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Abstract: Food is our daily companion, performing numerous beneficial functions for our bodies.
Many of them can help to alleviate or prevent ailments and diseases. In this review, an extensive
bibliographic search is conducted in various databases to update information on unprocessed foods
with anti-inflammatory and antioxidant properties that can aid in treating diseases such as cancer.
The current state of knowledge on inflammatory processes involving some interleukins and tumor
necrosis factor-alpha (TNF-α) is reviewed. As well as unprocessed foods, which may help reduce
inflammation and oxidative stress, both of which are important factors in cancer development. Many
studies are still needed to take full advantage of the food products we use daily.
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1. Introduction

Human beings have used plants since ancient times to treat different diseases. Initially,
these medications were administered as tinctures, teas, poultices, powders, and other
herbal formulations; because of their low cost and accessibility, a large part of the world’s
population uses traditional medicines for primary health care, most of which involve the
use of plant extracts. On the other hand, the current drugs for clinical use in the world are
or are derived from some natural product, with higher plants being the primary source of
these [1]. For example, regarding anti-cancer drugs, of 247 new drugs approved in recent
years, only 29 are strictly synthetic; the rest have been developed from unaltered natural
products or derived from them. This is due to the benefits of natural products, which have
the ability to impact multiple signaling pathways involved in the carcinogenesis process
and the fewer adverse effects if we compare them with synthetic anti-cancer agents [2].
For example, methotrexate and cisplatin are associated with adverse reactions such as hair
loss, gastrointestinal injury, bone marrow suppression, neurological dysfunction, and drug
resistance [3–5].

On the other hand, aging is a process that happens day by day for any living organism;
this process is characterized by the loss of physical integrity that leads to a deterioration of
physiological functions and is a risk factor for the development of major human pathologies
(e.g., cancer, diabetes, cardiovascular disorders, neurodegenerative diseases) that leads
to inevitable death [6]. During aging, cellular processes tend to deteriorate; specifically,
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mitochondria produce less ATP, provoking the accumulation of free radicals and reactive
oxygen species (ROS) [5–8].

In this review, inflammatory processes in cancer are discussed, focusing on cytokines
IL-6, IL-10, and TNF-α, which play an important role in the inflammatory response, pre-
venting or increasing different disorders, including cancer. Moreso, oxidative stress and
its consequences are described in the proliferation of cancer in humans. Finally, edible
plants that could help alleviate inflammatory processes and oxidative stress are reviewed,
thus having the potential to help alleviate symptoms in cancerous processes and even as a
preventive measure against cancer.

An extensive review of the literature was made using databases such as ScienceDirect®,
Scopus®, PubMed®, Royal Society of Chemistry, MDPI, PLOS, and Google Scholar®. The
keywords antioxidants, antioxidant activity, and antioxidant “species” with the Boolean
AND were used to search for articles, and the species was specified for specific searches. For
the part of inflammation in cancer, the following keywords were used: cytokines in cancer,
inflammation in cancer, IL-6 in cancer, IL-10 in cancer, and TNF-α in cancer. For the part of
extracts of food and edible plants with anti-inflammatory activity, the following keywords
were used: edible plant extracts anti-inflammatory activity, food with anti-inflammatory
activity, fruits with anti-inflammatory activity, and vegetables with anti-inflammatory
activity. The search was limited to the period 2007 to November 2022; a total of 1216 articles
were revised, 995 were original articles, and the rest were reviews.

2. Inflammation in Cancer

Cytokines are small glycoproteins that have pleiotropic effects on healthy cells, stim-
ulating growth, differentiation, and activation. They are part of both the innate and
adaptive immune systems. Depending on the microenvironment, cytokines can have
pro-inflammatory, anti-inflammatory, or immunosuppressive effects. Many human cells
can produce cytokines, but immune cells are primarily responsible. Cytokines’ primary
function is to serve as a short-distance paracrine and autocrine communication pathway
between cells and tissues [9,10].

Pro-inflammatory cytokines are important at various stages of carcinogenesis, and
inflammation has been shown to play a significant role in cancer development. Cellular dif-
ferentiation, proliferation, apoptosis and growth suppression evasion, enhanced vascularity,
invasion, metastasis, altered cellular metabolism, and immunological evasion are all exam-
ples of poorly regulated processes in the human body. Cancer is caused by an imbalance
of pro- and anti-inflammatory mechanisms, which leads to chronic immune system acti-
vation and inflammation [11–14]. Cytokines such as tumor necrosis factor-alpha (TNF-α),
interleukin-6 (IL-6), and IL-10 have been linked to cancer spread (Figure 1) [11,14–19].

2.1. The Tumor Microenvironment (TME)

Cytokines generated by TME cells, and some normal cells aid in invasion, tumor
formation, and maintenance of cells comparable to cancer stem cells (CSC) [13]. The TME
is made up of innate and adaptive immune system cells. The cytokines found in the
TME interfere with immunological processes, thereby dampening the immune response
and increasing tumor development [11,20]. Macrophages, dendritic cells, neutrophils,
suppressor cells of myeloid origin (MDSC), natural killers (NK), and innate lymphoid cells
are all members of the innate immune system (ILCs) (Figure 1) [11,13,20,21].

2.1.1. Tumor-Associated Macrophages (TAM)

TAM are classified as M1 or M2 macrophages. M1s can change into M2s or vice versa
depending on the microenvironment, such as inflammation, infection, hypoxia, damage,
or cytokine production [22–25]. TNF-α, gamma interferon (IFN-γ), IL-12, IL-23, Toll-like
receptor (TLR) ligands, and lipopolysaccharide (LPS) promote the M1 phenotype, whereas
IL-14, IL-13, IL-4, IL-10, TNF-α, and TLR induce the M2 phenotype. M1 macrophages
release pro-inflammatory cytokines such as IL-1, IL-6, IL-12, IL-23, IL-18, and tumor necrosis
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factor (TNF-α), which drive T helper cell type 1 (Th-1) responses and restrict proliferation
via tissue damage induced by pro-inflammatory cytokine production. M2 macrophages
generate anti-inflammatory cytokines such as IL-10, transforming growth factor beta (TGF-
β), IL-4, and low amounts of IL-12, which promote immunosuppression, poor antigen
presentation, tissue repair, angiogenesis, cell proliferation, Th-2 cell activity, and Th1 cell
activity. M2 macrophages release chemokines that enhance cell proliferation, migration,
metastasis, and epithelial-mesenchymal transition (EMT) [22,26,27].
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2.1.2. Dendritic Cells

Depending on the signals present in the TME, tumor-infiltrating dendritic cells (TIDC)
might be immunogenic or gene tolerant. Tumors reprogram the TME to support their
survival; therefore, cytokines and factors such as vascular endothelial growth factor (VEGF),
IL-10, TGF-β, prostaglandin E2 (PGE-2), and TNF-α are produced in the case of TIDC that
impede dendritic cells maturation and promote the gene tolerant phenotype. Depending
on the TME, TIDC can operate as tumor promoters or suppressors. TIDC have been shown
to serve as tumor suppressors in the early stages by secreting pro-inflammatory cytokines
such as TNF-α, IL-1, IL-12, and IL-23, but as tumor promoters in the later stages [28–32].

2.1.3. Neutrophils

Tumor-associated neutrophils (TAN) are classified as either tumor suppressors or
promoters. TAN are inflammatory in the early stages of the tumor, secreting TNF-α, IL-
1, and several kinds of interferons (IFNs), and immunosuppressive in the later stages,
secreting TGF-β and PGE-2. N2-type TAN enhances angiogenesis, tumor growth, invasion,
and metastasis, whereas N1-type TAN promotes phagocytosis, the presence of reactive
oxygen species (ROS), and apoptosis [33–35].
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2.1.4. Myeloid-Derived Suppressor Cells (MDSC)

MDSC are myeloid progenitor cells, immature macrophages, immature granulocytes,
and immature dendritic cells. MDSC have a role in immunosuppression in TME, including
T-cell suppression and innate immune system modulation. MDSC enhances angiogenesis
and metastasis by secreting IL-6 and PGE-2 [36–38].

2.1.5. Natural Killers (NK)

To inhibit tumor cell proliferation, NK induces apoptosis via the death receptor and
creates cytotoxicity via perforins and granzymes. Tumor cells in TME, on the other hand,
have strategies to avoid NK by coating themselves with collagen to trick NK receptors.
This leads to T-cell proliferation and expansion inhibition, strengthening their immuno-
suppressive features. In addition, NK has been shown to switch between an inflammatory
response secreting cytokines like IFN-γ and TNF-α and an immunosuppressive response
secreting cytokines like IL-22 and IL-10 depending on their environment [39,40].

2.1.6. Innate Lymphoid Cells (ILC)

ILC and NK share similar features. ILC are classified into three categories: ILC1, ILC2,
and ILC3. ILC1 promotes cytotoxicity, macrophage activation, and chronic inflammation
by secreting the cytokines IFN-γ and TNF-α, which increase cytotoxicity, macrophage
activation, and chronic inflammation. Depending on the kind of tumor, ILC2 can either
promote or inhibit tumor growth. They release the cytokines IL-5 and IL-13, which increase
the T-cell response and induce skin inflammation. ILC3 are carcinogenic because they
secrete the immunosuppressive cytokines IL-22, IL-17, and granulocyte-macrophage colony-
stimulating factor (GM-CSF) [41,42].

2.1.7. Interleukin-6 (IL-6)

IL-6 is overexpressed and secreted by the tumor microenvironment (TME), which
comprises various cell types such as neutrophils, macrophages, monocytes, fibroblasts,
endothelial cells, lymphocytes, and tumor cells (Figure 1). Cancer-associated cells, cancer-
resistant cells, and cancer stem cells are all examples of cancer cells. TNF-α is a cytokine that
promotes inflammation and induces IL-6 production. Because it promotes T lymphocyte mi-
gration, expansion, activation, and differentiation, IL-6 is essential for inflammation. It also
aids in differentiating B lymphocytes into plasma cells, which produce immunoglobulins.
Furthermore, IL-6 is required for hematopoiesis, lipid metabolism, mitochondrial activity,
and insulin resistance. IL-6 has been found to have stimulatory effects on cancer cells due
to its signaling in numerous pathways that promote the cell cycle and proliferation.

When present in high concentrations, it inhibits immune system cells by suppressing
IL-2 expression, decreasing T-cell activation, and encouraging lymphocyte death, prevent-
ing the immune system from detecting cancer cells [11,14–19].

2.1.8. Tumor Necrosis Factor-alpha (TNF-α)

It is a pro-inflammatory cytokine expressed by macrophages and other types of
cells. It is essential for the healthy operation and proliferation of NK cells, T cells, B
cells, macrophages, and dendritic cells. It is also related to inflammation, immunology,
and cell architecture. TNF-α, in a healthy state, is a crucial immunomodulator involved
in hematopoiesis, innate immunity, dendritic cell maturation, bacterial infections, and
tumor regression. In contrast, it is a major type of expressed cytokine in a variety of
cancers [14,43–46].

2.1.9. Interleukin-10 (IL-10)

It is an anti-inflammatory and immunosuppressive cytokine secreted by macrophages,
dendritic cells, B cells, regulatory T cells, and natural killer cells (NKs) (Figure 1). Some
studies indicate that IL-10 promotes tumor growth and progression. In contrast, others
indicate that it aids in eradicating and suppressing angiogenesis and metastasis, both
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of which are required for long-term patient survival. IL-10 has three main biological
activities that may contribute to the paradoxical results in a context-dependent manner:
(1) promoting CD8+ T cell (CTL) proliferation and cytolytic activity, (2) inhibiting antigen
presentation and production of pro-inflammatory cytokines from antigen-presenting cells
(APCs), and (3) alleviating chronic inflammation via tumor-promoting effects. Regarding
IL-10’s role as a tumor promoter, it is thought that it promotes immune escape from the
tumor by inhibiting antigen presentation and thus decreasing the antitumor immune
response in the TME. Several studies have discovered a link between IL-10 levels in the
serum and tumors and a poor prognosis [15,47–50].

2.2. Food Extracts or Edible Plants with Anti-Inflammatory Activity

Plants are an efficient source of food and shelter, but their role as a source of medicine
is underappreciated. Plants, unlike humans, are continuously and extensively exposed to
natural pollutants, carcinogens, and toxic metals in nature. At the same time, plants produce
various secondary metabolites, primarily used for defense and response to environmental
cues such as biotic and abiotic stress [51].

Traditional medicine has used plant extracts to treat various disorders, including acute
and chronic inflammation. Flavonoids are a substance in these extracts with many interest-
ing biological properties, including anti-cancer, antimicrobial, antiviral, anti-inflammatory,
immunomodulatory, and antithrombotic properties. Among these biological activities,
flavonoids’ anti-inflammatory capacity has long been used in Chinese medicine via crude
plant extracts. Many studies have shown that various flavonoid molecules have anti-
inflammatory activity in vitro and different animal models of inflammation. Flavonoids
can be found in multiple foods, including fruits, vegetables, legumes, herbs, spices, stems,
flowers, tea, and red wine. They are prominent components of citrus fruits and other
foods and are regularly consumed in many countries as part of a healthy diet. In Table 1,
flavonoid subclasses, the names of important food flavonoids, and typical food sources
are listed.

Table 1. Subclasses, prominent food flavonoids, and common food sources.

Flavonoid Subclasses Name of the Flavonoid Food Source Ref.

Flavanols Catechin, gallocatechin,
epicatechin

Teas, red grapes, apricots, berries,
avocado, cherries, dates, figs, grapefruit,
kiwifruit, mango, medlar, melon, citrus,

olives, peaches, pear, pineapple,
artichokes, apple, currants, persimmons,

plums, beans, broccoli, and red wines

[52–76]

Flavanones Naringenin, hesperetin,
eriodictyol Citrus foods and almonds [56,63,77–81]

Flavones Apigenin, luteolin

Green leafy spices, olive oil, acerola,
apple, apricot, avocado, bananas, berries,
cashew apple, currant, dates, figs, citrus,

grapes, guava, kiwifruit, and broccoli

[56,63,82–100]

Isoflavones Daidzein, genistein, glycitein,
biochanin A Soybeans, soy foods, and legumes [101,102]

Flavonols Kaempferol, myricetin,
quercetin, isorhamnetin Nearly ubiquitous in foods [103–106]

Anthocyanidins Cyanidin, delphinidin,
pelargonidin

Red, purple and blue berries, apples, and
avocados [63,68,70,97,107–112]

Several studies have been conducted on the anti-inflammatory activity of various foods
or edible plant extracts in cancer cell lines. For example, strawberry (Fragaria ananassa)
methanolic extracts have anti-inflammatory activity, reducing the levels of the tested
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inflammatory markers (NF-kB, pIkBa, TNF-α, IL-1b, IL-6, and iNOS) in RAW macrophages,
which is an Abelson murine leukemia virus-induced tumor. They also discovered that the
extract could promote the production of IL-10 in this study. In addition, the extract was high
in vitamin C, polyphenols, and flavonoids. They also detect five anthocyanin pigments,
with Pg 3-glucoside and Pg 3-malonylglucoside being the most prominent strawberry
anthocyanin components [113].

The anti-inflammatory activity of lipid extract of avocado fruits and seeds (Persea
americana) against cancer cell lines has been evaluated. Both showed activity against colon
cancer cell lines (HCT116) and liver cancer cell lines (HePG2), with the seed extract showing
the most activity; the LC50 values obtained were 22 µg/mL and 13.3 µg/mL, respectively,
indicating that avocado can be considered an auspicious source of cancer drugs because
it is effective against both liver and colon cancers. The lipid extract of P. americana fruit
and seed displayed significant suppression of hepatocellular carcinoma HepG2 and colon
cancer HCT116 cells vs. the reference medication sorafenib. In a chloroform/methanol
extract of P. americana fruit and seed, oleic acid was the predominant unsaturated fatty acid.
Sterol compounds were more abundant in the seed extract than in the fruit extract [114].

Mediterranean herbs such as rosemary and sage have been used for culinary and
medicinal purposes for millennia. Carnosol was initially isolated from sage (Salvia carnosa),
but we now know that rosemary also contains polyphenols like carnosol. Carnosol ap-
pears to target multiple deregulated pathways associated with inflammation and cancer,
including NF-кB, apoptotic-related proteins, phosphatidylinositol-3-kinase (PI3K)/Akt,
androgen, estrogen receptors, and molecular targets. Carnosol decreased LPS-stimulated
nitric oxide (NO) generation in RAW cells with an IC50 of 9.4 µM. This compound inhibited
the mitogen-activated protein kinases NF-kB, p38, and p44/42 (MAPK). Likewise, carnosol
is recognized to have anticancer action against prostate, breast, skin, leukemia, and colon
cancer, with an IC50 ranging from 5 to 82 µM [115]. Furthermore, the anti-inflammatory
capacity of sage (Salvia officinalis) supercritical extracts was evaluated; the results showed
that the extracts suppressed the production of TNF-α, IL-1, and IL-6. Camphor, borneol,
and 1,8-cineole were the extract’s main components, and they all had anti-inflammatory
properties. With 30 µg/mL of the extracts, the quantity of TNF-α released was significantly
reduced, and TNF-α production was even lower than the basal level in non-activated cells.
The supercritical extracts also show cytotoxic action against the THP-1 cell line, with LC50
values ranging from 66 to 80 µg/mL [116]. Similarly, studies on the anti-inflammatory
activity of methanolic extracts of rosemary (Salvia rosmarinus) have revealed the ability
to reduce NF-кB translocation and disrupt the MAPK signaling pathway. They also dis-
covered that Salvia rosmarinus extracts had a potential anti-proliferative impact on breast
cancer cell lines, including MCF-7 (estrogen receptor positive) and MDA-MB-231 (triple
negative), with IC50 values ranging from 6.83 to 15.67 µg/mL against MDA-MB-231 cell
line. These results are consistent with the American National Cancer Institute standards,
which state that the IC50 level for a crude extract to be considered a prospective anticancer
agent should be less than 30 µg/mL [117].

On the inflammatory mediators TNF-α and NF-кB, the anti-inflammatory activities of
celery extracts, some rich in flavone aglycones and others rich in flavone glycosides, were
tested. Pure flavone aglycones, like apigenin, luteolin, and chrysoeriol, and aglycone-rich
extracts significantly reduced TNF-α production at concentrations between 10–50 µg/mL;
they also inhibited NF-кB transcriptional activity at 25 µg/mL in RAW cells, whereas
glycoside-rich extracts had no effect [118].

For a long time, the Inonotus obliquus mushroom has been used as a functional food
and a traditional Chinese herb. Its ethanolic extract containing compounds like ergosterol,
ergosterol peroxide, and trametenolic acid has shown anti-inflammatory and cytotoxic
activity. Fractions from the ethanolic extract of I. obliquus showed an IC50 between 29 and
57 µg/mL against PC3, which is a prostate adenocarcinoma cancer cell line, and also the
fractions showed an IC50 between 19 and 46 µg/mL against MDA-MB-231 which is a
murine breast adenocarcinoma cell line [119].
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On the other hand, studies on the ethanolic extract of ginger (Zingiber officinale) have
revealed that it may act as an anti-cancer and anti-inflammatory agent by inhibiting NF-кB
activation through suppressing pro-inflammatory cytokine, TNF-α [120].

Considering the research findings on the anti-inflammatory and anticancer activity
of extracts or compounds found in food sources, we can conclude that P. americana, S.
carnosa, and S. rosmarinus extracts are highly promising sources of cancer medications
because they have the lowest IC50 values against various types of cancer cell lines. In
addition, Carnosol, which is present in several extracts such as sage extract, is a promising
molecule because it has a significant action against cell lines such as breast cancer cell
lines; nevertheless, this substance requires additional research in in vivo models. Similarly,
S. rosmarinus and I. obliquus extracts have anti-inflammatory and anticancer properties,
making them a promising option for inhibiting the production of inflammatory cytokines
in the tumor microenvironment and improving patient prognosis.

Table 2 lists various phytochemical sources or types, such as extracts, phenols, triter-
penoids, saponins, lectins, polysaccharides, peptides, and other compounds, as well as the
components or types of extracts and their sources.

Table 2. Anti-inflammatory effects of phytochemicals from fruits, vegetables, and food legumes.

Classes of Phytochemicals Components or Types of Extract Dietary Sources Ref.

Crude extracts

Procyanidin extract Grape seeds [121]
Fruit juice ethanol extracts Strawberry and mulberry [122]

Fruit juice with pine bark extract Pine bark [123]
Citrus peel extract Citrus [124]

Sambucus and Rubus species seed extracts Sambucus and Rubus species [125]
Ethyl acetate extract Chinese pear [126]
Ethyl acetate extract Wild bitter melons [127]

Aqueous extract Mung bean [128]
Acetone–water extracts Mung bean [129,130]

Acetone extract Black bean [131]
Ethanol extract Adzuki bean [132]

Crude methanolic extracts Legumes [133]

Phenolic rich extracts White kidney beans and
round purple beans [125]

Ethanol extract Red bean [134]

Phenolics

Polyphenols Blueberry [135]
Zerumbone and 3-O-methyl kaempferol Ginger [136]
Punicalagin, punicalin, strictinin A, and

granatin B Pomegranate [137–139]

Narirutin Citrus [140]
Flavone velutin Acai fruit [141]

Anthocyanin Black soybean [142]
Phenolic compounds Navy and black bean [143]

Triterpenoids monomeric compounds Pear [144]
Pentacyclic triterpenoids Apple [145]

Saponins
Soybean saponins Soybean [139,141,146]

Angularin A, angulasaponins A-C, and
azukisaponins III and VI Adzuki bean [147]

Lectins

Lectins Butterfly pea [148]
Monocot lectin Canna limbata seeds [149]

Lectin Canavalia boliviana [150]
Soybean agglutinin Soybean [151]



Molecules 2023, 28, 1488 8 of 24

Table 2. Cont.

Classes of Phytochemicals Components or Types of Extract Dietary Sources Ref.

Polysaccharides Polysaccharide Welsh onion [152]
Water-soluble polysaccharide Chaenomeles speciosa fruit [130]

Peptides Bioactive peptides Soybean [153]
Lunasin Soybean [154]

Other compounds

Monogalactosyldiacylglycerol Citrus hystrix [155]
Monogalactosyldiacylglycerol Vegetables [156]

Phenethyl isothiocyanate Cruciferous vegetables [157]

Indole-3-carbinol Broccoli, cabbage, cauliflower,
brussels sprouts [158]

On the other hand, Table 3 shows clinical studies undertaken by the FDA in terms
of chemicals or extracts from food sources against cancer, as well as the clinical phase of
the inquiry. It should be noted that only anti-inflammatory compounds or extracts with
anti-cancer action were considered; there are several compounds and extracts in clinical
trials for other disorders. The chemicals in this table provide a better sense of what kinds of
compounds have made it from laboratory research to clinical trials, which is encouraging
for other sorts of compounds derived from food.

Table 3. Anti-cancer effects of phytochemicals in different stages of the FDA clinical trials [159].

Type of phytochemical Conditions Phase

Mangosteen extract Apoptosis in oral and cervical
cancer NA ‡

Grape seed proanthocyanidin extract Breast cancer 1

Pomegranate extract Colorectal cancer 2

Anthocyanin extract and phospholipid curcumin
(cyanidin-3-glucoside from bilberry) Colorectal adenoma NA ‡

Green tea extract Prostate cancer 2

Noni extract (Morinda citrifolia) Prostate cancer 2

Ginger Root Extract Colorectal Cancer 2

Phenethyl isothiocyanate Lung cancer 2

Indole-3-carbinol Breast cancer, prostate cancer * 1

* For prostate cancer studies, the status is “Recruitment Completed”; ‡ Not applicable (trials without FDA-
defined phases).

The information shows that extracts from edible plants or foods are an excellent source
of compounds with anti-inflammatory and anti-cancer activity. Therefore, it is critical to
continue research into this type of extract.

2.3. Oxidative Stress

Excessive production and accumulation of ROS create an internal cellular imbalance
known as oxidative stress, which affects different molecules found in the internal envi-
ronment of cells [160]. Endogenous cellular mechanisms control cellular and extracellular
redox status, such as regulating gene expression for apoptosis [161]; on the other hand, ROS
influences cell signaling under homeostatic conditions [162]. Moreover, the link between
oxidative stress and pathologies such as cancer has been demonstrated [158,163], as cancer
cells adapt to oxidative stress by upregulating the activity of antioxidant systems such as
glutathione to counteract the damaging effects of ROS [164,165].

In 2019, Cockfield and Schafer [166] concluded that some antioxidants might help
tumor cells as much as they help normal cells. This is because cancer cells have redox
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regulation genes, suggesting that low ROS levels are required for their survival; however,
the therapeutic approach may be crucial to treating this pathology. Nevertheless, in clinical
trials has been shown that antioxidant consumption might be beneficial [167–172] or have
no effect [167,172–174], as it is suggested to depend on the metabolic demand of the
individual.

It is natural to think that the consumption of antioxidants as a prevention to these
potential health damages is the answer to avoid or control them. Despite not being specific,
it has been shown that this family of molecules can help modulate key signaling pathways
for homeostasis [169,175,176]. Several molecules have antioxidant effects, such as vitamins,
peptides and proteins, minerals, enzymes, and plant-derived secondary metabolites, many
of which have already been characterized and evaluated [177–180].

3. Foods with Antioxidant Activities

Previous works have focused on identifying relevant compounds considered natural
antioxidants and aids in treating specific diseases [144,181–189]. In this review, no mention
is made of processed foods, only those in their natural state that have been characterized
and have molecules with antioxidant effects in their composition.

3.1. Mass-Consumed Fruit with High Antioxidant Content
3.1.1. Berries

These fruits are the most popular for consumption due to their antioxidant content,
being fruits of the Rosaceae, Ericaceae, Grossulariaceae, and Caprifoliaceae families [190].
In addition, several studies mention properties that support the beneficial health effects of
berries, such as induction and inhibition of endogenous antioxidant enzymes, impact on
the cell cycle, prevention of cell lipid oxidation, free radical scavenging, and impact on cell
communication [191].

In the work of Zorzi et al. [192], different berries are reported with a wide range
of antioxidant capacities using TEAC, FRAP, and DPPH tests. However, results are test-
dependent, and the maximum values were for blackberries and blackcurrants, considering
a significant relationship between the antioxidant test and the total antioxidant compounds.
This result is due to a large number of anthocyanins in the berries (greater than 50%) and
ascorbic acid, although in a lower percentage [190,192].

Many bioactive compounds from different families have been found in berries, in-
cluding kaempferol derivatives, quercetin, myricetin, anthocyanins such as cyanidin, del-
phinidin, pelargonidin, and others such as caffeic acid, coumaric acid, gallic acid, and
galloyl esters. It has been shown that anthocyanins and phenolic compounds are digestible
and have bioavailability in the liver and plasma. Furthermore, it has been shown that
the concentration of secondary metabolites may be higher in the consumption of berries
compared to the onion and other fruits, highlighting the consumption of berries of the
Ericaceae family [192,193]. On the other hand, research shows that although there is avail-
ability in plasma, the amount is insufficient to estimate a positive effect on human health,
as it has been shown with patients supplemented directly with quercetin who do not have
significant changes. However, it is not ruled out that the protective effects observed in vitro
are due to other metabolic pathways crucial in the antioxidant effect [177,190,194–200].

3.1.2. Banana

The banana is a tropical plant and one of the world’s most popular and widely
cultivated fruits; they are monocotyledonous plants belonging to the Musa genus of the
Musaceae family [201,202]. Their nutritional and energy value are high due to their content
of carbohydrates, vitamins, potassium, magnesium, and other minerals, in addition to
their contribution of fiber and low amount of lipids [203]. Furthermore, a recent review
includes a list of bioactive compounds in this fruit and their health benefits, with phenolic
compounds acting as antioxidants [204]. On the other hand, green banana consumption has
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benefits related to gastrointestinal damage, glycemic/insulin metabolism, weight control,
and renal and hepatic complications associated with diabetes [205].

Phenolic compounds, carotenoids, flavonoids, and biogenic amines have received
attention for their particular activity in antioxidant tests. Bananas have a higher antioxidant
capacity due to the number of bioactive compounds such as catechin, ferulic acid, coumaric
acid, gallic acid, dopamine, and vitamin C. These molecules have been evaluated as
reducing the low-density lipoprotein and other lipids oxidation. Moreso, their antioxidant
capacity in assays is equivalent to lecithin and ascorbic acid in time-dependent peroxide
inhibition; furthermore, this capacity increases during fruit ripening [205–208].

The compounds obtained vary according to the extraction type used. DPPH assays of
different variants have resulted in IC50 from 0.044 to 2.15 mg/mL showing significance due
to the presence of antioxidant compounds [206,209,210]. Likewise, there have been other
reviews involving different banana species where antioxidant effects and in vitro biological
activity are reported, which varies depending on the variant; however, the compounds are
mostly similar [204,206,210–212].

3.1.3. Apple

Malus domestica, belonging to the Rosaceae family, is one of the world’s most popular
and important crops and fruits. Its popularity means that it is found in many dishes
for consumption. Therefore, the apple has been extensively studied; important bioactive
compounds, including polyphenols, polysaccharides, sterols, pentacyclic triterpenes, and
organic acids, have been reported to be found in the peel and pulp of the fruit, and it
has been shown that their presence is dependent on the plant part, growing season, and
consumption form [213–218].

The therapeutic value of apples has been described previously, and it is related to
polyphenolic content, of which effects have been found in the absorption of gastric secre-
tions, control of intestinal biota, elimination of toxins, and diuretic effect. It can even be
interpreted that several of the molecules present may have a regulatory effect on neuronal
and metabolic activity [219–226]. The secondary metabolites in fruit, such as polyphenols
and anthocyanins, have a high antioxidant capacity and have been described for several
years; they are often better than the vitamins they contain [216]. The apple’s metabolites
reflect its antioxidant activity. According to Biedrzycka and Amarowicz [227], these metabo-
lites are mainly in the peel than in the pulp; however, it has been shown that the pulp
is often a significant source of antioxidants, which are not even lost over time [216]. The
production of antioxidant compounds is affected by different variables such as cultivar,
variant, harvest, geographical location, storage conditions, and manner of consumption;
however, the bioactive compounds are maintained or even improved when variants are
compared [228–232].

3.1.4. Citrus

Citrus is a genus of flowering plants called citrus, belonging to the Rutaceae family,
native to tropical and subtropical areas of Southeast Asia. The orange, tangerine, and
grapefruit, among others, belong to this genus. Citrus fruits have a peculiar fragrance due
to the flavonoids and limonoids present in their peel. These fruits are good sources of
vitamin C and other bioactive compounds such as flavanones, synephrine, auraptene, and
limonin [233–235]. Although the number of bioactive compounds varies among species,
there are more than 170 antioxidants reported in the Citrus genus highlighting phenolic
compounds; the importance in different works is that phenolic acids have a higher presence
in several species, whereas terpenoids have the highest antioxidant activity in different
tests [236–238].

3.1.5. Mango

Mangifera indica, popular as mango, belongs to the Anacardiaceae family, consisting
of about 30 species of tropical fruit trees. This fruit contains a large amount of pulp and
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is processed to obtain various products for consumption and is recognized for its high
nutritional value due to its content of vitamins, minerals, and secondary metabolites [239].
The chemical composition of mango variants around the world has been studied, and
it has been reported that mango pulp is a good source of antioxidants and possesses
antidiabetic, antiviral, cardiotonic, hypotensive, and anti-inflammatory properties, with
mangiferin being one of the main compounds which different beneficial activities are
attributed [240–242]. However, although mango pulp has a high content of molecules with
antioxidant capacity as it has a higher amount of phytosterols and β- and 9-cis-β-carotene,
it has been reported that the availability of these compounds varies depending on the
ripeness and variant of the fruit [243–248].

3.1.6. Avocado

The Persea americana fruit has been consumed worldwide for 50 years [249]. Some
studies analyze bioactive compounds present in the pulp of this fruit and its health benefits.
It has a high content of antioxidants, highlighting the content of lutein, xanthophyll, and
cryptoxanthin, which represent more than 90% of total carotenes, and gallic acid, which
has a capacity equivalent to Trolox in in vitro studies [250–254]. In addition, studies
relating the consumption of this fruit in the diet and its positive effects on health, mainly
in the regulation of lipoproteins and cardiovascular control, associated with the number
of phytosterols and gallic acid; it has also been shown that the consumption of this fruit
leads to an improvement in obtaining nutrients during digestion [255–258]. Emphasis
has also been placed on the study and analysis of the waste produced by consuming
this fruit and the possible window for the industrial utilization of avocado waste-based
products [259,260].

3.1.7. Pineapple

Pineapple (Ananas comosus) belongs to the Bromeliaceae family and is a tropical
perennial fruit plant known worldwide, with more than 2500 species initially cultivated in
South America. Pineapple possesses several bioactive compounds, such as bromelain, and
is rich in vitamins A and C, flavonoids, and tannins, among other polyphenolic compounds,
organic acids, and carotenoids [261]. Extracts of this fruit have been evaluated to determine
their antioxidant potential with tests such as DPPH and β-carotene-linoleate, which have
been reported to be effective in eliminating free radicals, especially in polar extracts such as
methanolic extract. The pineapple methanolic extract has an inhibitory activity of more
than 20%, according to some studies [262–264]; these results are related to the vitamin C and
phenolic compounds content. In addition, it has also been reported that these metabolites
are also related to cytotoxic activity in different cell lines [265,266].

3.1.8. Watermelon

Citrullus lanatus, commonly known as a watermelon, belongs to the Cucurbitaceae
family and is one of the world’s most cultivated vegetables in temperate zones. Lycopene,
cucurbitacin, and phenolic compounds are the main bioactive compounds in watermelon
with antioxidant effects [267,268]. Lycopene is the major carotenoid present in watermelon;
extracts of this fruit have been shown to have the ability to scavenge free radicals in
different systems and chelate metal ions, indicating that watermelon can act as a natural
antioxidant through different pathways and may be a useful therapeutic agent to treat free
radical-related pathological damage [269,270].

On the other hand, it was demonstrated that the antioxidant capacity of the pulp
extract in the DPPH assay has a lower percentage effect (33.05%) compared to ascorbic
acid (97.42%), being lower than the studies performed on peel and seeds, but higher than
lycopene in tomatoes [269,271]. As in other fruits, the metabolite content varies according
to environmental factors; however, in this case, the pulp has a minor amount of bioactive
compounds, although these could increase depending on the type of extraction.
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3.1.9. Papaya

Carica papaya L. belongs to the family Caricaceae, which has a high distribution
worldwide, making its fruit familiar. It has a high nutritional value and is rich in vitamins,
minerals, and other bioactive compounds. In addition, it has antioxidant, anti-inflammatory,
antimicrobial, and other activities due to carotenoids, alkaloids, flavonoids, saponins,
terpenes, and tannins found in various parts of the fruit and plant. It has been reported that
the seeds and pulp contain a high antioxidant potential [272,273]. The availability of these
secondary metabolites has been studied, demonstrating that ripe fruit provides a higher
amount of antioxidant compounds. Furthermore, the extracts have been shown to act as
suppressors of pathways involved in oxidative stress and apoptosis [274–276]. Finally, it
is worth mentioning the work of Nieto et al. suggesting using papaya residues to create
dietary concentrates with antioxidant activity [277].

3.2. Mass-Consumed Vegetables with High Antioxidant Content
3.2.1. Tomatoes

Tomatoes belong to the Solanaceae family, which includes different tomato species
that are part of daily consumption, such as Solanum lycopersicum, Solanum pimpinellifolium,
and Physalis philadelphica, among others, due to their versatility for cultivation, in addition
to their high nutritional value [278–280]. Furthermore, tomatoes have many antioxidant
compounds and are considered an important source of carotenoids, ascorbic acid, phenolic
compounds, and particularly lycopene, which has been studied against cancer [281–286].

Different parts of the tomato have been evaluated, identifying many compounds;
however, most of them were found in the skin and not in the pulp. Because of the content
of flavonoids and phenolic compounds, the skin has antioxidant effects greater than 50%
in different tests, such as DPPH and ABTS [281,287]. Moreover, different tomato species
have been characterized being their components evaluated in cell lines to assess their
in vitro activity, demonstrating their cytotoxic and anti-inflammatory capacity, mainly
lycopene [284,288–296].

Biotechnological developments have resulted in different variants of tomatoes that con-
tain more antioxidants, although their consumption has not been proven to be significantly
better than regular tomatoes [297,298].

3.2.2. Potatoes

The potato (Solanum tuberosum L.) belongs to the Solanaceae family, is a nutritious veg-
etable, and is rich in calories due to its high starch content. As previously reported, it also
contains active phytochemicals such as β-carotene, polyphenols, and Vitamin C, among
others [299]. The presence of phenols, flavonoids, and carotenoids suggests an antioxi-
dant activity that has been evaluated in vitro, demonstrating free radical scavenging and
modulation of cellular metabolism, an important mechanism being their biotransformation
during digestion and intestinal metabolism, which generates metabolites and degradation
products that regulate genes contributing to defense against oxidative stress [300–302].
However, potato by itself is not a food that provides a significant number of antioxidants.
On the other hand, it is necessary to mention that, unlike other vegetables, this tuber is
not usually consumed raw, so it should be considered that there may be a loss of certain
compounds and an increase in others, as mentioned in the review work of [303], which
takes into consideration the changes that molecules such as anthocyanins, carotenoids, and
phenols may undergo.

3.2.3. Carrots

Daucus carota L. is a vegetable belonging to the Apiaceae family; this is a world-class
vegetable due to its easy cultivation in variable climates and high nutritional value. It
has been reported to have diuretic, antidiarrheal, general tonic, and antianemia activity
due to its bioactive compounds; among them, phenolic compounds (mainly chlorogenic
acid), carotenoids (β-carotene), polyacetylenes (falcarinol), and vitamins stand out. These
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compounds have been studied, demonstrating their potential to improve human health
due to their anti-cancer, antioxidant, anti-inflammatory, plasma lipid modification, and
serotogenic effects [304]. In addition, studies have been conducted evaluating the activity
of different variants of the species finding similarities in their antioxidant activity [305].

4. Conclusions

Consumption of anti-inflammatory or antioxidant-rich foods is far from a cure for
pathophysiology involving inflammatory processes or high levels of reactive oxygen species.
It has not been demonstrated that regular consumption of these foods is related to prevent-
ing diseases such as cancer; however, there is evidence that they can be beneficial when
consumed as a complementary diet during some therapies. It is worth noting that the
compounds synthesized by each species will vary depending on the crop, and in some
cases, the compounds of interest are not found in the food’s pulp but in the seeds or shells.
More research is needed to investigate signaling or metabolic pathways where natural
products positively impact inflammatory and redox processes to get the most out of the
diverse range of compounds that nature provides us at our fingerprints.
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215. Karaman, Ş.; Tütem, E.; Başkan, K.S.; Apak, R. Comparison of Antioxidant Capacity and Phenolic Composition of Peel and Flesh

of Some Apple Varieties. J. Sci. Food Agric. 2013, 93, 867–875. [CrossRef] [PubMed]
216. Kschonsek, J.; Wolfram, T.; Stöckl, A.; Böhm, V. Polyphenolic Compounds Analysis of Old and New Apple Cultivars and

Contribution of Polyphenolic Profile to the in Vitro Antioxidant Capacity. Antioxidants 2018, 7, 20. [CrossRef] [PubMed]
217. Patocka, J.; Bhardwaj, K.; Klimova, B.; Nepovimova, E.; Wu, Q.; Landi, M.; Kuca, K.; Valis, M.; Wu, W. Malus domestica: A Review

on Nutritional Features, Chemical Composition, Traditional and Medicinal Value. Plants 2020, 9, 1408. [CrossRef]
218. Tschida, A.; Stadlbauer, V.; Schwarzinger, B.; Maier, M.; Pitsch, J.; Stübl, F.; Müller, U.; Lanzerstorfer, P.; Himmelsbach, M.; Wruss,

J.; et al. Nutrients, Bioactive Compounds, and Minerals in the Juices of 16 Varieties of Apple (Malus domestica) Harvested in
Austria: A Four-Year Study Investigating Putative Correlations with Weather Conditions during Ripening. Food Chem. 2021, 338,
128065. [CrossRef]

219. Arnao, M.B.; Hernández-Ruiz, J. Melatonin: Plant Growth Regulator and/or Biostimulator during Stress? Trends Plant Sci. 2014,
19, 789–797. [CrossRef]

220. Odibo, A.O.; Akaniro, I.R.; Ubah, E.M.; Odibo, A.O.; Akaniro, I.R.; Ubah, E.M. In Vitro Investigation of the Antisickling Properties
of Aqueous Fruits Extracts of Citrus paradisi, Musa acuminata, and Malus domestica. GSC Biol. Pharm. Sci. 2020, 13, 203–209.
[CrossRef]

221. Bouayed, J.; Hoffmann, L.; Bohn, T. Total Phenolics, Flavonoids, Anthocyanins and Antioxidant Activity Following Simulated
Gastro-Intestinal Digestion and Dialysis of Apple Varieties: Bioaccessibility and Potential Uptake. Food Chem. 2011, 128, 14–21.
[CrossRef]

222. Choi, G.N.; Kim, J.H.; Kwak, J.H.; Jeong, C.-H.; Jeong, H.R.; Lee, U.; Heo, H.J. Effect of Quercetin on Learning and Memory
Performance in ICR Mice under Neurotoxic Trimethyltin Exposure. Food Chem. 2012, 132, 1019–1024. [CrossRef]

223. Jelodarian, S.; Ebrahimabadi, A.H.; Kashi, F.J. Evaluation of Antimicrobial Activity of Malus domestica Fruit Extract from Kashan
Area. Avicenna J. Phytomed. 2013, 3, 1–6.
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