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Abstract: A family of tribenzocoronene derivatives bearing various substituents (3) were constructed
through the Diels–Alder reaction, followed by the Scholl oxidation, where the molecular structure
of 3b was determined via single crystal X-ray diffraction analysis. The effect of substitution on
the optical and electrochemical property was systematically investigated, with the assistance of
theoretical calculations. Moreover, the thin films of the resulting molecules 3b and 3e complexed
with fullerene produced strong photocurrent response upon irradiation of white light. In addition,
3b and 3e exhibit a positive nonlinear optical response resulting from the two-photon absorption and
excited state absorption processes.
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1. Introduction

The construction of structurally defined polycyclic aromatic hydrocarbons (PAHs)
has attracted substantial interest during the past several decades because such molecules
can be usually seen as a segmental model for defects of graphene possessing interesting
physical properties and can be used in organic electronics including laser, photodetectors,
organic light emitting diodes, organic field effect transistors and organic solar cells [1–4].
Among them, curved π-conjugated derivatives provide us with more room to deepen our
understanding of the anomalous hexagon arrays, which can be obtained through the im-
plementation of armchair, cove, fjord regions, and the embedment of four-, five- seven- and
eight-membered rings [5–8]. Undoubtedly, the edge and size can affect the optoelectronic
and magnetic properties to a great extent, leading to different aromaticity, energy levels
and band gaps. Meanwhile, if the heteroatoms or heterorings were doped into the parent
frameworks, the resulting heteroarenes exhibit some appealing behaviors such as ease of
synthesis, tailoring physical property and molecular stability [9–12]. More interestingly,
the introduction of some functional groups including electron-withdrawing groups and
electron-donating groups into the π-systems is a straightforward method for selective
modification and functionalization. As a highly symmetric (D6h) molecule, coronene is
the subject of considerable investigations owing to its tailoring optoelectronic properties.
The self-assembly of a single coronene can form regular nanowires used for optoelectronic
devices [13]. More strikingly, this “standard” six-membered ring-fused molecule cocrys-
tallizes with different acceptors, including 7,7,8,8-tetracyanoquinodimethane (TCNQ),
2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ), 1,2,4,5-tetracyanobenzene
(TCNB), napthalenetetracarboxylic diimide via a weak interaction [14–18]. In addition, the
functionalization of appropriate precursors can generate expanded coronene derivatives.
All the observations stimulate us to prepare novel arenes bearing a coronene unit and to
investigate the physical properties.
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The wide application of laser in optic devices provides great convenience in military
and civil aspects [19–21]. However, the big injury risk of laser asks researchers to acquire
excellent optical limiting materials to decrease the laser intensity in order to protect the eyes
and optical devices. At present, organic materials such as fullerene derivatives, phthalocya-
nine, graphene and metallated graphdiyne can compete with inorganic counterparts over
flexibility, machinability and quick response [22–25]. In comparison to gapless graphene,
coronene and its derivatives are well defined, as well as possessing a controllable physical
property and a high charge-carrier mobility. Hirata et al. found that β-estradiol doped
with deuterated coronene could present large reverse saturable absorption characteristics
with sunlight power level [26]. More recently, organic co-crystals based on coronene and
naphthalenediimide have exhibited an enhanced nonlinear optical response and charge
transfer with the increase in the intermolecular interaction in the group of Wang [27]. Until
now, the optical limiting property of such functionalized coronene derivatives has been
limited.

In this work, we strategically synthesized a family of substituted tribenzo[a,d,g]
coronene derivatives (3a–3e, Scheme 1). The molecular structure of 5,10-di-tert-butyl-
15-chlorotribenzo[a,d,g]coronene (3b) is determined through single crystal X-ray diffraction.
All of them emit green fluorescence. The complexes of 3b/3e-C60 produce a strong pho-
toresponse under irradiation of white light. Moreover, 3b and 3e exhibit nonlinear optical
performance and the possible mechanism is caused by the two-photon absorption and
excited state absorption processes. Clearly, systematic studies may be instructive to design
and approach coronene-containing derivatives.
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2. Results and Discussion

The synthesis of substituted tribenzo[a,d,g]coronenes is depicted in Scheme 1. The key
intermediate 2 was substituted with 2,7-di-tert-butyl-9,14-diphenyldibenzo[de,qr]tetracenes,
which was achieved in medium yield via the classical Diels–Alder reaction between black
solid 2,7-di-tert-butyl-9,11-diphenyl-10H-cyclopenta[e]pyren-10-one (1) and substituted
2-aminobenoic acid under the existence of isopentyl nitrate in degassed 1,2-dichlroethane.
It should be mentioned that molecules 3a and 3c were prepared according to the synthetic
route [28]. A Scholl reaction of 2 in anhydrous dichloromethane with the assistance of
triflic acid (TfOH) and 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ) provided 3a–3d.
Treatment of 3c with CuCN in 1-methyl-2-pyrrolidinone (NMP) generated 5,10-di-tert-
butyltribenzo[a,d,g]coronene-15-carbonitrile (3e) in an isolated 24% yield. All the new
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compounds were purified by silica gel column chromatography and characterized through
1H NMR, 13C NMR and HR-MS (Figures S1–S18). More importantly, such resultant deriva-
tives bearing various substituents should provide more room for their selective modification
and functionalization.

To further prove the molecular structures and examine the arrangement in the solid
state, flake-like single crystals of 3b were obtained by slow evaporation of 1,2-dichloroethane
(DCE) and acetonitrile solution. It should be noted that no crystals suitable for single crys-
tal X-ray analysis of 3a, 3c, 3d and 3e were formed under a similar operation condition.
Molecule 3b adopts monoclinic space group C2/c with Z = 8. The unit cell dimensions
are a = 26.684(3) Å, b = 13.5714(13) Å, c = 19.003(2) Å, β = 100.02(4)o (Table S1). As can be
seen from Figure 1a, all the benzene rings are not in one plane, which is different from the
parent coronene unit [29]. More interestingly, the benzo moieties on the pyrene and the
terminal chlorobenzene unit in the horizontal tetracene part bend to the same side, and
thus 3b can form a reclining-chair configuration (Figure 1b). Similar architectures were
observed in the twistarenes observed in our group [30]. Molecule 3b can stack in column
style, where the distance between the naphthalene in the pyrene unit is 3.63 Å (Figure 1c),
which implies that π-π stacking interaction is absent [31].
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The optical properties were manifested via UV-visible absorption and fluorescence
spectra in a solution. As shown in Figure 2a, 3a bearing a weak electron-donating methoxyl
group presents a broad absorption band centered at 451 nm in the low-energy region and
381/362/331/312 nm in the high energy region. In comparison, the other four compounds
3b–3e display similar absorption profiles, while 3e possesses a bathochromic shift absorp-
tion peak probably owing to the increase in the π-conjugation length with the introduction
of cyano unit [32–34]. Compound 3a exhibits a broad emission peak at 506 nm and the
emission maxima and contours of the other four compounds 3b–3e are almost the same
(Figure 2b,d). The quantum yields are calculated to be 1.7% for 3a, 1.9% for 3b, 0.51%
for 3c, 0.27% for 3d, 5.2% for 3e, respectively, by using 9,10-diphenylanthracene as a stan-
dard [28]. The fluorescence lifetimes (τs) were recorded to be 8.40 ns for 3a, 16.22 ns for
3b, 31.32/5.06 ns for 3c, 2.09/14.29 ns for 3d and 12.50 ns for 3e, respectively, by using a
time-resolved fluorescence way (Figure S19). Clearly, molecules 3c and 3d display two
lifetimes compared with the other three homologues. The low quantum yield of the 3d
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containing iodine atom and the diexponential decay process of 3c and 3d should be ascribed
to the heavy atom effect.
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The electrochemical properties of the functionalized coronene derivatives were ex-
amined through cyclic voltammetry in anhydrous and degassed dichloromethane. As
shown in Figure 2c, all of them exhibit one reversible oxidative wave with the potentials
of 0.66 V for 3a, 0.61 V for 3b, 0.59 V for 3c, 0.60 for 3d and 0.72 V for 3e, respectively,
against ferrocene (Fc+/Fc), whereas no reduction waves could be monitored within the
accessible scanning range in the dichloromethane. Accordingly, the HOMO energy levels
are calculated to be −5.46 eV for 3a, −5.41 eV for 3b, −5.39 eV for 3c, −5.40 eV for 3d,
−5.52 eV for 3e on the basis of the first oxidation potentials. Molecular orbital calculations
based on the B3lyp/def2SVP indicate that the HOMOs of all the compounds are spread
over substituted tribenzo[a,d,g]coronene moiety and LUMOs are located on the substituted
dibenzo[fg,ij]naphtho [1,2,3,4-rst]pentaphene unit (Figure 3 and Table S2) [35–38]. Such
observations suggest that the substituents do contribute to the orbitals to a lesser extent.

To examine the photoconductor properties, compounds 3b and 3e mixed with C60
were used as active layers to fabricate photodetector devices. As observed in Figure 4a,c, the
blended systems of 3b-C60 and 3e-C60 were subjected to white light at varying illumination
intensities, with the photocurrent increasing correspondingly. The maxima data of 0.031 µA
for 3b-C60 and 0.167 µA for 3e-C60 at 200 mW/cm2 were generated when the mixture
films were switched on and off. It should be stressed that no photocurrent was found
that was white-light illumination-free. Such phenomena may be caused by the photo-
induced charge transfer in the donor and acceptor systems. Meanwhile, film 3e-C60
exhibited a higher photocurrent than film 3b-C60, being close to the fluorescence spectra.
In addition, the photoresponses to ON/OFF cycles were prompt, stable and reducible
for both of them (Figure 4b,d). Such features of the tribenzocoronene derivatives endow
an opportunity for them to be regarded as fascinating ingredients for a photo-controlled
switch and photodetectors.
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To expand the applications of such materials, the nonlinear optical properties of 3b
and 3e were further studied through open aperture Z-scan technology under the Nd: YAG-
based 532 nm wavelength nanosecond pulse laser irradiation [39]. Both of them present
reverse saturation absorption (RSA) and the curves show symmetric peaks on both sides
near the laser focus (Figure 5a,c). The nonlinear absorption coefficients (βeff) of 3b and 3e
fluctuate with the energy density at the focal point, indicating that the ESA effect plays a
major role in the RSA signal (Table S3) [40]. The minimum normalized transmittance (Tmin)
decreases gradually with the increase in incident energy. Tmin of 3b at 20.7 µJ, 40.6 µJ and
60.5 µJ are 90%, 78% and 67%, respectively. Tmin of 3e at 20.7 µJ, 40.6 µJ and 60.5 µJ are
76%, 67% and 59%, respectively. The onset optical limiting threshold (Fon, the incident
laser intensity when the normalized transmittance drops to 95%) of 3b are 1.7 J cm−2,
0.845 J cm−2 and 0.137 J cm−2 under 20.7 µJ, 40.6 µJ and 60.5 µJ irradiation, respectively.
The Fon of 3e are 0.272 J cm−2, 0.146 J cm−2 and 0.215 J cm−2 under 20.7 µJ, 40.6 µJ and
60.5 µJ irradiation, respectively.
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The possible mechanism of nonlinear optical processes is examined by measuring
the nanosecond transient absorption spectroscopy. As shown in Figure 6, the timescale
corresponding to the spectral change is approximately 50–1550 ns, which should be at-
tributed to the effect of the triple excited state [41]. The peak position of the two compounds
changed little with the delay time, indicating that the excited state absorption was gener-
ated in the same excited state, and no other processes occurred during the excited state
absorption [42–44]. Both of them show similar spectral shapes, displaying wide excited
state absorption bands after 440 nm and an isolated excited state absorption peak at 400 nm.
There is also an isolated excited absorption peak of 3b at 330 nm, but the excited absorption
peak of 3e is suppressed at this position, which scarcely shows a positive signal. The atten-
uation curves of 3b and 3e at the absorption peak of 480 nm are shown in Figure S20, and
the attenuation lives of their triple excited states for 3d and 3e were 334.4 ns and 263.2 ns,
respectively. On the whole, there was little difference between the two compounds, even
though the excited state absorption peak of 3e at 480 nm is slightly stronger than that of 3b.
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However, according to the Z-scan test results, 3e has a lower Tmin value than 3b,
which may be related to the different excitation pathways of the two compounds. Generally,
molecular excitation is believed to result from the absorption of the band gap and the
absorption of the defect level near the band gap for ns laser pulse irradiation. The UV-
visible absorption spectra show that the ground state absorption (GSA) of 3b and 3e at
the wavelength of 532 nm is relatively weak (Figure 2a), which is not conducive to the
generation of excited molecules. In this case, the GSA of 3e at 532 nm is slightly stronger
than that of 3b, which is beneficial to generating more excited molecules under laser
irradiation, and may lead to a stronger RSA signal. In addition, the TPA excitation pathway
of excited molecules cannot be excluded. The two-photon fluorescence (TPF) spectra at
the excitation wavelength of 800 nm were tested and the logarithmic power-dependent
TPF intensity curve displayed the linear-fitted slopes of 2.01 and 2.04 (Figure S21), which
indicated that the TPF intensity exhibited a quadratic curve relationship with the excitation
power, proving the existence of TPA [45]. Therefore, we reasonably speculate that the
nonlinear absorption signals of 3b and 3e should be caused by TPA/GSA and ESA.

3. Materials and Methods
1H NMR and 13C NMR spectra were measured on a WNMR 400 spectrometer at

400 MHz for 1H and 100 MHz for 13C without any internal standard. The chemical shifts
are labelled in ppm with δ of CDCl3 (7.26 ppm in 1H NMR and 77.16 in 13C NMR). MALDI-
TOF mass spectra were performed on a Bruker Biflex III MALDI-TOF. UV-visible absorption
and fluorescence spectra were carried out by using a 10 mm quartz cell on an Analytic Jena
SPECORD 210 PLUS and Hitachi F-7000 spectrometers, respectively. Cyclic voltammetry
investigations were performed on a CHI 630A electrochemical analyzer using a standard
three-electrode cell containing a Pt working electrode, a Pt wire counter electrode and
an Ag/AgNO3 reference electrode under a nitrogen atmosphere. Tetrabutylammonium
hexafluorophosphate solution (0.1 M, anhydrous dichloromethane) was used as an elec-
trolyte. The scan rate was 0.1 V s−1 and the redox potentials were labelled against the
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Fc+/Fc couple (a standard). The photoswitching behaviors were performed through an
electrochemical workstation (Modulab XM, Solartron Analytical, UK) and the voltage was
0.5 V.

3.1. Synthesis of 3a

TfOH (0.3 mL) was slowly dropped into a mixture of compound 2a (30 mg, 0.04 mmol)
and DDQ (39 mg, 0.17 mmol) in anhydrous dichloromethane (15 mL) at −30 ◦C under an
argon atmosphere. After 7 min, methanol was added to quench the reaction. The mixture
solution was partitioned between Na2CO3 solution/brine and methylene chloride. The
organic layer was dried over Na2SO4 and evaporated in vacuo. The crude product was
purified over silica gel column chromatography with petroleum ether (PE) as an eluent
to produce a yellow solid (3a, 10 mg, 40%). 1H NMR (400 MHz, 298 K, CDCl3): δ = 9.41
(s, 1H), 8.77 (d, J = 7.6 Hz, 1H), 8.56 (s, 1H), 8.30 (d, J = 8.8 Hz, 1H), 8.21–8.17 (m, 2H),
8.11–8.04 (m, 3H), 7.96 (d, J = 7.2 Hz, 1H), 7.40–7.34 (m, 3H), 7.24 (d, J = 7.6 Hz, 2H), 4.06 (s,
3H), 1.75 (s, 9H), 1.59 (s, 9H). 13C NMR (100 MHz, 298 K, CDCl3): δ = 157.0, 147.4, 145.4,
140.5, 139.4, 132.5, 131.7, 131.3, 131.1, 130.0, 129.70, 129.67, 129.38, 129.35, 129.2, 128.8, 128.0,
127.96, 127.7, 127.1, 126.9, 126.0, 125.9, 124.6, 124.1, 124.0, 123.9, 123.6, 121.00, 120.98, 120.4,
117.1, 108.4, 55.9, 38.4, 35.8, 35.1, 31.9. HR–MS (MALDI–TOF): Calc. for C45H36O: [m/z]
592.2766, found: [m/z] 592.2756.

3.2. Synthesis of 2b

A mixture of 1 (510 mg, 0.98 mmol), 2-amino-3-chlorobenzoic acid (204 mg, 1.19 mmol),
isoamyl nitrate (0.2 mL) was stirred in anhydrous tetrachloroethane (TCE, 15 mL) at 150 ◦C
under argon. After 24 h, the TCE was removed at a reduced pressure. The mixture was
then partitioned between brine and methylene chloride. The organic layer was dried over
Na2SO4 and evaporated in vacuo. The crude product was purified over silica gel column
chromatography with PE as an eluent to give a light green solid (2b, 235 mg, 40%). 1H
NMR (400 MHz, 298 K, CDCl3): δ = 7.94 (dd, J = 6.0 Hz, 2.0 Hz, 2H), 7.84 (s, 3H), 7.83
(d, J = 1.6 Hz, 1H), 7.74 (dd, J = 8.4 Hz, 1.2 Hz, 1H), 7.57–7.43 (m, 11H), 7.30 (q, J =7.2 Hz,
1.2 Hz, 1H), 1.10 (s, 18 H). 13C NMR (100 MHz, 298 K, CDCl3): δ = 147.6, 147.1, 142.6,
142.1, 135.7, 135.0, 134.3, 133.1, 132.9, 131.8, 130.5, 130.4, 130.34, 130.27, 129.98, 129.5, 129.32,
129.26, 128.2, 127.9, 127.5, 127.2, 126.9, 126.2, 125.2, 124.4, 123.9, 122.7, 122.5, 34.9, 34.8, 31.5.
HR–MS (MALDI–TOF): Calc. for C44H37Cl: [m/z] 600.2584, found: [m/z] 600.2574.

3.3. Synthesis of 3b

TfOH (0.3 mL) was slowly dropped into a mixture of compound 2b (20 mg, 0.03 mmol)
and DDQ (22 mg, 0.1 mmol) in anhydrous dichloromethane (15 mL) at −30 ◦C under an
argon atmosphere. After 5 min, methanol was added to quench the reaction. The mixture
solution was partitioned between Na2CO3 solution and methylene chloride. The organic
layer was dried over Na2SO4 and evaporated in vacuo. The crude product was purified
over silica gel column chromatography with PE as an eluent to produce a yellow solid (3b,
13 mg, 66%). 1H NMR (400 MHz, 298 K, CDCl3): δ = 9.33 (d, J = 8.0 Hz, 1H), 8.96 (d, J = 1H),
8.86 (d, J = 7.6 Hz, 2H), 8.66 (d, J = 8.0 Hz, 1H), 8.57 (d, J = 8.4 Hz, 1H), 8.40 (q, J = 8.8 Hz,
2H), 8.32 (d, J = 8.0 Hz, 1H), 7.90 (d, J = 7.2 Hz, 1H), 7.83 (t, J = 7.6 Hz, 1H), 7.65 (t, J = 7.6 Hz,
1H), 7.58–7.51 (m, 2H), 7.44 (t, J = 7.2 Hz, 1H), 1.86 (s, 9H), 1.82 (s, 9H). 13C NMR (100 MHz,
298 K, CDCl3): δ = 146.0, 145.6, 132.9, 132.7, 132.0, 131.8, 130.8, 130.7, 129.8, 129.6, 129.3,
129.14, 129.07, 129.0, 128.8, 128.2, 127.7, 127.4, 127.1, 126.7, 126.6, 126.3, 125.9, 125.5, 124.8,
123.5, 123.2, 122.8, 122.7, 122.5, 120.8, 38.7, 38.6, 35.2, 35.1. HR–MS (MALDI–TOF): Calc. for
C44H33Cl: [m/z] 596.2271, found: [m/z] 596.2263.

3.4. Synthesis of 2d

A mixture of 1 (1.5 g, 2.89 mmol), 2-amino-3-iodobenzoic acid (913 mg, 3.47 mmol),
isoamyl nitrate (1.0 mL) was stirred in anhydrous tetrachloroethane (TCE, 15 mL) at 150 ◦C
under argon. After 24 h, TCE was removed at a reduced pressure. The mixture was then
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partitioned between brine and methylene chloride. The organic layer was dried over
Na2SO4 and evaporated in vacuo. The crude product was purified over silica gel column
chromatography with PE as an eluent to produce a light green solid (2d, 1.13 g, 56%). 1H
NMR (400 MHz, 298 K, CDCl3): δ = 8.19 (dd, J = 7.2 Hz, 1.2 Hz, 1H), 7.91 (d, J = 2.0 Hz, 1H),
7.84 (s, 4H), 7.83 (d, J = 2.0 Hz, 1H), 7.77 (dd, J = 8.8 Hz, 1.2 Hz, 1H), 7.56–7.43 (m, 10H),
7.01 (q, J = 7.2 Hz, 1H), 1.11 (s, 9H), 1.10 (s, 9H). 13C NMR (100 MHz, 298 K, CDCl3): δ =
147.6, 147.0, 141.8, 141.6, 140.5, 136.5, 135.3, 135.2, 134.1, 133.1, 132.6, 130.4, 130.0, 129.8,
129.3, 128.6, 128.0, 127.9, 127.5, 127.4, 127.1, 126.9, 125.9, 124.4, 123.9, 122.7, 122.5, 91.9, 34.9,
34.8, 31.5. HR–MS (MALDI–TOF): Calc. for C44H37I: [m/z] 692.1940, found: [m/z] 692.1934.

3.5. Synthesis of 3d

TfOH (0.3 mL) was slowly dropped into a mixture of compound 2b (20 mg, 0.03 mmol)
and DDQ (20 mg, 0.09mmol) in anhydrous dichloromethane (15 mL) at −30 ◦C under
an argon atmosphere. After 5 min, methanol was added to quench the reaction. The
mixture solution was partitioned between Na2CO3 solution/brine and methylene chloride.
The organic layer was dried over Na2SO4 and evaporated in vacuo. The crude product
was purified over silica gel column chromatography with PE as an eluent to produce
a light yellow solid (3d, 18 mg, 90%). 1H NMR (400 MHz, 298 K, CDCl3): δ = 9.43 (d,
J = 8.0 Hz, 1H), 8.96 (d, J = 8.4 Hz, 1H), 8.86 (d, J = 6.8 Hz, 2H), 8.67 (d, J = 8.0 Hz, 1H),
8.58 (d, J = 8.0 Hz, 1H), 8.46–8.37 (m, 4H), 7.66 (t, J = 7.6 Hz, 1H), 7.60–7.52 (m, 3H), 7.48
(d, J = 8.0 Hz, 1H), 1.86 (s, 9H), 1.82 (s, 9H). 13C NMR (100 MHz, 298 K, CDCl3): δ = 146.1,
145.7, 140.7, 132.7, 132.1, 132.0, 130.4, 130.3, 130.0, 129.22, 129.20, 129.1, 129.0, 128.8, 127.2,
127.1, 126.7, 126.3, 125.0, 123.5, 123.2, 123.1, 122.7, 122.6, 120.83, 120.79, 97.5, 38.7, 38.6, 35.2,
35.1. HR–MS (MALDI–TOF): Calc. for C44H33I: [m/z] 688.1627, found: [m/z] 688.1619.

3.6. Synthesis of 3e

A mixture of 3c (100 mg, 0.16 mmol) and CuCN (28 mg, 0.31 mmol) was stirred
in anhydrous NMP (6 mL) at 180 ◦C under argon. After 3 d, ammonium ferrous sulfate
solution was added when the mixture solution was cooled to 60 ◦C for 2 h. The solution was
then cooled down to room temperature and was partitioned between brine and methylene
chloride. The organic layer was dried over Na2SO4 and evaporated in vacuo. The crude
product was purified over silica gel column chromatography with PE and dichloromethane
(v/v, 8:1) as an eluent to produce a light yellow solid (3e, 22 mg, 24%). 1H NMR (400 MHz,
298 K, CDCl3): δ = 9.61 (d, J = 8.0 Hz, 1H), 8.91–8.87 (m, 3H), 8.70 (d, J = 8.0 Hz, 1H), 8.63
(dd, J = 10.8 Hz, 8.4 Hz, 2H), 8.45 (dd, J = 11.2 Hz, 8.4 Hz, 2H), 8.27 (d, J = 6.8 Hz, 1H), 7.95
(t, J = 8.0 Hz, 1H), 7.68 (t, J = 8.0 Hz, 2H), 7.56 (q, J = 8.0 Hz, 2H), 1.85 (s, 9H), 1.82 (s, 9H).
13C NMR (100 MHz, 298 K, CDCl3): δ = 146.3, 145.8, 134.1, 133.9, 132.9, 132.24, 132.03, 130.7,
129.8, 129.7, 129.23, 129.17, 128.94, 128.93, 128.6, 128.54, 128.47, 127.6, 127.4, 127.2, 126.9,
126.6, 125.7, 125.6, 125.1, 124.7, 123.7, 123.5, 123.3, 123.2, 122.9, 122.7, 120.9, 120.8, 120.3,
111.4, 38.8, 35.2, 35.1. HR–MS (MALDI–TOF): Calc. for C45H33N: [m/z] 587.2613, found:
[m/z] 587.2602.

4. Conclusions

In summary, we have designed and synthesized five novel coronene-containing π-
systems bearing different substituents. Such an investigation highlights a significant effect
of the substituents on the absorption, emission and redox properties of 3a–3e. Molecule
3d has the lowest quantum yield owing to the strong heavy atom effect of iodine. The
photocurrent response of 3e-C60 is superior to that of 3b-C60, which is assigned to the
higher quantum yield of 3e, leading to a highly efficient photo-induced charge transfer in
the donor and acceptor system. The expanded applications suggest that the synthesized
compounds 3b and 3e have a positive optical limiting performance resulting from GSA and
ESA phenomena. Further examination of the post-functionalization of such key building
blocks for approaching large curved PAHs with attractive optoelectronic properties are
currently being undertaken in our laboratory.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28031419/s1, NMR spectra and HR–MS spectra; crystal
data of 3b; Fluorescence decay for 3; βeff data for 3b and 3e; TPF intensity and the linear fitting of
power-dependent TPF intensity in logarithmic coordinates of 3b and 3e. Figure S1: 1H NMR spectrum
of 3a; Figure S2: 13C NMR spectrum of 3a; Figure S3: HR–MS spectrum of 3a; Figure S4: 1H NMR
spectrum of 2b; Figure S5: 13C NMR spectrum of 2b; Figure S6: HR–MS spectrum of 2b; Figure S7:
1H NMR spectrum of 3b; Figure S8: 13C NMR spectrum of 3b; Figure S9: HR–MS spectrum of
3b; Figure S10: 1H NMR spectrum of 2d; Figure S11: 13C NMR spectrum of 2d; Figure S12: HR–
MS spectrum of 2d; Figure S13: 1H NMR spectrum of 3d; Figure S14: 13C NMR spectrum of 3d;
Figure S15: HR–MS spectrum of 3d; Figure S16: 1H NMR spectrum of 3e; Figure S17: 13C NMR
spectrum of 3e; Figure S18: HR–MS spectrum of 3e; Figure S19: Fluorescence decay of (a) 3a, (b) 3b,
(c) 3c, (d) 3d, (e) 3e in degassed dichloromethane; Figure S20: Decay trace of 3b (a) and 3e (b) at
480 nm; Figure S21: TPF intensity of 3b (a) and 3e (c). The linear fitting of power-dependent TPF
intensity in logarithmic coordinates (b) and (d). The excitation wavelength is 800 nm; Table S1:
Crystal data and structure refinement for 3b; Table S2: Cartesian coordinates of optimized 3a–3e;
Table S3: βeff fitting results of (a) 3b and (b) 3e.
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