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Abstract: A reversible solid oxide cell (RSOC) integrating solid oxide fuel (SOFC) and a solid
oxide electrolysis cell (SOEC) usually utilizes compressive seals. In this work, the vermiculite seals
of various thickness and compressive load during thermal cycles and long-term operation were
investigated. The leakage rates of seals were gradually increased with increasing thickness and input
gas pressure. The thinner seals had good sealing performance. The compressive load was carried out
at thinner seals, the possible holes were squeezed, and finally the leakage rates were lower. With a
fixed input gas pressure of 1 psi, 2 psi, and 3 psi, the leakage rates of 0.50 mm vermiculite remained
at around 0.009 sccm/cm, 0.017 sccm/cm and 0.028 sccm/cm during twenty thermal cycles, while
the leakage rates remained at around 0.011 sccm/cm for about 240 h. Simultaneously, elemental
diffusions between seals and components were limited, implying good compatibility. Furthermore,
the open circuit voltage (OCV) remained at around 1.04 V during 17 thermal cycles, which is close to
Nernst potentials. The stack performance confirmed that the vermiculite seals can meet the structural
support and sealing requirements. Therefore, the vermiculite shows good promise for application in
stacks during thermal cycles and long-term operation.

Keywords: reversible solid oxide cell; vermiculite seals; thermal cycles; long term operation

1. Introduction

The increasing energy demand in modern society has given rise to excessive con-
sumption of fossil fuels and uncontrolled emission of greenhouse gases, resulting in global
warming and environmental balance destruction. The conversion of electrical into chemical
energy by electrolyzing water is meaningful for energy storage of renewable energies [1–3].
Simultaneously, the produced hydrogen could be used for electricity generation. A re-
versible solid oxide cell (RSOC) integrates solid oxide fuel (SOFC) and a solid oxide
electrolysis cell (SOEC), which can directly convert chemical to electricity without pollu-
tion by combining with heat and power (CHP) and can store electricity from windmills,
solar cells and nuclear energy by electrolyzing H2O and CO2 [4–6]. RSOC could meet the
diverse demands in multipurpose scenarios and had drawn more interest benefiting from
its optimized thermal compatibility of components and reduced fabrication cost. Among
various designs of RSOC stacks, planar design has contributed a greater concentration due
to easier fabrication, improved performance, and relatively high-power density.

To increase overall output/input voltage, cells, interconnects and seals are precisely
assembled into stacks [7,8]. The seals can prevent gas mixing in the anode and cathode
to ensure the stable operation of the stack. The seals in the stack are required between
air electrode and interconnect, hydrogen electrode and interconnect, cell stack and metal
frame. Therefore, high-temperature hermetic seals are necessary in a RSOC stack. The seals
must at least meet multiple requirements including good gas tightness, thermal stability,
interfacial compatibility, high electrical insulation, and mechanical properties [9,10]. Low
gas leakage rates and high thermal cycle stability are particularly significant. Furthermore,

Molecules 2023, 28, 1462. https://doi.org/10.3390/molecules28031462 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules28031462
https://doi.org/10.3390/molecules28031462
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0003-4103-2925
https://orcid.org/0000-0002-9497-9381
https://doi.org/10.3390/molecules28031462
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules28031462?type=check_update&version=2


Molecules 2023, 28, 1462 2 of 11

long-term stability of seals remains an issue. Lack of suitable seals has greatly hindered the
development of planar RSOC stacks.

Broadly, the seals of stack can be classified into compliant seals, rigidly bond seals,
and compressive seals. Compliant seals are deformable materials which could concatenate
cells and interconnects [11–13]. Only noble metals including platinum and gold could be
applied in stacks for avoiding corrosion. However, they could not properly wet adjacent
components and their cost is unacceptable in commercialization. Silver, copper, and Ag-
Cu-Ti brazing seals were investigated. The joint between metal brazing and adjacent
components would seriously degrade in an oxidizing and reducing environment, finally
leading to pores and cracks forming. Besides, the metal brazing seals would delaminate
after a short time because of the coefficient of thermal expansion (CTE) mismatching
between the oxide layer and interconnect. The Cr2O3 scale in gold-brazed and silver-brazed
seals are problematic. Hydrogen diffusion from fuel may lead to ‘hydrogen embrittlement’
and degrade mechanical properties. Cracks and defects would initiate and propagate at
the interface, causing leaking holes. Mostly seriously, metals and metal-brazing seals are
electrically conductive, which means an insulating layer must be used in metals.

Rigidly bond seals could form a tight junction between seals and adjacent components.
So far, most sealing developments have focused on rigidly bond seals, which are mainly
categorized into glass and glass-ceramic seals [14–19]. The glass could infiltrate into adja-
cent components and form strong bonding at the interface. The advantages of rigid seals
were that the CTE of materials could be adapted to adjacent components by controlling the
phase constituent. However, several physical and chemical properties should be simultane-
ously obtained in RSOC sealing, which is a challenge. The significant physical properties
coinhere glass transition temperature (Tg), glass softening temperature (Ts), crystallization
behavior, CTE and electrical resistivity. Chemical properties include but are not limited
to resistance to chemical reactions with vapor gas and resultant glass vaporization and
degradation in high temperatures (500~800 ◦C) and in oxidizing and wet reducing atmo-
spheres. Sr-O borosilicate glass would form LaBO3 with 3–25 mol% La2O3. Sr-containing
lanthanum borate form LaSi2O7 at 800~1000 ◦C. Moreover, the crystallization phase of
BaO-CaO-borosilicate glass increases from 50% to 70% after 120 h in air at 750 ◦C. The
crystallization phase would have a harmful effect on sealing performance, including mis-
matching CTE, leading to cracks, increased electrical resistivity, and gas leakage [10,20–22].
Additionally, the vaporization of glass constituents, such as B2O3 forming B(OH)2 and
SiO2 forming Si(OH)4, can adversely affect the thermal and electrical properties. Further-
more, glass/glass–ceramic seals are disadvantageous for long-term operation and have a
tendency to react with interconnect and electrode at high temperatures [23–25]. Moreover,
destructive dismantling of stacks is necessary because of malfunctioning components.

Compressive seals are deformable under an external load and have been developed
to overcome disadvantages of glass seals [26–28]. Compressive seals were developed to
overcome the disadvantages of glass and glass–ceramic materials. Thermal expansion
matching is not required because the seals are not rigidly fixed with adjacent components.
This allows the cells and interconnects to expand freely during thermal cycles and long-
term operation. Therefore, stacks are easy to repair, and the replacement of components
becomes possible. Mica, mica-based hybrid seals, Al2O3-based hybrid seals, ceramic
fiber and vermiculite are popular compressive seals. Mica is composed of small, discrete
mica flakes, ideally oriented with their cleavage planes parallel to adjacent components.
Single-layer and multi-layer mica, including phlogopites (KMg3(AlSi3O10)(OH)2) and
muscovite (KAl3(AlSi3O10)(OH)2), provide a tolerant mismatching CTE with adjacent
components during thermal cycles at 800 ◦C [29–31]. Thus, residual stress would be less.
Muscovite mica would lose its constitutional water exceeding 600 ◦C, while phlogopite
mica loses its constitutional water above 950 ◦C. This behavior would cause a swelling of
mica that may not affect the sealing properties. Moreover, mica that achieves good sealing
performance requires high compressive loads exceeding 6 MPa. Furthermore, hybrid
mica with a compliant glass interlayer was required for reducing leakage rates [32,33]. In
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glass-infiltrated mica, leakage rates are decreased. However, the volatilization of B2O3 is
inevitable. The long term of glass material is a challenge. Therefore, developing non-glass
compressive seals with low leakage rates are essential. Ceramic fiber compressive seals
are an insulation material of alumina-silica composition that resists oxidation and is easy
to fabricate and install. However, it is flexible, having an elastic recovery higher than
93.35%. It is mostly used at high temperatures for long times, and its volume resistivity
at 850 ◦C is more than 106 Ω·cm. However, its porosity is higher than 90%. In order to
reduce leakage rates, glass infiltration is also required. Selection of a stable infiltration
is significant. Apart from leakage rate reduction, the infiltration must be insulating and
have chemical and physical stability in a RSOC operating environment. However, the
stability of infiltration between adjacent and fiber seals is a challenge. The fumed silica has
a high dispersion and has a chainlike particle morphology forming colloid silica, which
could bond together via weak hydrogen bonds to form a three-dimensional network. The
colloid silica with a size much larger than that of fumed silica filled in the voids of the
fiber, which could effectively reduce the leak rates. However, the long-term stability of
seals is difficult in the complex environment of RSOC stacks. In Al2O3-based hybrid seals
and other ceramic-based seals, cracks and pores in materials and defects at the interface
contribute high leakage rates. The thermal and chemical stabilities are also inferior. In
reality, those seals could not meet sealing requirements and have some disadvantages.
A load frame is required to apply a constant compressive load during operation, which
would introduce a uniform distribution of load. To improve sealing performance, a high
compressive load is required, and a suitable thick layer is needed.

Vermiculite is a phyllosilicate mineral with an ideal chemical formula (Mg2+, Fe2+,
Fe3+)3[(SiAl)4O10]OH2·4H2O, whose structure is similar to that of mica. It is mostly used
in the manufacture of bio-nanocomposites, environmentally friendly flame-retardant prod-
ucts and solid oxide electrochemical device sealing [34]. Vermiculite is easy to fabricate
and install and could be used at high temperatures for long-term operation in reversible
solid oxide cell. Generally, the seals in a reversible solid oxide cell stack should operate
continuously for more 5000 h in mobile applications, for more than 40,000 h in stationary
application, and endure thermal cycles without degradation [10,20,35]. Materials should
be compatible with adjacent components to avoid pores and interactions. Additionally,
the seals should withstand mechanical stresses, temperature gradients, and stack weight
or external loads during operation and transportation. Fulfilling requirements is difficult
at the same time. Considering planar stack design, analyzing the compressive properties
of seals is important. Suitable compressive loads between seals and cells are required
to achieve electrical contact between cells and interconnects as well as achieving sealing
performance. Meanwhile, the compressive load of a stack is limited by the properties
of components. The compressive sealing performance is well exhibited under constant
compressive loads. And achieving good electrical contact are also required at least some of
load in planar stacks. Loads on an interconnect are concentrated on a small area, mainly
leading to mechanical failure. The seal of various thicknesses is also important during
RSOC operation. In this paper, we focused on the effect of long-term operation, thermal
cycles, compressive loads, and the thickness of vermiculite seals on sealing properties.

2. Results and Discussions
2.1. The Investigation of Leakage Rates

The mass and thermal changes with temperature were measured to ensure a suitable
heat treatment process. Figure 1a shows the mass decreasing percentage and thermal
changes with temperature from 40 ◦C to 1000 ◦C in air. It was obvious that the weight loss
of seals was drastic from 200 ◦C to 600 ◦C and then it had a little change above 600 ◦C.
Combined with a combustion exothermic peak of DSC, the weight loss was from organic
additives volatilizing. Accordingly, the heat treatment process was as follows. The samples
were heated to 200 ◦C at a heating rate of 5 ◦C/min and stayed there for 1 h. They were then
heated for 500 ◦C at a heating rate of 2 ◦C/min and stayed there for 1 h. Finally, the samples
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were heated to objecting temperature at a heat rate of 2 ◦C/min. The organic additives
were slowly burned out from the samples without generating many holes. Accordingly,
the relationship between thickness and compressive load is important in stack assembly.
Figure 1b shows that the thickness is negatively correlated with a compressive load ranging
from 0 to 0.5 Mpa. At a fixed compressive load of 0.3 MPa, the thicknesses of 0.50 mm,
0.70 mm and 1.00 mm were 0.40 mm, 0.57 mm and 0.87 mm, respectively. The predication
of thickness under some compressive load is helpful for stack assembly. The coordination
between assembly and compressive load could form achieve an electrical contact between
cells and interconnects as well as achieve sealing performance.
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compressive load (b).

In order to evaluate the effect of thickness and compressive load on sealing perfor-
mance, the leakage rates were measured, as shown in Figure 2. It is obviously observed
from Figure 2a that the leakage rates of vermiculite seals gradually increased with in-
creasing thickness and input gas pressure. When the input gas pressure was fixed at
2 psi, the leakage rates were 0.015, 0.018, and 0.021 sccm/cm, corresponding to 0.50 mm,
0.70 mm, and 1.00 mm. The thinner seals had good sealing performance. Figure 2b shows
the relationship between leakage rates and compressive load, exhibiting the decrease of
leakage rates under increasing compressive load. Obviously, the leakage rates were slightly
higher than 0.04 sccm/cm under an input gas pressure of 3 psi under a compressive load of
0.1 MPa, which exceeds the conventional requirements of seals. The higher the compressive
load, the smaller the leakage rate under the same input gas pressure. The compressive load
was carried out at seals, the possible holes were squeezed, and finally the leakage rates
were lower. Further examinations were conducted to evaluate the application of various
thickness seals.
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Figure 2. Effect of thickness (a) and compressive load (b) on leakage rates at 750 ◦C under input gas
pressure of 1 psi to 3 psi.

Figure 3 shows that the effect of thickness on leakage rates under a compressive load
of 0.3 MPa under input gas pressure ranging from 1 psi to 3 psi. All leakage rates were
lower than 0.04 sccm/cm. The leakage rates increased with increasing thickness, where
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leakage rates were 0.009 sccm/cm, 0.010 sccm/cm, and 0.011 sccm/cm, corresponding
to 0.1 MPa, 0.2 MPa, and 0.3 MPa at 750 ◦C under an input gas pressure of 1 psi. With
increasing temperature, the leakage rates of 0.5 mm seals were similar under the same
input gas pressure. At a fixed input gas pressure of 1 psi, the leakage rates were around
0.016 sccm/cm at temperatures ranging from 700 ◦C to 800 ◦C. The temperature had less
influence on sealing performance, the thickness of seals is smaller, and the leakage rates are
lower. Therefore, the thickness of seals should be considered during stack assembly.
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Figure 3. Effect of thickness and temperature corresponding to 0.5 mm (a), 0.7 mm (b), and 1 mm (c) on
leakage rates under compressive load of 0.3 MPa.

Furthermore, the profile after various tests maintained the original shape, depending
on powder packing. Then, the surface micrographs of vermiculite seals were examined
after heating to 750 ◦C under various compressive loads, shown in Figure 4. It was observed
from the surface that the seals gradually became dense with increasing compressive load.
The phyllosilicates were packed tightly in seals at high temperatures. Even though there
were some holes, the leak channels were circuitous, and the leakage rates reduced with
increasing compressive load from 0.1 MPa to 0.3 MPa. Combined with leakage rate results,
it was indicated that thinner seals with a suitable compressive load exhibited good sealing
performance, the phenomena being similar with leakage rates.
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Figure 4. SEM micrograph of seals after being heated to 750 ◦C under 0.1 MPa (a), 0.2 MPa (b),
and 0.3 MPa (c).

2.2. Evaluation of Long-Term Sealing Performance

To further examine long-term stability of vermiculite, the seals underwent long-term
operation at 750 ◦C and twenty thermal cycles from 750 ◦C to 200 ◦C were conducted.
Figure 5a,b show that the leakage rates of seals after each thermal cycle and long-term
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operation under a compressive load of 0.3 MPa with input gas pressure from 1 psi to
3 psi corresponding to SEM micrographs. The leakage rate remained stable at various
gas pressures. For instance, with a fixed input gas pressure of 1 psi, 2 psi, and 3 psi, the
leakage rates remained around 0.009 sccm/cm, 0.017 sccm/cm and 0.028 sccm/cm during
twenty thermal cycles. The tendency of seals indicated that the micro-cracks remained
stable and would not increase during thermal cycles. Figure 5c shows the variation of
leakage rate over time at 750 ◦C under an input gas pressure of 1 psi. The leakage rate
had a slight increase from 0.0112 sccm/cm to 0.0113 sccm/cm for three hours and then
rapidly decreased to 0.0109 sccm/cm after 14 h. Finally, the rate exhibited a slight decrease,
ranging from 0.0109 to 0.0105 sccm/cm. The phenomenon originated from the leak paths
decreasing with extending heating time under a compressive load of 0.3 MPa. Combined
with the SEM micrograph in Figure 5b,d, the phyllosilicates of the vermiculite seals were
packed tightly over the thermal cycle and long-term operation and there were few new
holes generated in seals, whose variation tendency was similar to leakage rates.
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Figure 5. The leakage rates of vermiculite seals over 20 thermal cycles (a) and long-term operation
(b) under a compressive load of 0.3 MPa and input gas pressure of 1 psi to 3 psi at 750 ◦C; and the
SEM micrograph after 20 thermal cycles (c) and long-term operation (d).

The SEM micrograph attached with EDS line profiles of cross-sections were examined
to analyze interfacial compatibility between seals and adjacent components. Figure 6a,b
show the interfacial micrograph of interconnect/seal/cell after twenty thermal cycles. It
indicates that contact at the interface remained complete and no obvious cracks were
detected. Thermal cycle stability was achieved well due to sufficient interfacial joint
strength. Moreover, there was little structure damage or accumulating thermal stresses
because of the natural properties of compressive seals during thermal cycles. Figure 6c,d
show EDS profiles between interconnect, seals and cells. Mg and Si in seals were seldom
observed in interconnect and cell. Similarly, Ni, Zr in cells and Fe, Cr in interconnect
were almost not observed in seals, showing that elemental diffusions between seals and
components were limited, which implies good compatibility. Therefore, the vermiculite
shows good promise for application in stacks undergoing many thermal cycles and a wide
input of gas pressure ranges.
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Figure 6. The SEM micrographs and EDS compositional profiles across the interface after 20 thermal
cycles, under a compressive load of 0.3 MPa at 750 ◦C: seal/interconnect interface (a,c), seal/anode
interface (b,d), exhibiting better interfacial compatibility.

2.3. Estimation of Vermiculite Seals for Stack Application

The thermal stability of the stack highly depends on sealing performance. Using anode
support cells and vermiculite seals, a single cell stack was assembled, and its performance
was estimated. Figure 7a shows the current density–voltage (I–V) curves of one single stack
in SOEC mode at 750 ◦C undergoing 17 thermal cycles. Obviously, the current density
increased with elevating voltage. After ten thermal cycles, the maximum current density
was 1.01 A/cm2 at the voltage of 1.3 V. Moreover, the performance of the stack stayed
roughly stable during thermal cycles. Figure 7b shows the current density–voltage-power
(I-P-V) curves of one single stack in SOFC mode at 750 ◦C and indicates a peak power of
14.19 W under a current density of 1.03 A/cm2. The power of the stack slightly decreased
during thermal cycles, mainly due to a poor interfacial contact between the cell cathode
and interconnect. Furthermore, the open circuit voltage (OCV) remained at around 1.04 V
during 17 thermal cycles, which is close to Nernst potentials. It was obvious that the seals
exhibited good sealing performance. The stack performance confirmed that the vermiculite
seals can meet the structural support and sealing requirements. In order to verify the
reversibility of one single cell stack, the EIS were measured under OCV conditions. As
presented in Figure 8, the values of ohmic resistance stayed stable during thermal cycles.
However, the polarization resistance slightly increased after various thermal cycles, which
corresponded with cell performance. Combined with leakage rates and electrochemical
performance, the vermiculite seals were indicated to be a suitable application during the
thermal cycle in the RSOC stack.
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3. Materials and Methods

Vermiculite is a phyllosilicate mineral which is commercially supplied by Zhejiang CPS
Cathay Packing & Sealing Co., Ltd. from Hangzhou in China. The obtained materials were
divided into 0.50 mm, 0.70 mm, and 1.00 mm thicknesses, respectively. The relationship
between thickness and compressive loads was analyzed for obtaining a good collocation
degree in RSOC stacks. The experiment was conducted as follows: the seals were held at
various compressive loads from 0.05 MPa to 0.5 MPa for ten minutes, and the thickness was
then measured by micrometer and recorded. Then, the thermal properties of the seals were
measured to obtain a reasonable heat treatment process during operation in stacks using
differential thermal analysis (STA449F3, Netzsch, Germany) at a heating rate of 10 ◦C /min
at temperatures ranging from 40 ◦C to 1000 ◦C.

The leakage rates of seals under various compressive loads from 0.1 MPa to 0.3 MPa
were measured at temperatures from 700 ◦C to 800 ◦C using self-developed equipment.
The seals were cut into a window frame with an outer size of 7 cm × 7 cm and an inner
size of 5 cm × 5 cm. The principle of leakage-rate testing was as follows. The N2 was
selected as a medium that can accurately provide an evaluation of leakage rates. The gas
was divided into two pathways, one of which provided a compressive load ranging from
0.1 MPa to 0.3 MPa, while the other path was for leakage rate measurement. The seals
were placed into polished alloy to construct a chamber under various compressive loads.
The testing gas was admitted into the chamber under input gas pressures ranging from
1 psi to 3 psi. When the leakage occurred at the seals, the flow meter displayed the gas
mass flow. Once the gas flow reached equilibrium, the leakage rates were recorded by
mass flow (Alicat KM9901 America, Alicat Scientific, Tucson, AZ, USA) with a precision
of 0.0001 sccm [26]. The leakage rates under thermal cycles and long-term operation were
measured. In order to evaluate the performance, the one cell stack using vermiculite was
assembled. Seals with a length of 4.9 cm and width of 4.7 cm were prepared and placed
between cells and the fixture. The cells were obtained from Elcogen, with an active area of
4.3 cm × 4.6 cm. The test was conducted at 750 ◦C under a compressive load of 0.3 MPa
using H2 as fuel and air as oxidant. Then the power output, open circuit voltage and
Electrochemical Impedance Spectroscopy (EIS) were obtained after every thermal cycle.
Furthermore, the testing configurations were disassembled to identify possible leaking
holes corresponding with analyzing leakage rates and cell performance.

The microstructures of seals under various compressive loads were examined to
ascertain the reason for the leakage using a LEO 1530vp scanning electron microscope
(SEM). Accordingly, in order to analyze interfacial compatibility between the seals and
adjacent components, the sandwiched structure samples were assembled to examine the
cross-section microstructure. Sandwich structure specimens of metallic interconnect (S441
alloy)/seal/anode (NiO+YSZ) with dimensions of 20 × 10 mm were prepared and heat-
treated between 200 ◦C and 750 ◦C for twenty thermal cycles under a compressive load of
0.3 MPa to simulate seal interfaces in the stack. The samples after twenty thermal cycles
were mounted in Buhler epoxide and polished using a Buhler automatic polisher. The
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cleaned samples were characterized by SEM attached with an energy dissipation spectrum
(EDS), to display interfacial structure and composition.

4. Conclusions

The effect of thickness and compressive loads on leakage rates of seals were inves-
tigated in RSOC stacks. The sealing performance of vermiculite seals in stacks were
conducted during thermal cycles and long-term operation. Based on the obtained results,
the following conclusions can be drawn:

(1) The sealing performance of vermiculite gradually deteriorated with increasing thick-
ness and input gas pressure. The thinner seals had good sealing performance. The
coordination between assembly and compression could achieve electrical contact
between cells and interconnects as well as achieve sealing performance. Moreover,
the higher the compressive load, the smaller the leakage rates under the same input
gas pressure. The compressive load was carried out at seals, the possible holes were
squeezed, and finally the leakage rates were lower. The temperature had less influ-
ence on sealing performance. Finally, thinner seals with a suitable compressive load
exhibited a good sealing performance.

(2) To further examine the long-term stability of vermiculite, the seals underwent long-
term operation at 750 ◦C, and twenty thermal cycles from 750 ◦C to 200 ◦C were
conducted. With a fixed input gas pressure of 1 psi, 2 psi, and 3 psi, the leakage rates
remained at around 0.009 sccm/cm, 0.017 sccm/cm and 0.028 sccm/cm during twenty
thermal cycles. Additionally, the leakage rates remained at around 0.011 sccm/cm
during 240 h. Simultaneously, elemental diffusions between seals and components
were limited, implying good compatibility.

(3) The maximum current density was 1.01 A/cm2 at a voltage of 1.3 V after ten thermal
cycles. Furthermore, the open circuit voltage (OCV) remained at around 1.04 V during
17 thermal cycles, which is close to Nernst potentials. Moreover, the performance
of the stack stayed roughly stable during thermal cycles. The stack performance
confirmed that the vermiculite seals can meet the structural support and sealing
requirements. Therefore, the vermiculite shows good promise for application in stacks
undergoing many thermal cycles and wide input gas pressure ranges.
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