175

C1-X1-X2-C2◦ 51 80 81 80

Density-Functional Theory (DFT) calculations were used to confer the ground state
structure (Table 2). The calculated values coincided relatively well with the experimental
data, with the exception of C2. The complex C2 being more flexible, the packing optimiza-
tion in the solid state might be taken in account for this case. This effect is not seen for C3
and C4, as steric hindrance limits geometry distortion and fixes the phenanthroline in the
centered geometry. The addition of Grimme’s corrections to the coding calculation means
that the Van der Waals interactions will be calculated more exactly. Inclusion of dispersion
effects is critical to understand some features of the complexes.
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Table 2. Calculated parameters for C2, C3 and C4.

Computational C2 C3 C4

Cu-N1 (Å) 2.040 2.056 2.090
Cu-N2 (Å) 2.111 2.078 2.062
Cu-N3 (Å) 2.033 2.056 2.069
Cu-N4 (Å) 2.097 2.052 2.045
X1-Cu-X2◦ 154 174 169

C1-X1-X2-C2◦ 79 83 77

When steric hindrance was not present, not only was there a distortion in the vertical
plane, but there was also a distortion in the horizontal plane, known as a rocking distortion.
X-ray structures (Figure 4) showed that this second distortion was also prevented for C3 and
C4. The two structures with phenyl groups (C3 and C4) presented a central phenanthroline,
whereas C2, which lacks these phenyl groups, had this distortion. This distortion was once
again principally due to π-π interactions, and by avoiding this interaction, as was the case
for C3 and C4, the distortion was minimal.

Molecules 2023, 28, x FOR PEER REVIEW 6 of 15 
 

 

optimization in the solid state might be taken in account for this case. This effect is not 
seen for C3 and C4, as steric hindrance limits geometry distortion and fixes the phenan-
throline in the centered geometry. The addition of Grimme’s corrections to the coding 
calculation means that the Van der Waals interactions will be calculated more exactly. 
Inclusion of dispersion effects is critical to understand some features of the complexes. 

Table 2. Calculated parameters for C2, C3 and C4. 

Computational C2 C3 C4 
Cu-N1 (Å) 2.040 2.056 2.090 
Cu-N2 (Å) 2.111 2.078 2.062 
Cu-N3 (Å) 2.033 2.056 2.069 
Cu-N4 (Å) 2.097 2.052 2.045 
X1-Cu-X2° 154 174 169 

C1-X1-X2-C2° 79 83 77 

When steric hindrance was not present, not only was there a distortion in the vertical 
plane, but there was also a distortion in the horizontal plane, known as a rocking distor-
tion. X-ray structures (Figure 4) showed that this second distortion was also prevented for 
C3 and C4. The two structures with phenyl groups (C3 and C4) presented a central phe-
nanthroline, whereas C2, which lacks these phenyl groups, had this distortion. This dis-
tortion was once again principally due to π-π interactions, and by avoiding this interac-
tion, as was the case for C3 and C4, the distortion was minimal. 

 
Figure 4. Orthogonal view of (a) C2, (b) C3 and (c) C4. 

The preference for the deformation of the phenanthroline from a “centered” to a 
“pac-man” motif can be demonstrated visually by carrying out non-covalent interaction 
(NCI) calculations (Figure 5). 

Figure 4. Orthogonal view of (a) C2, (b) C3 and (c) C4.

The preference for the deformation of the phenanthroline from a “centered” to a “pac-
man” motif can be demonstrated visually by carrying out non-covalent interaction (NCI)
calculations (Figure 5).

In Figure 5, the green color represents the attractive Van der Waals (or dispersion)
forces. It is apparent that the non-hindered ligand of C2 (Figure 5a) has shifted to one of
the aryl groups in order to undergo π-π stacking, as shown by the asymmetric distribution
of dispersion interactions, whereas for C3 and C4 (Figure 5b,c) it is apparent that the green
domains above and below the second phenanthroline are the same, hence demonstrating
that there is no preferential interaction between the phenanthroline and the aryl groups,
verifying the reason for a centered geometry.

The X-ray crystal structure of C6 (Figure 6a) shows that even with a methyl group
interacting with the tert-butyl, this was still enough steric hindrance to form a “centered”
motif. On the other hand, bipyridine would undergo less π-π stacking than phenanthroline,
on account of the lack of an additional aromatic ring, hence direct comparison could not be
made. A similar steric interaction from remote control is expected to also lead to a centered
motif for C5 and C7.

Complexes with the dipyridophenazine (DPPZ) ligand [36], notably ruthenium(II)
or rhodium(III) complexes [37], have been widely used as molecules intercalating into
DNA. Copper(I) complexes are photoactive, and present similar photophysical and photo-
chemical properties, hence it might be interesting to study the intercalating properties of a
heteroleptic complex containing the DPPZ ligand, such as C8, because its X-ray structure
(Figure 6b) shows the planar character of DPPZ.
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Once again, looking at the bond lengths, rigid complexes were observed and the
experimental results (Table 3) coincided with the calculated geometry for C6 (Table 4),
demonstrating that this was the most stable geometry for the complex.

Table 3. Experimental X-ray parameters of C6 and C8.

Experimental Parameters C6 C8

Cu-N1 (Å) 2.051 2.047
Cu-N2 (Å) 2.044 2.013
Cu-N3 (Å) 2.031 2.035
Cu-N4 (Å) 2.043 2.022
X1-Cu-X2◦ 175 172

C1-X1-X2-C2◦ 94 98
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Table 4. Computational parameters of C6 (calculated with Gaussian).

Computational Parameters C6 C8

Cu-N1 (Å) 2.065 2.055
Cu-N2 (Å) 2.071 2.073
Cu-N3 (Å) 2.037 2.061
Cu-N4 (Å) 2.064 2.057
X1-Cu-X2◦ 170.3 175.3

|C1-X1-X2-C2|◦ 88.3 78.6

3.1. Electronic Properties

The electronic properties of C1–C8 were analyzed by cyclic voltammetry (CV) in
dichloromethane with tetra-n-butylammonium hexafluorophosphate being used as the
supporting electrolyte. The cyclic voltammograms of C1–C8 showed the oxidation of
copper(I) to copper(II) (Table 5), with this oxidation leading to a flattening distortion of
the complex. Consequently, quite large potential differences were observed. The values
obtained provided an indication of the reversibility of the redox process, with large potential
differences hinting at a less reversible process, meaning there was more of a geometry
change on passing from copper(I) to copper(II). This meant that the steric bulk was less
efficient in such complexes.

Table 5. Summary of electrochemical data for C1–C8 a.

Anodic Peak
Potential (Volts)

Cathodic Peak
Potential (Volts)

Potential Difference
(pd)

C1 0.38 0.26 0.12
C2 0.47 0.36 0.11
C3 0.51 0.28 0.23
C4 0.60 0.36 0.24
C5 0.23 0.13 0.10
C6 0.32 0.065 0.26
C7 0.42 0.076 0.34
C8 0.54 0.32 0.22

a CH2Cl2, NBu4PF6 (0.1 M), 100 mV/s, vs. Fc+/Fc.

The oxidation potentials are in accordance with what would be expected for HET-
PHEN complexes. Generally, increasing the steric bulk leads to more positive oxidation
potentials. Greater potential differences are observed for the HETPHEN complexes with
bipyridine moieties (C6 and C7), as these are less-hindered ligands, potentially demon-
strating the instability of the complex and/or a large distortion on the oxidation of the
copper(I). The potentials are also dependent on the substituents, with electron-donating
groups leading to lower oxidation potentials (notably C5) and electron withdrawing groups
presenting higher oxidation potentials (notably C4). This is most likely due to the apparent
stabilization or destabilization of the HOMO. In the heteroleptic complexes where the
geometrical change is less accessible on account of the steric hindrance, much smaller
potential differences are observed.

The electronic spectra of C1–C8 show two characteristic peaks, one of which is in the
UV region (around 280 nm) corresponding to a π-π* transition of the phenanthroline moiety,
and the second being in the visible region (around 450 nm) corresponding to an MLCT
between the copper(I) and the phenanthroline. The wavelength of these transitions is de-
pendent on the substituents present on the phenanthroline, with the greatest bathochromic
shift and highest molar extinction coefficient (ε) being for C3, thanks to the phenyl groups
at the 4,7-positions of the phenanthroline. As an example, C4 is shown in Figure 7. The
data for all of the complexes are summarized in Table 6.



Molecules 2023, 28, 983 9 of 14

Molecules 2023, 28, x FOR PEER REVIEW 9 of 15 
 

 

a CH2Cl2, NBu4PF6 (0.1M), 100 mV/s, vs. Fc+/Fc. 

The oxidation potentials are in accordance with what would be expected for 
HETPHEN complexes. Generally, increasing the steric bulk leads to more positive oxida-
tion potentials. Greater potential differences are observed for the HETPHEN complexes 
with bipyridine moieties (C6 and C7), as these are less-hindered ligands, potentially 
demonstrating the instability of the complex and/or a large distortion on the oxidation of 
the copper(I). The potentials are also dependent on the substituents, with electron-donat-
ing groups leading to lower oxidation potentials (notably C5) and electron withdrawing 
groups presenting higher oxidation potentials (notably C4). This is most likely due to the 
apparent stabilization or destabilization of the HOMO. In the heteroleptic complexes 
where the geometrical change is less accessible on account of the steric hindrance, much 
smaller potential differences are observed. 

The electronic spectra of C1–C8 show two characteristic peaks, one of which is in the 
UV region (around 280 nm) corresponding to a π-π* transition of the phenanthroline moi-
ety, and the second being in the visible region (around 450 nm) corresponding to an MLCT 
between the copper(I) and the phenanthroline. The wavelength of these transitions is de-
pendent on the substituents present on the phenanthroline, with the greatest batho-
chromic shift and highest molar extinction coefficient (ε) being for C3, thanks to the phe-
nyl groups at the 4,7-positions of the phenanthroline. As an example, C4 is shown in Fig-
ure 7. The data for all of the complexes are summarized in Table 6. 

Figure 7. UV-Visible spectrum of C4, with a zoom of the visible region. 

Table 6. Summary of electronic absorption properties of C1–C8 (with two λmax values, one of which 
is the transition in the UV and the second in the visible region of the spectrum). 

Complex C1 C2 C3 C4 C5 C6 C7 C8 
λmax 

(nm) 
276 
461 

277 
468 

285 
496 

286 
477 

279 
470 

275 
475 

276 
478 

275 
476 

ε × 10−3 

(M−1cm−1) 
47900 
6700 

56100 
5600 

69200 
8100 

59300 
6500 

57200 
6300 

43600 
6300 

43500 
6500 

81200 
6800 

These results are in accordance with other copper(I) α-diimines present in the litera-
ture [38]. The MLCT band observed is also broad, demonstrating additional advantages 

Figure 7. UV-Visible spectrum of C4, with a zoom of the visible region.

Table 6. Summary of electronic absorption properties of C1–C8 (with two λmax values, one of which
is the transition in the UV and the second in the visible region of the spectrum).

Complex C1 C2 C3 C4 C5 C6 C7 C8

λmax
(nm)

276
461

277
468

285
496

286
477

279
470

275
475

276
478

275
476

ε × 10−3

(M−1cm−1)
47,900
6700

56,100
5600

69,200
8100

59,300
6500

57,200
6300

43,600
6300

43,500
6500

81,200
6800

These results are in accordance with other copper(I) α-diimines present in the litera-
ture [38]. The MLCT band observed is also broad, demonstrating additional advantages
for these complexes to be used for potential applications in light to energy conversion.
Generally, a blue shift is observed for complexes with increased steric hindrance. The
addition of phenyl groups at the 4,7-positions enhances the absorption properties with
higher visible light absorption for C3 and C4. This is in accordance with the literature [39].

A greater understanding of these electronic transitions was gained by utilizing TheoDORE
(Theoretical Density, Orbital Relaxation and Exciton) analysis (Figure 8) on four of these com-
plexes (C2, C3, C4 and C6). The spectrum was originally calculated using ADF software
and the data were then converted to TheoDORE. Here, the complex was divided into three
parts, copper(I), ligand 1 and ligand 2, with the contribution from each part coming from the
occupation or emptying of orbitals.

The graphs below (Figure 8) show the first 50 excitation states of complexes C2, C3,
C4 and C6, respectively. Each bar represents a transition from 1-50. The y-axis shows
the character of said transition, be it MC (Metal-Centered), LC (Ligand-Centered), MLCT,
LMCT (Ligand-to-Metal Charge Transfer) or LLCT (Ligand-to-Ligand Charge Transfer).
The type of transition is represented by the color of the bar, which is shown in the key
on the right of Figure 8. The x-axis shows the transition state from 1 to 50 in ascending
order. These results are comparable with the experimental observations, with low-energy
transitions being the MLCT state (s1 to ~ s20). The MLCT state is also broad, which is
evident from the number of MLCT transitions present. The broadness of the bands can
also rise from the large number of rotamers possible for the complexes (notably, rotating
tert-butyl and phenyl groups). Higher transitions are the LC and LLCT (~s20 -s50), i.e., the
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π-π* transitions observed at ~280 nm. The results also demonstrate that MC and LMCT
states are not present in the considered energy range.
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3.2. Photoluminescent Properties

The photoluminescent properties of C1–C8 were then studied using a fluorimeter and
excitation at 456 nm. The results of these studies are displayed in Table 7. Unfortunately,
emission was only observed for the complexes C2 and C4, with the other seven complexes
showing no emission between 470 nm and 800 nm. These two complexes are the only two
with substituents present at the 2,9-positions of the second phenanthroline, with the other
complexes having only hydrogen atoms at these positions. This demonstrates that despite
optimal ground state properties, minimal steric hindrance at the coordination site is still
required for optimal excited state properties.

Table 7. Summary of emission properties of C2 and C4. The other complexes did not emit at a
measurable wavelength.

C2 C4

Lifetime (ns) 58 44
Emission (nm) 680 697

4. Materials and Methods

All reagents and solvents were purchased from commercial sources and were used as
received. The diaryl phenanthroline ligand was prepared following a previously published
procedure [34]. The MnO2 was from Fisher Scientific, Illkirch-Graffenstaden, France (Hon-
eywell Fluka-1890). Dichloromethane was distilled from calcium hydride, and THF and
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toluene from sodium/benzophenone ketyl. Most of the experiments were carried out under
inert atmosphere by using standard Schlenk techniques. Chromatographic separations were
performed using Merck silica gel (40–63 µm). The 1H and 13C were performed on Bruker
Avance 400, 500 or 600 MHz spectrometers equipped with a cryoprobe (BRUKER France,
Wissembourg, France). CDCl3 was used as a solvent and the spectra were recorded at 25 ◦C.
Chemical shifts (δ (ppm)) are shown relative to TMS. UV-visible spectra were recorded on
a Cary 5000 UV/vis/NIR double-beam spectrometer in dichloromethane. Emission and
lifetime studies were carried out on a HORIBA scientific fluoromax spectrofluorometer in
distilled dichloromethane. Lifetime studies were carried out using a nanoLED at 456 nm
and a colloidal silica suspension in water as a prompt. ESI MS spectra were collected on a
Bruker Daltonics MicroTOF and MALDI MS were collected on a Bruker Autoflex II TOF-TOF
instrument in positive ionization mode with dithranol as a matrix. Measurements were
carried out by Stéphanie Coutin (Service de Spectrométrie de Masse, Institut de Chimie,
Université de Strasbourg). Elemental analysis was performed on a ThermoFischer Scientific
Flash2000 (Waltham, MA, USA) by the Service d’Analyses de l’Institut de Chimie de Stras-
bourg (Martine Heinrich, Noémie Bourgeois). Electrochemical measurements were carried
out using a glassy carbon working electrode in distilled dichloromethane with NBu4PF6
(0.1 M) as the electrolyte and ferrocenium/ferrocene (Fc+/Fc) couple as an internal reference.
The three electrodes were connected to a computerized electrochemical device (Biologic
SP-150, Seyssinet-Pariset, France). X-ray analysis was performed by Dr. Lydia Karmazin
and Corinne Bailly (Service de radiocristallographie, Fédération de chimie Le Bel, Institut
de Chimie, Strasbourg) using a Bruker APEX II DUO Kappa-CCD diffractometer [40–42].
CCDC Deposition Numbers: 2226772, 2226783, 2226784, 2226785 and 2226786.

DFT Calculations

The calculations were performed with the ADF 2019 package at DFT level of the-
ory using the B3LYP functional (Becke-3-Lee-Yang-Parr) [43,44]. Scalar relativistic effects
were included using zero-order regular approximated (ZORA) Hamiltonian [45]. All
atoms were described by the Triple Zeta Polarized (TZP) basis set. Solvent corrections
(dichloromethane) were introduced through a PCM (Polarizable Continuum Model). Van
der Waals forces were described through Grimme’s corrections [46]. All structures were
fully optimized. Absorption spectra were computed by means of TD-DFT on these opti-
mized structures and Spin–Orbit Coupling added by perturbation of the TD-DFT results.
Excited state geometries were optimized in the same conditions [47]. The nature of the
computed electronic transitions was determined by means of TheoDORE analysis [48] of
the TD-DFT results. A second set of calculations were performed with GAUSSIAN 09
(version D.01) at DFT level of theory (B3LYP functional). All atoms were described by the
6-31 + G** basis set. Solvent corrections (dichloromethane) were introduced through a PCM
(Polarizable Continuum Model). Van der Waals forces were described through Grimme’s
corrections. The structures were fully optimized. Non-covalent interactions were studied
by means of NCIPlot [49] performed on the wavefunction of the optimized structures.

The syntheses of all complexes are detailed in the Supplementary Materials. As a repre-
sentative example, the synthesis and characterization data of complex C1 are reported below.

Complex C1. Under argon and at room temperature, to a solution of [Cu(CH3CN)4]PF6
(58 mg, 0.16 mmol) in dichloromethane (20 mL) was added via cannula transfer a degassed
solution of ligand L1 (86 mg, 0.17 mmol) in dichloromethane (10 mL). The solution turned
yellow and was stirred for 1 h. A solution of 1,10-phenanthroline (28 mg, 0.16 mmol) in
degassed dichloromethane (10 mL) was then added via cannula transfer, rendering the
solution red. The solution was once again stirred for 1 h. Solvent was then evaporated and
the solid was dissolved in the minimum amount of dichloromethane and precipitated by
addition of diethyl ether/pentane (1:1) to afford complex C1 (98 mg, 0.11 mmol, 69%).

1H NMR (500 MHz, CDCl3) δ 8.70 (d, J = 8.0 Hz, 2H, H4 and H7), 8.55 (dd, J = 4.7, 1.5 Hz,
2H, H10 and H17), 8.36 (dd, J = 8.1, 1.5 Hz, 2H, H12 and H15), 8.23 (s, 2H, H5 and H6), 7.83 (d,
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J = 8.0 Hz, 2H, H3 and H8), 7.78 (dd, J = 4.7, 8.1, 2H, H11 and H16), 7.79 (s, 2H, H13 and H14),
6.15 (s, 4H, HAr), 1.77 (s, 12H, HMe), 0.62 (s, 18H, HtBu).

13C NMR (125 MHz, CDCl3) δ 159.1, 151.1, 147.7 (CH), 143.9, 142.8, 137.4 (CH), 137.0,
136.2 (CH), 134.2, 128.3, 127.9, 126.8 (CH), 126.6 (CH), 126.3 (CH), 124.7 (CH), 123.1 (CH),
33.6, 30.7 (CH3), 20.4 (CH3).

Anal. calcd for C48H48CuF6N4P: C, 64.82; H, 5.44; N, 6.30. Found: C, 64.59; H, 5.47;
N, 6.22.

5. Conclusions

The HETPHEN method was applied to obtain nine heteroleptic copper(I) complexes,
and an almost perfect tetrahedral coordination geometry around the copper(I) ion was
revealed by X-ray crystallography for the complexes which possessed remote steric control,
despite the fact that at least one ligand was not sterically encumbered near the coordination
site. These experimental findings were corroborated by calculations, and it was possible to
conclude that the non-covalent interactions between the two diimine ligand ions present in
these complexes were governing these structural features. Work to use this remote steric
control to afford homoleptic copper(I) complexes is currently underway.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28030983/s1, Preparation and characterization of all
copper(I) complexes and characterization: Figure S1: 1H, 13C and DEPT spectra of complex C1,
Figure S2: 1H, 13C and DEPT spectra of complex C2, Figure S3: 1H, 13C and DEPT spectra of complex
C3, Figure S4: 1H, 13C and DEPT spectra of complex C4, Figure S5: 1H, 13C and DEPT spectra of
complex C5, Figure S6: 1H, 13C and DEPT spectra of complex C6, Figure S7: 1H, 13C and DEPT spectra
of complex C7, Figure S8: 1H, 13C and DEPT spectra of complex C8. X-ray structure information.
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