
Citation: Fujimoto, T.; Gotoh, H.

Feature Selection for the

Interpretation of Antioxidant

Mechanisms in Plant Phenolics.

Molecules 2023, 28, 1454. https://

doi.org/10.3390/molecules28031454

Academic Editor: Cesar

M. Compadre

Received: 21 December 2022

Revised: 16 January 2023

Accepted: 31 January 2023

Published: 2 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

molecules

Article

Feature Selection for the Interpretation of Antioxidant
Mechanisms in Plant Phenolics
Taiki Fujimoto and Hiroaki Gotoh *

Department of Chemistry and Life Science, Yokohama National University, Hodogaya-ku,
Yokohama 240-8501, Japan
* Correspondence: gotoh-hiroaki-yw@ynu.ac.jp; Tel.: +81-45-339-3964

Abstract: Antioxidants, represented by plant phenolics, protect living tissues by scavenging reactive
oxygen species through diverse reaction mechanisms. Research on antioxidants is often individ-
ualized, for example, focusing on the evaluation of their activity against a single reactive oxygen
species or examining the antioxidant properties of compounds with similar structures. In this study,
multivariate analysis was used to comprehensively examine antioxidant properties. Eighteen fea-
tures were selected to explain the results of the antioxidant capacity tests. These selected features
were then evaluated by supervised learning, using the results of the antioxidant capacity assays.
Dimension-reduction techniques were also used to represent the compound space with antioxidants
as a two-dimensional distribution. A small amount of data obtained from several assays pro-
vided us with comprehensive information on the relationships between the structures and activities
of antioxidants.

Keywords: chemical space; interpretation; structure–activity relationship; antioxidants; machine learning;
feature selection

1. Introduction

Although oxygen is necessary for life, some oxygen in the body can become reactive
oxygen species (ROS). Antioxidants are compounds that can delay, inhibit, or prevent the
oxidation of materials by scavenging free radicals [1]. Oxidative stress occurs when the
level of ROS becomes too high for the body’s antioxidant system to remain balanced. It
plays a role in the development of chronic degenerative diseases, including coronary heart
disease, cancer, and aging [2]. Therefore, antioxidants need to be included in a healthy diet.

In this study, we considered antioxidants to be compounds that scavenge ROS by
chemical reduction or physical energy transfer. The amount or ratio of ROS that they scav-
enge is known as the antioxidant capacity. This is typically determined as a value relative
to different reference compounds in each assay. The reaction mechanisms and targets
vary depending on the compound; therefore, many individual studies have examined the
antioxidant capacities of compounds that have similar structures and mechanisms of scav-
enging ROS [3,4]. However, it is difficult to comprehensively analyze the structure–activity
relationship (SAR) of compounds. To solve this problem, it is necessary to visualize the
distribution of compounds according to their activity, as well as elucidate the relationship
between the evaluation methods. The relationships among multiple antioxidant assays
have been revealed by comparing the measured data in previous studies. For example,
Mérillon et al. [5] compared the antioxidant properties of 30 food extracts using various
assays. It is important to investigate the relationship between the molecular structure and
antioxidant properties using multiple assays.

In recent years, the use of artificial intelligence has grown in terms of discussing quan-
titative SARs, particularly for small molecules [6]. This has been made possible through
the development of many molecular descriptors and cheminformatics tool packages such
as RDKit [7]. However, data analysis using a variety of descriptors as features can make it

Molecules 2023, 28, 1454. https://doi.org/10.3390/molecules28031454 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules28031454
https://doi.org/10.3390/molecules28031454
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0002-1920-6020
https://doi.org/10.3390/molecules28031454
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules28031454?type=check_update&version=2


Molecules 2023, 28, 1454 2 of 14

difficult to interpret the output. In particular, in chemistry, most experimental methods,
except high-throughput screening, cannot provide large volumes of data. Insufficient data
and an excessive number of features can often result in overfitting or the detection of false
tendencies. Miyao et al. [8] predicted the enantioselectivity of organic reactions using a
phosphoric acid catalyst with a small dataset containing extended connectivity fingerprints
(ECFP) [9]. Their model showed a good predictive performance, thereby revealing the im-
portance of two-dimensional structural information. ECFP typically represents a molecule
by thousands of bits, which each represent the presence or absence of the corresponding
substructure. However, the well-known ECFP is often folded to a fixed bit length, which
causes bit collisions and a loss of interpretability [10]. It is, therefore, important to select an
appropriate number of numeric features and perform a multivariate analysis to explain the
desired characteristics.

Several feature selection methods have been previously developed, such as the filter,
wrapper, and embedded methods [11]. Feature selection methods have been studied in
the field of chemistry. For example, Wu et al. [12] applied the filter method to measure
the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging capacity. Their study used
descriptors obtained from RDKit and decreased the number of features from 200 to 16 by
conducting a t-test and discriminant analysis. As for the application of dimension reduction
methods in chemistry, Bassoli et al. [13] showed the chemical space of bitter taste receptor
agonists using t-distributed stochastic neighbor embedding, whilst only using fragments
to describe the structural properties of the molecules. Furthermore, Süleyman et al. [14]
developed ChemPlot, a Python library for chemical space visualization, using dimension-
reduction techniques. This can visualize the distances between compounds in chemical
spaces using 200 molecular descriptors instead of structural information. However, the
activity cliff problem should be considered, in which structurally similar compounds have
different potencies on the same target [15]. The two-dimensional representation of chemical
properties using ChemPlot has become a useful way to avoid this activity cliff problem.
This indicates that the structural information of molecules can sometimes be insufficient
for describing chemical phenomena.

In this study, we conducted a multivariate analysis using the measured antioxidant
data as a tool to describe SAR. We selected common features that could explain mul-
tiple antioxidant capacity indicators using partial coefficients and well-known reaction
mechanisms. Common features were then prepared for each dataset that was used in
the prediction task. We chose two methods to evaluate how common features described
comprehensive information regarding antioxidants. One of these was the prediction of
several targets using supervised learning, which is machine learning that has target val-
ues to predict, whilst the other method was the creation of compound distributions by
dimension reduction. The quenching mechanisms of ROS have been identified in previous
studies [16–19]. Several thermodynamic properties, including bond dissociation energies
(BDE) and ionization potentials (IP), are useful indicators of the reactivity of a compound to-
ward ROS. Therefore, the properties listed in Table 1 were obtained from quantum chemical
calculations and added to the descriptors used in the multivariate analysis. Both molecular
structures and thermodynamic aspects were used as explanatory variables to describe
antioxidant properties. Peroxyl radicals are scavenged by the mechanisms depicted in
Figure 1. Five thermodynamic properties are indicators of reaction mechanisms. These
values were calculated using the formation enthalpies, H, using Equations (1)–(5).
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.

O) + H (
.

H)− H (ArOH). (1)

Ionization potential (IP) = H (ArO
.

H
+
) + H (e−)− H (ArOH). (2)

Proton dissociation enthalpy (PDE) = H (Ar
.

O) + H
(
H+
)
− H (ArO

.
H

+
). (3)

Proton affinity (PA) = H
(
ArO−

)
+ H

(
H+
)
− H (ArOH). (4)



Molecules 2023, 28, 1454 3 of 14

Electron-transfer enthalpy (ETE) = H (Ar
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Figure 1. Well-known mechanisms of scavenging oxygen radicals and singlet oxygen. Pathway A 
shows the hydrogen atom transfer (HAT) mechanism, which is dependent on BDE. Pathway B 
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Figure 1. Well-known mechanisms of scavenging oxygen radicals and singlet oxygen. Pathway
A shows the hydrogen atom transfer (HAT) mechanism, which is dependent on BDE. Pathway B
shows the electron transfer–proton transfer (ET–PT) mechanism, which is dependent on IP and
PDE. Pathway C shows the sequential proton loss electron transfer (SPLET) mechanism, which is
dependent on PA and ETE. Singlet oxygen was quenched by physical quenching or charge transfer.

We used five different assays for antioxidant capacity data: oxygen radical absorbance
capacity (ORAC) [3], singlet oxygen absorption capacity (SOAC) [4], 3-(4,5-dimethylthiazole-2-
yl)-2,5-diphenyltetrazolium bromide assay (MTT) [20], 2,2’-azinobis(3-ethylbenzothiazoline-6-
sulfonic acid) radical cation decolorization assay (ABTS) [21], and DPPH radical-scavenging
capacity [12]. Antioxidant capacity data for compounds from five different test methods
were used for machine learning. Other in vitro and in vivo antioxidant assays are also
known. For example, the cupric reducing antioxidant capacity method [22] and the ferric
reducing ability of plasma assay [23] are known as in vitro methods. Additionally, the
superoxide anion assay [24] and lipid peroxidation assay using 2-thiobarbituric acid reactive
substances as markers [25] are known as in vivo methods. However, because the number
of structure–activity relationship studies was small compared to those employing DPPH,
ORAC, and SOAC, they were excluded from this study.

Table 1. Datasets used in this study. Five datasets were prepared for each task and were used for
both supervised learning and dimension reduction. The remaining two without tasks were used only
for dimension reduction. MEXT is a dataset consisting of food ingredients listed in the document
published by the Japanese Ministry of Education, Culture, Sports, Science, and Technology.

Dataset Task Size Target Chemicals

ORAC Regression 70 Peroxyl radicals
SOAC Regression 71 Singlet oxygen
MTT Regression 71 MTT
ABTS Regression 90 ABTS radical cation
DPPH Classification 198 DPPH radical

Phytochemicals [26] 344
MEXT [27] 109
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2. Results and Discussion
2.1. Feature Selection

Eighteen features were selected from the 113 candidate continuous value indicators
obtained from the RDKit and PM7 calculations. Few dependencies were found between
the selected features, and 18 features had no duplicates from either chemical or numerical
perspectives. These features could be divided into four groups according to their chemical
meanings, as shown in Table 2, and five thermodynamic properties obtained from PM7
calculations were included alongside five features of the polarity and electronic states. Six
features were occupied by values representing bond distances and structural complexity.
The remaining features represent the steric structures. The scatter plot matrices for each
dataset are shown in Supplementary Figures S1–S7. The partial correlation matrices of
the features in Table 2 for each dataset are shown in Supplementary Figures S8–S12. The
partial correlation matrix was obtained from the inverse of the variance–covariance matrix.
Each component represents the correlation between residuals obtained by subtracting the
contributions of other features from the corresponding features. In this way, we confirmed
that no dependency existed between the features.

Table 2. Selected 18 common features in this study. Features in the energy class and dipole moment
were calculated with PM7. Other features were obtained from RDKit.

Class Number Features Explanation

Energy 5

ELUMO Energy of LUMO
gap HOMO–LUMO gap
BDE Bond dissociation energy

IP Ionization potential
PA Proton affinity

Polarity 5

TPSA Topological polar surface area estimated from bonding patterns
MolLogP Octanol–water partition coefficients estimated from fragments

dipole moment The dipole moment calculated with PM7
MaxPartialCharge, MinPartialCharge Maximum and minimum values of atomic charges in a molecule

Structure
and bonds 6

FpDensityMorgan2 Possible substructure variations
BertzCT Molecular complexity caused by the kinds of atoms and the bond order
BalabanJ Topological index based on the distance matrix of a molecule

HallKierAlpha Sum of the relative covalent radius in a molecule
MaxEStateIndex, MinEStateIndex Maximum and minimum values determined for each fragment

Steric
properties 2

LabuteASA Molecular surface area where solvents are accessible
FractionCSP3 Ratio of sp3 carbons among the carbons in the molecule

2.2. Supervised Learning Using XGBoost

The machine learning models used here were screened from nine algorithms using
EvalML [28], an automated machine learning library. Because extreme gradient boosting
(XGBoost) [29] showed stable predictive performance, it was used as an algorithm for
supervised learning models. XGBoost is a tree structure-based algorithm wherein branches
are generated by the relationship between feature values and thresholds, outputting pre-
dictions at the ends. During training, the model is improved by sequentially adding tree
structures, such that the difference between predictions and true values approaches a
minimum. The evaluation metrics for the prediction performance of XGBoost models are
listed in Table 3. Smaller values for mean absolute error (MAE), root-mean-square error
(RMSE), and MAE divided by the standard deviation (MAE/STD) used in the regression
task evaluation indicated a stronger prediction performance. For the classification task
evaluation, a lower binary cross-entropy and higher accuracy also indicated a better predic-
tion. Plots consisting of the data and predicted values are shown in Figure 2a–d, whilst the
confusion matrix of both the training and the test data for the classification task is shown in
Figure 3a,b. It was confirmed that the predictions obtained from XGBoost in this study did
not deviate from the actual values observed in the data.



Molecules 2023, 28, 1454 5 of 14

Table 3. Evaluation of the performance of XGBoost models for prediction of test data properties.
Lower MAE, RMSE, and cross-entropy are better. Higher accuracy shows a better performance.
MAE/STD is the MAE divided by the standard deviation of target values in each dataset. The higher
importance column lists features with importance greater than 0.85 after scaling.

Regression

Dataset MAE RMSE MAE/STD Higher Importance

ORAC 0.5314 0.7295 0.2724 TPSA
SOAC 1.4555 1.9020 0.3684 IP
MTT 0.8000 1.0420 0.5774 BDE
ABTS 0.1559 0.1939 0.6476 HallKierAlpha

Classification

Dataset Cross-entropy Accuracy Higher importance

DPPH 2.8783 0.9167 TPSA, BalabanJ, gap

The feature importance was obtained from the XGBoost models for each task and
is shown in feature_importance.xlsx within the Supplementary Materials; features with
higher importance for each task are listed in Table 3. In the oxygen radical absorption
capacity (ORAC), singlet oxygen absorption capacity (SOAC), and DPPH tasks, no chem-
ical inconsistencies were observed in the interpretation of supervised learning models.
Additionally, in ORAC, topological polar surface area (TPSA), which counts the oxygen
atoms in the OH group, was detected as an important feature, while IP was identified
as an important feature of SOAC. The energy of the highest occupied molecular orbital
(HOMO) (EHOMO) was previously shown to play a role in the scavenging of singlet oxygen,
in both energy and electron transfer [30]. It is also known that IP and EHOMO are inversely
correlated [31]. Considering that EHOMO was removed from the explanatory variables by
feature selection, it is reasonable to assume that IP dominated the predictive trend instead
of EHOMO. As for DPPH, the TPSA, BalabanJ, and HOMO–LUMO gap were identified
as key features, and these are thought to indicate the size of the electron-rich area, steric
hindrance, and ease of electron transfer, respectively.

To examine the differences in the predictive performance of the model with changes
in the number of features, we prepared two types of pipelines for each task. One of these
was a linear model trained with different features, whilst the other was a comparative
XGBoost model trained with a larger number of features. These models are summarized
in Tables 4 and 5, respectively. A linear model, which is an ordinary least squares lin-
ear regression (OLS) model, was used for regression tasks, whereas a logistic regression
model was used for classification. Table 4 shows that the XGBoost models trained using
18 common features performed better than the linear models. This suggests that it was
difficult to describe antioxidant activity using only a few features. The features used for
training the comparative XGBoost models included these 18 common features and discrete
distributions, such as PEOE_VSA. These were filtered using the variance of each feature
and the correlation coefficients of the feature pairs. Table 5 shows that 18 features were
sufficient in explaining the trends of ORAC, SOAC, and DPPH. However, for the MTT
task, the predictive performance did not change when the number of features increased. It
was found that the features were reduced, whilst retaining essential information to explain
the antioxidants. The above results show that 18 features are sufficient to explain the
relationship between molecular information and multiple antioxidant capacity indices.
Although predictions have been made for individual indicators in the past, the presentation
of features that can comprehensively explain the behavior of multiple indicators is expected
to promote the compound screening process. Furthermore, both properties obtained by
computational chemistry and geometrical molecular structure information were found to
be necessary to predict activity.
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when the predictions were correct. (a) The prediction performance when the ORAC dataset was 
used. (b) The prediction of SOAC values. (c) The prediction of MTT values. (d) The prediction of 
TEAC values included in the ABTS dataset. 

 
Figure 3. Confusion matrices for DPPH classification. (a) The classification performance of test data. 
(b) Plot indicating how well the classification model was trained. A score of 0 means no antioxidant 
capacity according to the DPPH assay, whereas 1 means that compounds in the area were effective.  
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Figure 2. Prediction results at five regression tasks. The orange markers show training data, whilst
the blue ones show the prediction of test data. The blue lines indicate where the plots are located
when the predictions were correct. (a) The prediction performance when the ORAC dataset was used.
(b) The prediction of SOAC values. (c) The prediction of MTT values. (d) The prediction of TEAC
values included in the ABTS dataset.

Table 4. Comparison of XGBoost and linear models based on predictive performance for test data.
Ordinary least squares linear regression (OLS) models and a logistic regression model were trained
with different features. MAE18 means the MAE values of a model trained with 18 common features.
MAElinear means the MAE of a model trained with input features shown in this table. Accuracy was
used in the DPPH task instead of MAE. In most cases, models trained using 18 common features
showed a better performance. * better performance values.

Regression

Task Model Input Features MAE18 MAElinear

ORAC OLS BDE, TPSA 0.5314 * 1.2720
SOAC OLS IP 1.4555 * 2.0491
MTT OLS IP 0.1559 * 0.2091
ABTS OLS BDE, IP 0.8000 0.6833 *

Classification

Task Model Input features Accuracy18 Accuracylinear

DPPH Logistic Gap, IP, TPSA, BalabanJ 0.9167 * 0.9000
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Figure 3. Confusion matrices for DPPH classification. (a) The classification performance of test data.
(b) Plot indicating how well the classification model was trained. A score of 0 means no antioxidant
capacity according to the DPPH assay, whereas 1 means that compounds in the area were effective.

Table 5. Comparison of XGBoost models based on predictive performance for test data. The column
“Number of features” shows the number of input features of comparative XGBoost models. MAE18

means the MAE of a model trained with 18 common features, whereas MAEcomplex is the MAE of
a model trained with a larger number of features. Accuracy was used in the DPPH task instead of
MAE. * better performance values.

Regression

Task Number of Features MAE18 MAEcomplex

ORAC 54 0.5314 * 0.5900
SOAC 65 1.4555 * 1.5684
MTT 61 0.1559 0.1544 *
ABTS 62 0.8000 0.6157 *

Classification

Task Number of features Accuracy18 Accuracycomplex

DPPH 74 0.9167 0.9500 *

2.3. Chemical Space in Uniform Manifold Approximation and Projection (UMAP)

The two-dimensional distribution of the compound output by UMAP [32] is shown in
Figure 4. When explaining multiple activities with small similarities, a two-dimensional repre-
sentation is easier to describe and is more readable. Therefore, we generated a two-dimensional
distribution. UMAP has become popular in recent years as a means of dimensionality re-
duction and data visualization owing to its high processing speed and clear separation of
data clusters. UMAP generates graphs in low-dimensional (two-dimensional in this paper)
conditions that are similar to graphs produced with higher-dimensional (18-dimensional)
information. Data with similar values are clustered in neighborhoods, while pairs with
large differences are distributed apart. As a result of UMAP, compounds with similar
structures formed groups. Focusing on the position of the distribution, phenols, glycosides,
fatty acids, and carotenoids were present radially, with flavonoids at the center. This radial
distribution could be attributed to differences in the ROS preferentially scavenged by each
compound group, reaction mechanisms, and solubility. The qualitative estimation of the
activity of a certain compound against different ROS is expected according to the structure
and calculated values, along with the suggestion of an appropriate assay. This will enable
rapid analysis of antioxidant capacity covering multiple reactions of natural products and
new compounds. Furthermore, observing the structures of the compounds corresponding
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to some of the plots, a trend was observed on the axes in Figure 4. The horizontal axis in
Figure 4 provides information on the number and polarity of the hydroxy groups in the
molecule, whereas the vertical axis indicates information on the surface area and bulki-
ness of the three-dimensional structure of the molecule. However, when outputting the
two-dimensional distribution in this study, the axes were not defined in advance. Therefore,
TPSA for polarity, MolLogP for conformation, LabuteASA, and FractionCSP3 for steric
structures were all particularly important when describing the overall picture of antiox-
idants. The distribution of these data obtained from 200 molecular descriptors, ECFPs,
and 15 features is shown in Supplementary Figures S13–S15; Figures S13 and S14 were
generated in ChemPlot. The features used for the output of Supplementary Figure S15
are the common features, excluding the BDE, IP, proton affinity (PA), and other proper-
ties obtained from the PM7 calculations. Compared to Supplementary Figures S13–S15,
Figure 4 shows that outliers and agglomerations do not occur in most data, and the chemi-
cal space is represented. This suggests that the feature selection in this study was effective
in describing the chemical space of antioxidants.
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3. Materials and Methods
3.1. Data Collection

The tasks to be solved using the supervised learning models are listed in Table 1.
Four regression tasks and a classification task were prepared for antioxidant assays. Each
task contained a small dataset, and a total of 104 numeric features were obtained from
RDKit (Open-source cheminformatics. https://www.rdkit.org accessed on 6 December
2022). Nine features were then calculated using a semi-empirical method (PM7) with
MOPAC2016 [33]. Density functional theory (DFT) calculations using B3LYP or M06-
2X functionals have been commonly used to determine the reactivity of molecules [34].
However, Nakata et al. [35] showed a similar behavior between the energies of the frontier
orbitals of 2.6 million molecules calculated using PM6 (the predecessor method of PM7)

https://www.rdkit.org
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and those calculated by B3LYP/6-31G*. Considering the accuracy and cost of calculations, it
was reasonable to use PM7 here instead of DFT. The energies at the HOMO, the LUMO, the
HOMO–LUMO gap, and the dipole moment of each compound were all calculated from
the optimized structure of the neutral molecules. Thermodynamic properties, such as BDE,
IP, proton dissociation enthalpy (PDE), PA, and electron-transfer enthalpy (ETE), were then
also calculated using the formation energies of neutral molecules, hydrogen-withdrawn
radicals, radical cations, and anions with Equations (1)–(5).

Each of the datasets used was collected from various past studies, as shown in the
dataset column of Table 1. ORAC, SOAC, MTT, ABTS, and DPPH assays were used to
measure the antioxidant properties in diverse ways, as the radicals that reacted with
antioxidant samples were different in each of these assays. For example, ROS were used
in the first two assays, whilst the radicals shown in Figure 5 were used in the latter three
cases. The ORAC dataset contained 70 phenolics [3], and the ORAC assay is a method that
monitors differences in the fluorescence change of probe molecules over time at certain
wavelengths as a result of sample addition [36,37]. Since antioxidants prevent peroxyl
radicals from attacking fluorescence probe molecules, samples with high ORAC values
exhibit a slower fluorescence decay. ORAC values were determined relative to Trolox,
6-methoxy-2,5,7,8-tetramethylchromane-2-carboxylic acid. The SOAC dataset contained
71 compounds, such as phenolics and carotenoids [4]. The SOAC assay is a method used
for measuring the reaction rate between singlet oxygen and samples [38], and, in this
case, SOAC values were determined relative to those of α-tocopherol. Additionally, the
MTT dataset contained 71 compounds, which included phenolics and fatty acids [20],
whilst the MTT assay was performed using the substrate 3-(4,5-dimethylthiazole-2-yl)-2,5-
diphenyltetrazolium bromide. Considering that the color of MTT changes from yellow
to purple through reduction, the absorbance of the reaction mixtures with samples at
570 nm was used as the MTT value. Furthermore, the ABTS dataset contained 90 phenolic
compounds from Chinese medicinal plants [21], and the ABTS assay used a reduction
reaction of the 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) radical cation [39]. The
absorbance of the reaction mixtures with the samples at 734 nm indicated the concentration
of radical cations. ABTS values were then expressed as Trolox equivalent antioxidant
capacity (TEAC) using the half-maximal inhibitory concentration (IC50) obtained from
absorbance. TEAC was calculated using the IC50 and Equation (6).

TEAC =
IC50 of Trolox [µM]

IC50 of samples [µM]
. (6)
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Figure 5. Structures of radicals used in antioxidant assays.

Lastly, the DPPH dataset contained 198 phenolic compounds [12], whilst the DPPH
assay measured the difference in the concentration of DPPH in the reduction reaction from
absorbance [40], similarly to the ABTS assay. To make the DPPH dataset available for
classification, compounds with IC50 below 300 µM were considered positive, whilst the
remainder were considered negative. The DPPH dataset was composed of 97 positive and
101 negative samples.

Two large datasets without target values for prediction were also prepared to de-
scribe the chemical space of the antioxidants. One dataset contained information on
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phytochemicals [26] sold by Tokyo Chemical Industry Co., Ltd (Tokyo, Japan). The
other included compounds written in the Standard Tables of Food Composition in Japan
(Seventh Revised Edition) [27] published by the Ministry of Education, Culture, Sports,
Science, and Technology (Tokyo, Japan). For these two datasets, common features were
prepared alongside the other five datasets and were selected using the method described in
the next section. All compounds used in this study are shown as compounds_data.zip in
the Supplementary Materials.

3.2. Feature Selection

Feature selection was performed using the filter method, and the feature selection
scheme is shown in Scheme 1. Firstly, the constant features were dropped, and multi-
collinearity was removed by considering correlation coefficients. The threshold for the
absolute value of the correlation coefficient was 0.95. Features representing the local prop-
erties within the molecule, such as PEOE_VSA and SlogP_VSA, were also removed. Most
of these descriptors exhibited discrete behavior since they referred to the surface of a func-
tional group. To describe molecules with a small number of features, continuous values
determined by a single value per molecule were used here. Furthermore, to explain the
relationship of the features correctly, they were screened on the basis of partial correlation
coefficients. This sequence of operations was repeated for each dataset to select 18 common
features available for the prediction of multiple antioxidant capacities.
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third step, discrete features, or local properties in a molecule, were dropped. Partial correlation
coefficients were subsequently used as the threshold values in the last step.
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3.3. Supervised Learning

The datasets corresponding to each task were then inputted into an XGBoost model.
The machine learning models used here were screened in advance using EvalML, an
automated machine learning library (Alteryx, Inc., Irvine, CA, USA). XGBoost was used for
supervised learning in this study considering that it showed a stable performance for the
prediction of five tasks. The parameters of XGBoost were optimized for each dataset using
Optuna [41], a hyperparameter optimization framework. The MAE was used as the loss
function for regression tasks, whilst the RMSE was also calculated for evaluation. These
metrics were obtained using Equations (7) and (8), where y and ŷ are the target value in
the dataset and its prediction, respectively. MAE/STD was prepared to compare errors
among the machine learning models trained using different datasets. The MAE was then
divided by the standard deviation of the target values in each dataset. For a classification
task, the binary cross-entropy shown in Equation (9) was used as a loss function, where
y ∈ {0, 1} is a target value in the dataset. P means the probability that y = 1. Accuracy
was also prepared for the evaluation metrics from Equation (10), where TP, FP, TN, and
FN refer to the numbers of true positive, false positive, true negative, and false negative
data, respectively.

MAE =
∑n−1

i=0 |y− ŷ|
n

. (7)

RMSE =

√
∑n−1

i=0 (y− ŷ)2

n
. (8)

Binary cross-entropy = −{y log P + (1− y) log(1− P)}. (9)

Accuracy =
TP + TN

TP + TN + FP + FN
. (10)

XGBoost was useful not only for effective predictions but also for gaining insight into
features. Feature importance was obtained from the trained XGBoost model for each task,
although, in general, these values were not quantitatively comparable when obtained from
different models. To understand the qualitative trends, the top features were sorted and
analyzed in order of importance as described by Funatsu et al. [42] Furthermore, to describe
the difference in the importance of the two features, the feature importance values (x) were
scaled into a range between 0 and 1 according to Equation (11). The value with the highest
contribution to the prediction was transformed to 1, whereas the value with the lowest
contribution was transformed to 0. Features with scaled importance greater than 0.85 were
considered key features in each task.

xscaled =
x− xmin

xmax − xmin
. (11)

3.4. Dimension Reduction

A UMAP was used to visualize the chemical space, and the set parameters of this
UMAP are shown in the Supplementary Materials. Data from the seven datasets listed in
Table 1 were input into the UMAP simultaneously. Subsequently, the UMAP compressed
these data into two dimensions. The target values were then removed, and 18 common
features were standardized according to Equation (12) in advance, where µ is the mean and
σ is the standard deviation of feature x.

xstd =
x− µ

σ
. (12)

4. Conclusions

For the comprehensive analysis of antioxidant mechanisms, several datasets related
to the antioxidant capacity test were analyzed here. For this, 18 features were selected as
information that could describe the antioxidant mechanism using both domain knowledge
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and statistical processing. Through supervised learning, it was confirmed possible to
estimate antioxidant capacity using a small amount of data containing the selected features.
Dimension reduction was also used to comprehensively describe antioxidant activities as a
chemical space and to visualize the importance of polarity and conformation, reflecting
trends in compound structure and activity. Considering that scavenging mechanisms of
ROS have been proposed, here, we added descriptors obtained from quantum chemical
calculations. As a result, both structural information and the reactivity of molecules
were applied in this study for the evaluation of antioxidant capacity. It can be concluded
that comprehensive antioxidant capacity analysis is possible by using both geometric
information and computational chemistry, and it is expected to facilitate data analysis
of biological activity and physical properties of organic compounds and to recommend
appropriate assays.

In the future, we would like to include data from other antioxidant assays to improve
the generalizability of the analysis methods in this study. As we now know the importance
of polarity and 3D structure, we would like to create a general-purpose antioxidant capacity
index based on this information.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/molecules28031454/s1: Figures S1–S7. Scatter plot matrices
of all datasets used in this study; Figures S8–S12. Partial correlation matrices of datasets used in
supervised learning; Figures S13–S15. UMAP plots obtained from 200 molecular descriptors, ECFP,
and 15 features; feature_importance.xlsx: Feature importance of XGBoost models for each task;
compounds_data.zip: All data on compounds used in this study. These were prepared in CSV format.
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