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Abstract: Catalyst-free multicomponent reactions of mixed alkylzinc reagents with Michael acceptors
and aldehydes, ketones or activated imines are described. Primary, secondary and tertiary alkylzinc
reagents, pre-generated in acetonitrile from the corresponding iodoalkanes, were used in the process,
leading to the very efficient formation of a variety of 3-hydroxycarbonyl compounds. The imines
showed more contrasting results, due to the direct addition of the organozinc compound to the C=N
bond. Mechanistic assays involving TEMPO account for a polar instead of a radical character of
the reaction.

Keywords: organozinc compounds; multicomponent reaction; uncatalyzed reaction; acrylates;
mi-electrophiles

1. Introduction

The synthesis of 3-hydroxy or 3-aminocarbonyl compounds has been the subject of a
sustained development in recent decades [1-4]. These compounds indeed represent reliable
building blocks due to the dense presence of functions and substituents at vicinal positions
of the scaffold. Typical reaction conditions for their synthesis imply conjugate addition of an
organometallic species to a Michael acceptor followed by the coupling of the resulting met-
alated species with a carbonyl compound [5-12] or an imine [13-15]. However, although
transition metal-catalyzed reactions represent common features in the area, some related
examples of uncatalyzed radical reactions mediated by dialkylzinc reagents have proved
to constitute interesting routes to multi-substituted lactones or oxazolidinones [16,17]. In
this context, multicomponent syntheses [18-22] of 3-hydroxy or -aminocarbonyl com-
pounds are of current interest [23-37]. Indeed, as they avoid sequential addition of reagents,
they enable notable experimental simplification and, therefore, represent a very relevant
alternative to more classical sequenced conjugate addition/aldol or Mannich coupling
sequenced domino reactions. However, while most works describe the copper-catalyzed
reactions of dialkylzinc species with Michael acceptors and electrophiles, catalyst-free reac-
tions of aliphatic mixed organozinc reagents have been scarcely documented [38]. These
compounds are, however, characterized by their important functional tolerance, thereby
representing very relevant synthetic intermediates [39,40]. In a pioneering work, Shono de-
scribed the uncatalyzed zinc-promoted multicomponent assembly of alkyl iodides, Michael
acceptors and carbonyl compounds [41]. However, only a limited number of examples were
described, and the use of imines as potential electrophiles was not mentioned. Moreover,
the polar or radical character of the mechanism was not discussed, likely due to the only
transient in situ formation of organometallic (“anionic”) species under these Barbier-like
conditions. Therefore, a comprehensive work on the subject remains desirable.

In preceding works, we reported the synthesis of 3-hydroxy- and 3-aminocarbonyl
derivatives from aryl bromides, acrylates and carbonyl compounds or imines through
cobalt-catalyzed multicomponent reactions [42—44]. In this contribution, we show that
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pre-generated mixed aliphatic organozinc reagents allow the high-yielding preparation
of B-hydroxy- and f-aminocarbonyl compounds through catalyst-free formal conjugate
addition/aldol or Mannich multicomponent reactions.

2. Results and Discussion

We began our study with the optimization of the three-component coupling between
organozinc 1c, chosen for its important reactivity, methyl acrylate (2a) and benzaldehyde
(3a) (Table 1).

Table 1. Optimization of the reaction parameters 2.

. o
(0] (0] OH
~ H Conditions
Znl 4+ O ‘ + —> 0
\r1c 2a 3a MeCN, 16h
4caa

Entry T (°C) Additive 1c Equiv 2a Equiv Yield (%) d.r
1 20 - 15 2 16% 6:04
2 20 CoBry.bpy; 0.1 eq 15 2 25%
3 20 TMSCl 1 eq 15 2 6% 9:01
4 80 - 15 2 16% 4:01
5 20 - 15 4 18% 8:02
6 20 - 3 2 68% 8:02
7 20 - 3 1 99% 9:01
8 —-10 - 3 1 27% 6:04
9 20 Cul 3 1 81% 8:02

2 Yields of isolated products. Diastereoisomeric ratios (d.r.) were determined using 'H NMR. Reaction conditions:
the aldehyde (1 equiv), the Michael acceptor and the organozinc compound were stirred in MeCN for 16 h.

A first attempt with comparable amounts of the organozinc reagent 1c and the acrylate
2a quickly indicated that the uncatalyzed three-component coupling was possible in MeCN
(Entry 1). The addition of 0.1 equiv CoBr; and 0.2 equiv 2,2"-bipyridine (bpy) allowed a
slight improvement of the reaction yield (Entry 2), but did not provide as satisfactory results
as those obtained in similar couplings with arylzinc reagents (for which the presence of
cobalt was mandatory) [43,44]. Unfortunately, the addition of TMSC1 did not improve the
result of the coupling (Entry 3). Similarly, raising the reaction temperature from rt to 80 °C
(Entry 4) or increasing the acrylate amount to 4 equiv (Entry 5) provided comparable and
deceiving results. However, a significant improvement of the reaction yield was observed
when the organozinc 1c was used in a higher amount than the acrylate 2a (Entry 6). This
observation was confirmed by using 3 equiv of the organozinc compound and 1 equiv
of the acrylate (Entry 7). Indeed, in this case, a quantitative yield of the multicomponent
coupling product 4caa was obtained after 16 h stirring at ambient temperature. The effect
of a temperature decrease was assessed by operating at —10 °C (Entry 8). However, very
deceiving results were observed, with a significant drop in the reaction yield in conjunction
with a decreased diastereoisomeric ratio. Finally, we assessed the effect of copper salts in
the multicomponent reaction (Entry 9). In this case, a very good yield was still obtained,
but the diastereoselectivity of the reaction was less interesting.

These promising results prompted us to pursue a global study in which the reactivity
of mixed alkylzinc reagents would be assessed in three-component couplings with Michael
acceptors and electrophiles, chosen from the pool of reagents selected for this purpose
(Figure 1).
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Figure 1. Classes of compounds used in the multicomponent reaction. Ts = toluenesulfonyl,
TPs = 2-thiophenesulfonyl.

The reaction was first extended to a range of organozinc reagents 1, readily prepared
in acetonitrile from the corresponding alkyl iodides using a procedure already described in
a recent paper from our group [45] (Scheme 1).

(@]
o O OH
H
R-Znl + \OH + — > 0
1 2a 3 MeCN, rt, 16h R

a
4

O  OH O OH O OH

4baa (82%, d.r. = 1.5:1)

4aaa (73%, d.r. = 2.8:1)
(60%>" from 1a")

4caa (99%, d.r. = 9:1)

O OH
\0;5/K©

4faa (79%, d.r. = 1.1:1)

0 OH o OH
4daa (93%, d.r. =6.1:1) 4eaa (75%, d.r. =7.3:1)
Scheme 1. Scope of mixed alkylzinc reagents ®. @ Yields of isolated products. Diastereoisomeric
ratios (d.r.) were determined using 'H NMR or GC. Reaction conditions: the aldehyde, the Michael

acceptor (1 equiv) and the organozinc compound (3 equiv) were stirred in MeCN for 16 h at ambient
temperature. ® Average GC yield over three attempts.

All the organozinc compounds gave good to excellent results, with the coupling
products being obtained in 73-99% yield. The primary organozinc reagents 1la and 1b,
obtained from the corresponding iodides, gave good results (73% and 82%, products 4aaa
and 4baa). It can be noted that 1a’, the brominated counterpart of 1a, could be prepared
in THF from the corresponding bromide in the presence of LiCl [46] and proved reactive
in the three-component coupling, but only after the addition of acetonitrile. However, in
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this case, very variable yields were obtained for 4aaa (30 to 99% GC yield, 60% average
over three attempts). The reactivity of secondary organozinc compounds proved to be very
convincing, with yields of the coupling products ranging from 75% (organozinc 1e) to 99%
(organozinc 1c). Finally, we were pleased to notice that a tertiary organozinc compound, 1f,
was also usable in the coupling to furnish product 4faa in very good yield (79%).

Given the results presented above, isopropylzinc iodide (1c) was used as the model
organozinc compound for the rest of the study. Next, a range of Michael acceptors was
assessed in the process (Scheme 2).

o] OH
Znl EWG EWG
— + w . HJK@ —
‘ MeCN, rt, 16h
1c 2 3a 4

OH O OH O OH

o o T

4caa (99%, d.r. =9:1) 4cba (99%, d.r. = 5.3:1) 4cca (99%, d.r. = 2.1:1)

%o 2t

4cda (99%, d.r. =2.3:1) 4cea (99%, d.r. = 1.1:1) no product

O OH OH

o 5

4cga (99%, d.r. >19:1) 4cha (99%, d.r. = 1.3:1)

Scheme 2. Scope of Michael acceptors ?. ? Yields of isolated products. Diastereoisomeric ratios
(d.r) were determined using TH NMR or GC. Reaction conditions: the aldehyde, the Michael
acceptor (1 equiv) and the organozinc compound (3 equiv) were stirred in MeCN for 16 h at
ambient temperature.

All standard acrylates 2a—e worked very well in the three-component reaction, fur-
nishing the corresponding coupling products in quantitative yield and confirming the
predictable limited effect of the ester group on the reaction outcome. Unfortunately, ethyl
methacrylate (2f) did not undergo the reaction. However, N,N-dimethylacrylamide (2g)
gave very significant results, both in terms of diastereoselectivity (d.r. > 19:1) and yield
(99%, product 4cga). Finally, acrylonitrile (2i) worked very well and furnished the coupling
product 4cia in almost quantitative yield (99%), albeit with very limited diastereoselectivity.

The reactivity of aldehydes was then evaluated in the three-component coupling
(Scheme 3).

Aromatic aldehydes 3a—e worked very well in the coupling. Even an ortho-substituted
benzaldehyde 3¢ gave the corresponding coupling product 4cec in high yield (93%). The
reaction could be efficiently extended to heteroaromatic aldehydes such as 3- (3f) or 2-
thiophenecarboxaldehyde (3g), furnishing the coupling products 4caf and 4cag in moderate
to high yield. Finally, aliphatic aldehydes 3h—j were also very efficient in the multicompo-
nent reaction and gave rise to the formation of the products 4ceh, 4cai and 4caj in good
to excellent yields (80-99%). It can be noted that a more original attempt using ethyl
glyoxylate 3k led to the corresponding coupling product 4cak in good yield (69%).

Next, reactions employing ketones were examined (Scheme 4).
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R®  MeCN, rt, 16h
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O OH O OH
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N~ S

4ced (99%, d.r. = 1.8:1) 4cae (76%, d.r. = 2.4,1) 4caf (94%, d.r. =4.9:1)

4cag (45%, dr. =4.3:1)  4ceh (99%, d.r. = 1:1) 4cai (80%, d.r. =2.2:1)

4caj (90%, d.r. = 1.4:1.4:1.4:1) 4cak (69%, d.r. =1.5:1)

Scheme 3. Scope of aldehydes 2. ? Yields of isolated products. Diastereoisomeric ratios (d.r.) were
determined using TH NMR or GC. Reaction conditions: the aldehyde, the Michael acceptor (1 equiv)
and the organozinc compound (3 equiv) were stirred in MeCN for 16 h at ambient temperature.

O OH

(o]

Znl 0 ~ R’

+ O + L o R?

\ R "R2
MeCN, rt, 16h
1c 2a 5 6
O OH (o] OH
\m \% w
6caa (74%, d.r. = 1.6:1) 6cab (99%, d.r. = 1.4:1) 6cac (59%)
O OH
6cad (99%, d.r. =3.8:1) 6cae (99%) 6caf (48%)

Scheme 4. Scope of ketones 2. @ Yields of isolated products. Diastereoisomeric ratios (d.r.) were
determined using 'H NMR or GC. Reaction conditions: the ketone, the Michael acceptor (1 equiv)
and the organozinc compound (3 equiv) were stirred in MeCN for 16 h at ambient temperature.

Ketones proved usable in the three-component coupling but provided contrasting
results. Indeed, while aromatic ketones gave rather good yields (74% and 99% for products
6caa and 6cab, respectively), reactions with some aliphatic ketones such as pentan-3-one
(5¢) or alicyclic ketones such as cycloheptanone (5f) gave more limited yields. However,
coupling products were obtained in almost quantitative yield starting from cyclopropyl
methyl ketone (5d) and cyclohexanone (5e).

Next, the reactivity of sulfonylimines was assessed (Scheme 5).
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8caa (63%, d.r. =2.1:1) 8cab (87%, d.r. = 1.4:1) 8ceb (95%, d.r. = 1.1:1)
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8dab (36%, d.r. = 1.1:1) 8cib (74%, d.r. = 1.1:1) 8cac (72%, d.r. =2.2:1)

/TS /TS

8cad (74%, d.r. =1.3:1) 8cae (76%, d.r. = 1.2:1)

Scheme 5. Scope of imines #. ? Yields of isolated products. Diastereoisomeric ratios (d.r.) were
determined using 'H NMR or GC. Reaction conditions: the imine, the Michael acceptor (2 equiv)
and the organozinc compound (3 equiv) were stirred in MeCN for 16 h at ambient temperature.
TPs = 2-thiophenesulfonyl, Ps = 2-pyridinesulfonyl.

In a general manner, reactions with imines were less efficient than those with carbonyl
compounds. Indeed, in this case, most three-component coupling products were formed
along with a-branched benzylamides, arising from the direct addition of the organozinc
compound to the imine. As the probable consequence of more selective additions, the
best product yields were obtained with 2-thiophenesulfonyl imines (products 8caa—8caf).
Interestingly, as the 2-thiophenesulfonyl activating group is easily cleaved under reductive
conditions [47,48], this multicomponent reaction could represent an interesting alternative
to existing methods in the case that a further regeneration of the primary amine is envi-
sioned. It can be noted that the problem of chemoselectivity was particularly pronounced
in the case of tosylimine 7f. Indeed, in this case, and despite the presence of the Michael
acceptor, the multicomponent product was only observed as traces, whereas the direct
addition product 9 proved predominant (Scheme 6).

N7 CFs
. o%
MeCN rt, 16h

45% 9
3 equlv)

Scheme 6. Reaction with ortho-trifluoromethylated imine 7f.

Given these original results on sulfonylimines, a sulfinylimine, the corresponding
Ellman-type sulfinylimine 10, was also evaluated in the reaction. This would addition-
ally be a chance to assess the stereochemical outcome of the multicomponent coupling.
Unfortunately, this Michael acceptor did not undergo the reaction (Scheme 7).
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q
w8 3 ; g X
<<n + \OH + XS\N‘ o Ph
1c 2a 10 kPh VAN

(3 equiv)

Scheme 7. Reaction with Ellman-type sulfinylimine.

Insight into the reaction mechanism could be obtained by the comparison of reactions
conducted in the absence or presence of 2,2,6,6-tetramethylpiperidin 1-oxyl (TEMPO),
known as radical’s trap [49]. Years ago, Takai and coworkers described similar Mn-
mediated reactions that were presumed to occur via the initial generation of an alkyl
radical that adds to the Michael acceptor [50,51]. In our case, similar results were observed
in the presence or absence of TEMPO, thus suggesting that the reaction does not involve
radicals (Scheme 8).

o] % O OH
Znl
~o H o
4« + ‘ + .
MeCN, rt, 16h
1c 2a 3a 4caa
(3 equiv) 99%

. 0o
Znl ~ H c')’ 1eq ~
0 (]
<§ + ‘ + ——
MeCN, rt, 16h

1c 2a 3a 4caa
(3 equiv) 85%

Scheme 8. Comparative reactions in the presence and absence of TEMPO.

In addition, as the organozinc species are generated and titrated before multicompo-
nent coupling with the other partners, and because an important amount of organozinc
is crucial for efficiency, we presume that the reaction rather occurs via an anionic (polar)
mechanism that involves the presence of a second organozinc compound, as Lewis acid, at
the stage of the transition state T (Scheme 9).

OH
| Zn 2
R/ —_— R
MeCN

Scheme 9. Possible reaction mechanism.

Such a mechanism is additionally supported by the results observed when the reaction
is conducted in the absence of the m-electrophile. Indeed, after the reaction of a mixed
alkylzinc reagent with an acrylate, the assumed enolate intermediate is unable to trap an
aldehyde sequentially added to the reaction mixture, thus indicating that all the reagents
must be simultaneously present in the reaction mixture to induce the reaction.

3. Materials and Methods

All commercially available reagents, including solvents, were used as received.

Room temperature means 18-25 °C.

Melting points (mp) are uncorrected and were measured on a Biichi B-545 apparatus.

Analytical thin layer chromatography (TLC) was performed on TLC silica gel plates
(0.25 mm) precoated with a fluorescent indicator. Visualization was effected using ultravio-
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let light (A = 254 nm) and/or an aqueous solution of KMnQj. Flash chromatography (FC)
was performed on 40-63 um silica gel with mixtures of solvents.

High-resolution mass spectra were obtained at the ICOA of the Université of Orléans
through electrospray ionization using a Q-TOF analyzer.

NMR spectra were recorded on a Bruker Avance IT 400 MHz spectrometer. "H NMR
chemical shifts were referenced to the residual solvent signal; '*C NMR chemical shifts
were referenced to the deuterated solvent signal. Multiplicity was defined through DEPT
135 analysis. Data are presented as follows: chemical shift 6 (ppm), multiplicity (s = singlet,
d = doublet, t = triplet, q = quartet, m = multiplet, br = broad), coupling constant ] (Hz),
integration.

d.r. were determined using GC or 'H NMR analysis of the crude reaction mixture.

Compound characterization data and NMR spectra for all compounds are provided in
the Supplementary Materials.

3CR with carbonyl compounds

o o O OH
oty 2 + L >~ R2? R3
R R H” SR®  CHiCN
|
rt, o/n R?
1 2 3 4

General procedure 1 (GP1): A 10 mL sealable tube equipped with a stir bar and filled
with an argon atmosphere was charged with aldehyde 3 (0.5 mmol, 1.0 equiv), acrylate 2
(1.0 equiv) and acetonitrile (2 mL). Under stirring, a solution of organozinc reagent 1 in
CH3CN (3.0 equiv) was added in one portion. The reaction was stirred at room temperature
overnight. Then, the reaction mixture was poured into sat aq NH4CI (20 mL). The resulting
solution was extracted twice with EtOAc (15 + 15 mL), and the combined organic layers
were washed with brine, dried over anhydrous Na;SO,4 and evaporated. The resulting
crude material was purified on silica gel to give product 4.

3CR with sulfonyl imines

o PG, o PG
Znl
- + + e
R R? HXRB CHACN R? R?
\
rt, o/n 4
1 2 7 R" g

General procedure 2 (GP2): A 10 mL sealable tube equipped with a stir bar and filled
with an argon atmosphere was charged with imine 7 (0.4 mmol, 1.0 equiv), acrylate 2
(2.0 equiv) and acetonitrile (2 mL). Under stirring, a solution of organozinc reagent 1 in
CH3CN (3.0 equiv) was added in one portion. The reaction was stirred at room temperature
overnight. Then, the reaction mixture was poured into sat aq NH4Cl (20 mL). The resulting
solution was extracted twice with EtOAc (15 + 15 mL), and the combined organic layers
were washed with brine, dried over anhydrous NaySO4 and evaporated. The resulting
crude material was purified on silica gel to give product 7.

4. Conclusions

In conclusion, we show that mixed aliphatic organozinc reagents can constitute very
relevant nucleophiles in uncatalyzed multicomponent reactions with Michael acceptors
and m-electrophiles such as aldehydes, ketones or activated imines. Yields are generally
very high and the range of compounds usable in the three-component coupling is rather
important. However, reactions involving activated imines are less efficient due to the
possible direct addition of the organozinc compound to the C=N bond. Comparison
between reactions conducted in the presence or absence of TEMPO accounts for a polar
character of the reaction mechanism instead of a radical coupling.
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Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390 /molecules28031401/s1. Experimental procedures, compound char-
acterization data and NMR spectra for all compounds.
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