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Abstract: Constructing a reliable and robust cobalt-based catalyst for hydrogen evolution via hy-
drolysis of sodium borohydride is appealing but challenging due to the deactivation caused by the
metal leaching and re-oxidization of metallic cobalt. A unique core–shell-structured coronavirus-like
Co@C microsphere was prepared via pyrolysis of Co-MOF. This special Co@C had a microporous
carbon coating to retain the reduced state of cobalt and resist the metal leaching. Furthermore,
several nano-bumps grown discretely on the surface afforded enriched active centers. Applied in
the pyrolysis of NaBH4, the Co@C-650, carbonized at 650 ◦C, exhibited the best activity and reliable
recyclability. This comparable performance is ascribed to the increased metallic active sites and
robust stability.
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1. Introduction

Hydrogen has particularly appealing merits overwhelming conventional fossil fuels,
such as zero carbon emission, high energy density, and being almost inexhaustible on
the Earth, which is recognized as one of the most fundamental future alternative energy
sources [1,2]. As it is sourced for fuel cell devices, hydrogen generation and storage have
been bottlenecks limiting its practical application and need to be resolved urgently [3]. Of
these numerous kinds of protocols for hydrogen generation and storage, hydrolysis of
sodium borohydride (NaBH4) to yield hydrogen with high purity has served as an efficient
route to commercial utilization [4]. The advanced attributes of high hydrogen content and
tunable hydrogen release property make it a promising strategy to realize the practical
application of hydrogen energy [5].

Assisted by the presence of catalysts, NaBH4 can liberate pure gaseous hydrogen
by the manner of hydrolysis at mild temperatures (<100 ◦C) [6,7]. Noble metals, such as
Pt [8], Pd [9], and Ru [10], exhibit excellent performance, yet their scarce reservation and
rising cost challenge their coming industrial applications. Alternatively, non-precious metal
catalysts, such as Ni [11,12] and Co [13,14], have been available to smooth this chemical
transformation. For example, metal borides are widely used for these transition-metal-
based catalysts such as cobalt or nickel borides [15–18]. Despite the high hydrogen yield,
those metal borides are subject to aggregation during the liquid-phase reaction, causing
the unfavorable issue of catalyst deactivation. A similar obstacle is also confronted by the
highly dispersed metal nanoparticles catalyst due to their high surface energy. A plausible
solution to address this problem is coating the active component with a porous carbon shell,
thus allowing better dispersion and resist-aggregating of these metal nanoparticles [19,20].
In addition, the carbon shell could resist well the alkaline medium, which is generally used
to impede the undesired spontaneous hydrolysis of NaBH4 [21,22].
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In the conventional carbon coating techniques, the organic molecules are mixed si-
multaneously with metal colloids or nanoparticles and transformed into a metal–organic
hybrid via hydrothermal treatment [23]. Subsequent pyrolysis gives rise to an amorphous
or graphitic carbon coating on the metal compounds [24]. Up until now, the usage of metal–
organic frameworks (MOFs) as the parent precursor to access metal-containing carbon
materials has been variously reported [25–28]. Compared with the conventional one, the
MOF-derived route can retain the morphology and structure of the parent MOF, allowing
facile regulation of the resulting compositions and structures, especially the porosity [29].
As many studies focused on applying various MOFs to acquire carbon-coating metal cat-
alysts with special morphology or micro-structure, the correlation between the structure
and resulting activity on these MOF-derived composites toward hydrolysis of NaBH4
remains elusive [30].

In this contribution, carbon-coating cobalt nanospheres with coronavirus-like mor-
phology were successfully synthesized by in situ pyrolysis of Co-MOF. The resulting core–
shell-structured Co@C nanospheres were evaluated for hydrolysis of NaBH4. Benefiting
from the advantages brought by the micro-porous carbon shell, resist-oxidized properties,
and unique structure of nano-bumps on the surface, the as-synthesized Co@C composite
exhibited high catalytic performance for hydrolysis of alkaline sodium borohydride.

2. Results and Discussion
2.1. Characterization of Co@C

Figure 1a shows the XRD pattern of the MOF-derived Co@C catalysts at different
carbonization temperatures. A weak broad peak located at approximately 2θ = 25◦ belongs
to the (002) plane of the graphite–carbon matrix, suggesting the co-presence of the carbon
with the Co@C composites. Three well-resolved peaks centered at 44, 52, and 75.8◦ of 2θ
observed for all the Co@C samples are assigned to (111), (200), and (220) crystal planes of
cubic cobalt, respectively. The (111) peak becomes more prominent as the pyrolysis temper-
ature is elevated. Using the Scherrer equation, we separately calculated the crystallite size
of the Co nanoparticles, which increases from 29 nm to 63 nm for the sample carbonized
from 550 to 750 ◦C.
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Figure 1. (a) XRD pattern of Co@C carbonized with various temperatures, (b) N2 adsorption/desorption
isotherms with pore size distribution (inset) of Co@C−650.

Nitrogen adsorption–desorption profiles in Figure 1b present the porous structure
of the Co@C−650 composites. It exhibits a type-I sorption profile with almost reversible
ads-desorption plots, suggesting the presence of micropores within the carbon matrix. The
corresponding pore size distribution plot (in Figure 1b) indicates narrowed micropores
centered at 0.7 nm for those Co@C−650. The other two samples resemble sorption profiles
as that of Co@C−650, which are not shown, for brevity. The specific surface areas, pore
sizes, and total pore volumes are summarized in Table 1.
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Table 1. Sample specifications of various Co@C catalysts.

Catalyst SBET
(m2/g)

Pore Volume
(cm3/g)

Pore Size
(nm)

Crystallite Size
a (nm)

Co@C−550 158 0.09 3.4 29
Co@C−650 156 0.08 3.1 46
Co@C−750 189 0.10 3.2 63

a Derived from XRD tests, was calculated using the Debye–Scherrer formula.

The SEM images of Co@C−650 (Figure 2a,b) display a microsphere morphology with
a narrowed size distribution of 1–1.4 µm. Interestingly, some discrete bumps are seen
on the surface of these spheres, rendering the Co@C−650 like a coronavirus. Such a
coronavirus-like morphology is rarely reported in the literature [31–34]. As illustrated by
the magnified image, these bumps are in a size range of 40–90 nm. Compared with the
Co-BTC microspheres that have smooth surfaces, these bumps seem to grow in situ from
the surface during carbonization. Nevertheless, these bumps decrease and disappear with
the increase in carbonization temperature (see Figure S1 of Supporting Information).
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Figure 2. (a,b) SEM images of Co@C−650. The corresponding particle size distribution plots for
(c) nano-bumps and (d) coronavirus-like microspheres.

HRTEM images are recorded to disclose the micro-morphology and composition of the
Co@C−650 composites. These nano-bumps are composed of small cobalt nanoparticles in
the range of 10–20 nm (Figure 3a,b). As shown in the selected enlarged region (Figure 3c,d),
these microspheres are encapsulated by a graphitic carbon, as indicated by some fringes.
The corresponding element mapping in Figure 3e–h verifies the co-presence of cobalt,
oxygen, and carbon. Comparing the selected region (indicated by a dotted circle), these
nano-bumps particles are carbon-coated cobalt nanoparticles. The presence of oxygen
indicates the easy-oxidizable properties of metallic cobalt surfaces.

XPS characterization was used to access the electronic state of the catalyst. The
Co 2p spectra were fitted by three core-level peaks located at 778.6, 781.3, and 785.0 eV
(Figure 4a), which were assigned to the metallic Co0, oxidized Coδ+, and satellite peak,
respectively [35]. The metallic cobalt species are likely oxidized; the presence of a carbon
shell can somewhat retain the metallic state. Accordingly, the presence of the O 1s peak is
related to the partial oxidation of the cobalt on the surface (Figure 4b). The spectra of C 1s
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were deconvoluted into three peaks at 284.8 eV (C-C), 285.6 eV (C-O), and 288.9 eV (C=O)
(Figure 4c), which can be attributed to the C-C bond of sp3-hybridized carbon atoms, C-O
derived from the adsorbed carbon contaminant (e.g., CO2), and C=O bond of the organic
residual [19,36], respectively.
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2.2. Catalytic Performance

Hydrolysis of NaBH4 was utilized to evaluate the catalytic activity of these cobalt
catalysts. To stabilize the NaBH4, an alkaline medium of 2 wt.% NaOH solution was
used, and the final results were calibrated by the blank test. As shown in Figure 5a, the
commercial cobalt nanoparticles (Co NPs, Macklin) show a comparable hydrogen evolution
rate as the Co@C−550, with some intermittent stagnation. This could be associated with
the blocking reaction sites on the Co NPs. These Co@C treated with various carbonization
temperatures show a rising, almost straight and smooth line, suggesting their relatively
stable hydrogen evolution rate. The Co@C−650 displays the fastest reaction rate, with
an HGR of 330 mL min−1 gcat

−1. We interestingly found that: (i) the Co@C−750 holds
the highest surface area but with the lowest activity; (ii) the Co@C-550 has the smallest
crystallite size yet with lower activity than the Co@C−650. Considering the resembling
microporosity, we assume that the enhanced activity observed on the Co@C−650 could
be ascribed to its exclusive nano-bumps distributed on the microsphere’s surface. These
nano-bumps could offer an increased surface area to adsorb these BH4− and OH− to form
M-BH4 and M-OH species, which are the most abundant reactive intermediates [37]. The
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hydrolysis mechanisms occurring on the cobalt surface remain elusive, necessitating much
exploration of the nature of kinetics, active centers identification, intermediate kinetics, etc.,
to unveil in the future.
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(d) recycle test for the optimized Co@C−650.

Figure 5b gives the hydrogen evolution as a function of time-on-stream over the
Co@C−650 recorded at different reaction temperatures. Expectedly, the Co@C−650 shows
an evident temperature dependence, in which the reaction rate rises accordingly with
the increasing temperature. We acquired the Arrhenius plot by plotting the lnk versus
1/T and obtained an apparent activation energy of 41.5 kJ/mol for the Co@C−650, as
shown in Figure 5c, which is low compared to those values obtained in several reports
by others [38–40].

Finally, the reusability of Co@C−650 was investigated, as is presented in Figure 5d.
After five cycles of the run, the HGR decreases by, ca., 10%. Activity decline is commonly
reported by scientists in their cobalt-based catalyst [41–43].Metal leaching of cobalt due
to erosion by the OH− has been recognized as the main cause of the deactivation of the
catalysts during the hydrolysis of NaBH4 [29]. The spent Co@C−650 was characterized by
XRD, nitrogen sorption, ICP, etc. (see Figure S2 of Supporting Information). The crystallite,
porosity, and nano-bumps morphology were well-retained, and negligible metal leaching
was detected. Hence, we speculate that the surface adsorption of the reactant immediate or
other unknown surface reconstruction may be responsible for this limited activity alteration.

3. Materials and Methods
3.1. Catalyst Preparation

All chemicals were purchased from Macklin, China, and used as received.
Synthesis of Co-MOF. According to our previously reported hybridization route [44],

the synthetic process for the Co-MOF was as follows: first, 0.34 g of cobalt nitrate hydrate
(Co(NO3)2·6H2O) and 0.34 g of 1, 3, 5-benzene tricarboxylic acid (BTC) were dissolved in
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20 mL of ethanol and stirred for 0.5 h. The mixed solution was subsequently transferred to
a 50 mL Teflon-lined autoclave and kept in the oven for 12 h at 150 ◦C, naturally cooled
down. Then, the purple product was washed with ethanol successively after filtration and
dried overnight at 60 ◦C.

Pyrolysis of Co-MOF to access Co@C catalyst. The as-prepared Co-MOF sample was
heated to 650 ◦C with a heating rate of 5 ◦C min−1, calcinated for 2 h under an Ar atmo-
sphere, and then cooled to ambient temperature. Tuning the carbonization temperature, we
prepared a series of Co@C and denoted it as Co@C−T, where T stands for the carbonization
temperature. Reference cobalt nanoparticles were purchased commercially from Macklin
Cop., Shanghai, China.

3.2. Structure Characterizations

X-ray diffraction (XRD) patterns were obtained with a D/Max-IIIA X-ray diffractome-
ter (Rigaku, Tokyo, Japan) using Cu Kα radiation. Scanning electron microscopy (SEM)
was performed using an S-4800 FESEM (Hitachi, Tokyo, Japan) to observe morphological
and structural analysis. Transmission electron microscopy (TEM) was carried out on a
JEM-2010 microscope (JEOL, Tokyo, Japan) using an accelerating voltage of 200 kV. N2
adsorption–desorption isotherms were measured with a Tristar 3010 isothermal nitrogen
sorption analyzer (Micromeritics, Norcross, GA, USA) using a continuous adsorption pro-
cedure. X-ray photoelectron spectroscopy (XPS) was performed with an AXIS Ultra DLD
(Kratos, Manchester, UK) to examine the catalysts’ electronic properties. All XPS spectra
were calibrated with the C 1s peak at a binding energy of 284.8 eV.

3.3. Catalyst Evaluation

The hydrolysis of NaBH4 was used to evaluate the catalytic activity of the catalysts.
Typically, the catalyst (10 mg) was ultrasonically dispersed in 5 mL of deionized water.
Then, the catalyst was quickly added with a mixture of NaOH aqueous solution (2 wt.%)
and NaBH4 (2 wt.%). The hydrolysis reaction was conducted at 303 K and stirring was
continued. The amount of hydrogen generated was determined by a water displacement
method. The hydrogen generation rates (HGRs) were reported as (mLH2 min−1 gcat

−1) [45]
and determined using the following equation:

Hydrogen generation rate
(

HGR, mL min−1 g−1
cat

)
=

V(mL)
t(min)× Wt.cat(g)

(1)

where V is the volume of water displaced by hydrogen gas in mL, t is the time in minutes,
and Wt. is the catalyst weight in grams.

4. Conclusions

Pyrolysis of Co-MOF generated in situ a unique core–shell-structured Co@C micro-
sphere with a special coronavirus-like morphology. Several nano-bumps grown discretely
on the surface offered an enhanced number of active sites for hydrolysis of NaBH4. The
microporous carbon coating can effectively resist the metal leaching and retain the reduced
cobalt state. The Co@C carbonized at 650 ◦C afforded the highest activity, with a limited
activity decline of 10% and low activation energy of 41.5 kJ/mol.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28031440/s1, Figure S1: SEM image of Co@C-750;
Figure S2: XRD pattern and nitrogen sorption with corresponding pore size distribution, and (c) TEM
image of the spent Co@C-650.
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