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Abstract: Spiking neural networks are biologically inspired machine learning algorithms attracting
researchers’ attention for their applicability to alternative energy-efficient hardware other than
traditional computers. In the current work, spiking neural networks have been tested in a quantitative
structure–activity analysis targeting the toxicity of molecules. Multiple public-domain databases of
compounds have been evaluated with spiking neural networks, achieving accuracies compatible
with high-quality frameworks presented in the previous literature. The numerical experiments
also included an analysis of hyperparameters and tested the spiking neural networks on molecular
fingerprints of different lengths. Proposing alternatives to traditional software and hardware for time-
and resource-consuming tasks, such as those found in chemoinformatics, may open the door to new
research and improvements in the field.

Keywords: machine learning; in silico toxicity prediction; molecular fingerprints; spiking neural
networks

1. Introduction

Machine learning (i.e., ML) techniques provide data-driven tools to screen small
molecules for quantitative structure–activity or property relationships (i.e., QSAR/QSPR),
contributing to the preliminary selection of candidate compounds that will be validated
experimentally by in vitro or in vivo assays [1]. ML QSAR models establish a connection
between the structure of a molecule and its activity by regression if the property under
investigation is continuous or by classification if the biological outcome is categorical [2].
Prioritizing the most suitable molecules for the goals of an experiment by virtual screening
brings advantages in terms of time and resource-saving. Moreover, it can be carried
out in a high-throughput fashion [3]. Machine learning algorithms previously tested on
bioactivity data prediction included classic methodologies such as random forests [4–7],
support vector machines [8–10], or k-nearest neighbors [11,12]; in addition, deep neural
networks (i.e., NNs) were also employed due to their performance in examining complex
libraries of compounds [13]. Spiking neural networks (i.e., SNNs) are different machine
learning systems built around the concept of simulating biological processes by replacing
the perceptron [14] with neuronal models borrowed from computational biology [15]. In
recent years, the growing interest of the scientific community in these innovative networks
led to the development of specific event-driven hardware to accomplish brain-inspired
computations [16]. Pairing software based on spiking neural networks to neuromorphic
computers, it could be possible to achieve low-power computations [17]. Together with
quantum computing, neuromorphic platforms are alternatives to the standard clock-based
hardware for bypassing the increasing demand of computational resources required by
deep learning algorithms [18].

In ML QSAR, relating a molecule to a property requires encoding the molecule’s struc-
tural information into a learnable representation. After encoding, the molecular formula

Molecules 2023, 28, 1342. https://doi.org/10.3390/molecules28031342 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules28031342
https://doi.org/10.3390/molecules28031342
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0001-7123-5577
https://orcid.org/0000-0002-7785-2282
https://doi.org/10.3390/molecules28031342
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules28031342?type=check_update&version=1


Molecules 2023, 28, 1342 2 of 19

could be utilized in specialized software [19] or libraries [20] to extract descriptors acting
as input features for ML models. These programs accept compounds portrayed as alphanu-
meric strings called simplified molecular-input line-entry systems (i.e., SMILES). However,
recently several authors feed SMILES directly to their encoder–decoder models for prop-
erty forecasting [21,22]: these models exploit the internal NN representations as latent
features. Alternatively, the molecular structure could be represented in the form of graphs,
non-Euclidean datatypes consisting of nodes and edges [23]; in that case, applying SMILES
as starting data is beneficial because decoding the molecular graph directly may increase
the complexity of the model [24]. Although implementing graph-based NN for property
prediction is a popular choice still, a few problems affect this methodology: underfitting the
train set [25], lack of performance on small datasets [26], over-smoothing [27], information
loss while encoding the graph to a vector [28], and inability to preserve long-range node
dependencies [29]. Due to these limitations, the classic ML model applied to molecular
fingerprints still retains its validity, achieving remarkable results in QSAR studies [30–32].
Several of these ML protocols for virtual screening employ molecular fingerprints (i.e., MFs)
as inputs rather than SMILES, substituting ASCII characters with sparse binary vectors
collecting compounds’ features [33]. The MFs are sequences of bits illustrating the presence
or lack of a specific molecular substructure; the length of the MFs is variable, ranging
from 166 bits of the Molecular ACCess System (i.e., MAACS) [34] to 1024 of Daylight
Chemical Information Systems [35] or 2048 bits using Morgan’s extended-connectivity
fingerprints [36].

The current study aims to employ SNN for toxicity prediction using datasets of
compounds converted into MAACS fingerprints. The choice of fingerprints as input
data for the SNN is derived from the observation according to which binary vectors
are the natural input of SNNs. Indeed, SNNs receive incoming information encoded as
bit sequences that simulate neuronal spike trains [37]. The mechanism of the neurons
constituting an SNN is similar to the activity in human neurons: the membrane potential is
sensitive to over-threshold stimuli, causing modulations of trans-membrane ionic currents
and the consequent passage of information to the following cell. The crucial aspect of SNNs
compared to traditional NNs, is that not all information is transmitted to the next layer at
every cycle, but only after certain conditions measured in terms of membrane voltages are
met. In chemoinformatics, the application of SNNs is a novelty and this work may be the
first attempt to promote SNN in QSAR toxicological investigations. The current work will
test SNNs extensively in large databases of molecules with different characteristics; special
attention will be paid to SNN parameter tuning, a practical aspect usually reported as
challenging to handle [38]. This study will further relate chemoinformatics QSAR modeling
to the novel field of neuroscience-inspired artificial intelligence [39].

2. Results

The results include the single dataset assessment by the SNNs (Section 2.1), SNN hy-
perparameter report for the best models (Section 2.2), and meta-analysis with the previous
literature on the same data (Section 2.3). In Section 2.4, the SNN architectures studied for
MAACS MFs were evaluated on more advanced MFs to judge the scalability of SNNs when
providing inputs of different lengths.

2.1. Classification Outcomes

The results of the numerical experiments applying SNNs on each dataset for medic-
inal chemistry were reported in the following tables. Only the top five outcomes were
included, with accuracy values reported as mean and standard deviation (i.e., Std) of the
CV repetitions.
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2.1.1. Numerical Experiments on Clintox

The toxicity in clinical trials found by the U.S. Food and Drug Administration is the
binary outcome (FDA-approved or not) of the Clintox benchmark. Classification outcomes
of SNNs were collected in Table 1.

Table 1. Results on Clintox.

Hidden
Neur. β

Grad.
Slope Opt. LR WD GC Mean BA Std BA

1000 0.8 75 Adam 0.0001 0 True 97.845 0.661
1000 0.65 50 Adam 1 × 10−5 0 True 97.663 0.605
1000 0.6 25 Adam 0.0001 0 True 97.669 0.317
1000 0.95 50 Adam 1 × 10−5 0 True 97.530 0.774
1000 0.8 25 Adam 0.0001 0 False 97.339 0.556

2.1.2. Numerical Experiments on Tox21 NR-AR

The Tox21 dataset contains several measurements regarding toxicity by in vitro high-
throughput screening. The NR-AR measures the anti-androgenic toxicity estimated in
nipple retention. The SNN performance on this task is portrayed in Table 2.

Table 2. Results on Tox21 NR-AR.

Hidden
Neur. β

Grad.
Slope Opt. LR WD GC Mean BA Std BA

1000 0.95 50 Adagrad 0.01 0 False 98.840 0.368
1000 0.95 50 AdamW 0.0001 0 False 98.829 0.232
1000 0.95 50 Adamax 0.002 0 False 98.823 0.369
1500 0.95 50 Adam 5 × 10−5 0 False 98.810 0.215
800 0.95 50 Adam 5 × 10−5 0 False 98.778 0.241

2.1.3. Numerical Experiments on Tox21 NR-ER-LBD

From Tox 21, the NR-ER-LBD variable determines the estrogen receptor nipple receptor
binding site for transcriptional activity. It is an indicator of organ toxicity through the
pathway for etonogestrel, a medication for birth control in women. The outcomes of the
numerical experiments with SNN are delineated in Table 3.

Table 3. Results on Tox21 NR-ER-LBD.

Hidden
Neur. β

Grad.
Slope Opt. LR WD GC Mean BA Std BA

1000 0.95 50 Adamax 0.002 0 False 98.491 0.399
1200 0.85 75 Adam 1 × 10−5 0 False 98.457 0.270
1000 0.95 50 Adagrad 0.01 0 False 98.456 0.268
1000 0.95 50 Adam 0.0001 0.001 False 98.354 0.373
1000 0.95 50 SGO 0.001 0 False 98.283 0.362

2.1.4. Numerical Experiments on Tox21 SR-ATAD5

In Tox21, the measurement SR-ATAD5 is not a toxicity target as a nuclear receptor
but a quantity connected with the stress response pathway. It quantifies the genotoxicity
captured by the ATAD5 signaling pathway as part of the stress response panel activated
when a cell detects DNA damage. Classification outcomes from SNNs could be found in
Table 4.
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Table 4. Results on Tox21 SR-ATAD5.

Hidden
Neur. β

Grad.
Slope Opt. LR WD GC Mean BA Std BA

1200 0.85 75 Adam 1 × 10−5 0 False 99.055 0.232
1000 0.95 50 Adam 0.0001 0.001 False 98.837 0.257
1000 0.95 50 Adagrad 0.01 0 False 98.818 0.182
1500 0.95 50 SGO 0.005 0.001 False 98.798 0.221
1000 0.95 50 Adam 0.0001 0 False 98.795 0.251

2.1.5. Numerical Experiments on TOXCAST TR-LUC-GH3-Ant

The dataset TOXCAST was created by in vitro high-throughput screening and included
several effects on biochemical endpoints, cellular processes, and phenotypes in humans or
animals. The SNN investigation focused on the thyroid function mediated by TR genes
regulated by the GH3 cell line. The TR-interacting compounds disrupt thyroid homeostasis.
The balanced accuracies of the top-performing SNNs were gathered in Table 5.

Table 5. Results on TOXCAST TR-LUC-GH3-Ant.

Hidden
Neur. β

Grad.
Slope Opt. LR WD GC Mean BA Std BA

1000 0.95 50 Adamax 0.002 0 False 91.379 0.819
1000 0.95 50 Adamax 0.002 0.0001 False 91.358 0.417
1200 0.95 50 Adamax 0.002 0 False 91.190 0.877
1000 0.95 50 Adagrad 0.01 0.001 False 91.166 0.391
1200 0.95 50 Adagrad 0.01 0 False 91.138 0.699

2.1.6. Numerical Experiments on BBBP

The blood–brain barrier plays an essential role in protecting the nervous system and
maintaining the microenvironment of the brain. Drugs targeting the central nervous system
should be able to penetrate the blood–brain barrier. The SNN results on the compounds of
the BBBP benchmark in detecting permeability were included in Table 6.

Table 6. Results on BBBP.

Hidden
Neur. β

Grad.
Slope Opt. LR WD GC Mean BA Std BA

1000 0.95 50 Adamax 0.002 0 False 94.481 1.068
1000 0.95 50 SGO 0.005 0 False 94.230 1.342
1000 0.95 50 RMSProp 0.001 0 False 93.883 1.434
1000 0.8 25 Adam 0.0001 0 False 93.838 0.696
1000 0.95 50 Adam 0.0001 0 False 93.651 1.005

2.1.7. Numerical Experiments on SIDER ISD

The Side Effect Resource dataset describes marketed drugs and their adverse reaction
to specific human body systems. Those affecting the immune system were analyzed in the
ISD screened by SNNs. Outcomes are summarized in Table 7.
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Table 7. Results on SIDER ISD.

Hidden
Neur. β

Grad.
Slope Opt. LR WD GC Mean BA Std BA

1000 0.95 50 Adagrad 0.01 0 False 81.750 2.027
1500 0.95 50 SGO 0.005 0.001 False 81.376 1.998
1000 0.95 50 SGO 0.001 0 False 81.254 3.243
2000 0.95 50 Adagrad 0.01 0 False 80.981 1.905
1000 0.8 25 Adagrad 0.01 0 False 80.937 1.721

2.1.8. Numerical Experiments on SIDER NSD

Commercial drugs that affect the nervous system as side effects are present in the NSD
part of the SIDER dataset. The SNNs evaluated for this type of disorder reached accuracies
shown in Table 8.

Table 8. Results on SIDER NSD.

Hidden
Neur. β

Grad.
Slope Opt. LR WD GC Mean BA Std BA

1000 0.95 50 SGO 0.001 0.001 False 96.978 0.740
1000 0.95 50 Adadelta 1.0 0 False 96.520 1.197
1000 0.95 50 Adagrad 0.01 0 False 96.515 1.211
1000 0.95 50 AdamW 1 × 10−5 0 True 96.450 0.840
1000 0.95 50 Adamax 0.002 0 False 96.374 0.697

2.2. Hyperparameters Evaluation

The SNN hyperparameters of the best SNN models were reported in Table 9. The
models generally had a membrane decay rate between 0.8 and 0.95 and a surrogate gradient
of 50 or 75. All the best architectures comprised 1000 neurons, except one with 1200.

Table 9. Summary of SNNs’ HPs for top-ranked models.

Dataset Hidden
Neur. β Grad. Slope Mean BA Std BA Mean AUC Std AUC

BBBP 1000 0.95 50 94.481 1.068 0.946 0.008
Clintox 1000 0.8 75 97.845 0.661 0.974 0.01

ISD 1000 0.95 50 81.750 2.027 0.795 0.008
NR-AR 1000 0.95 50 98.840 0.368 0.988 0.002

NR-ER-LBD 1000 0.95 50 98.491 0.399 0.986 0.003
NSD 1000 0.95 50 96.977 0.740 0.97 0.008

SR-ATAD5 1200 0.85 75 99.055 0.232 0.991 0.002
TOXCAST 1000 0.95 50 91.379 0.819 0.912 0.007

To enhance the comparison with previous articles in Section 2.3, the SNN outcomes on
the test set have been recomputed in terms of AUC and added to Table 9. The validation
set accuracies were included in Appendix A Table A1.

2.3. Meta-Analysis

This section is subdivided into two parts: an initial report of previous works running
classification on MFs as inputs (Section 2.3.1), and a latter part (Section 2.3.2), including
manuscripts adopting different frameworks for in silico toxicity prediction. Section 2.3.3
summarizes in graphical format the comparisons between SNNs and other methodologies
from the previous literature.
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2.3.1. Previous Literature on Virtual Screenings from MFs

The first comparison was conducted over the results presented by [40] using a random
forest (i.e., RF) and Morgan MFs on BBBP (0.909 ± 0.028 AUC), Tox21 (0.819 ± 0.017), SIDER
(0.687 ± 0.014), and ClinTox (0.759 ± 0.060). In [41], the authors evaluated MAACS finger-
prints over the Tox21 dataset achieving an AUC of 0.805 ± 0.01, an AUC of 0.721 ± 0.004
for BBBP, and an AUC equal to 0.797 ± 0.151 for Clintox, applying an ensemble of deci-
sion trees over 5-fold cross-validation. Another paper [42] focused on the Tox21 dataset
reporting the outcomes of the in silico toxicity evaluation by five classifiers on Morgan
fingerprints: the LightGBM overperformed other classifiers, reaching an AUC of 0.795 on
the test set (standard deviation was not reported) for NR-AR. Other classifiers included in
the study were random forest (0.777), support vector machines with radial basis function
(0.784), extreme gradient boosting (0.777), and a deep neural network with three hidden
layers coupled with Adam as optimizer (0.787). This latter work shares with the current
investigation the choice of nested CV as a practical approach to keep separated HP tuning
and evaluation of the estimators. On NR-ER-LBD, LightGBM reached 0.796, whereas on
SR-ATAD5, it fulfilled 0.802 AUC. In [43], the authors analyzed the Tox21 dataset (the
10k version) using multiscale weighted colored graph MFs and compared the results of
different classifiers to MAACS MF. The outcomes for the gradient boosting decision tree
on MAACS for NR-AR was0.756 AUC, for NR-ER-LBD was 0.788, and for SR-ATAD5 was
0.734. Another work testing several classifiers on Tox21 was [44], reporting on NR-ER-LBD
0.83 AUC employing RF on MAACS MFs, 0.73 AUC with naive Bayes, and 0.78 AUC with
probabilistic NN. The authors of [45] generated Morgan MFs for SIDER, BBBP, and Tox21
datasets evaluating the benchmarks by convolutional NN (Table A2). They applied the
convolutional NN on single learning tasks for each dataset (similar to what was performed
during the current investigation on SNN), or the same NN applied in multitask learning,
as in [46], obtaining better results. The authors of [47] evaluated different MFs on Tox21
data with a naïve Bayes classifier, reaching 0.7664 and 0.772 AUC with MAACS MFs for
active or inactive compounds on NR-ER-LBD, respectively. The results were raised to 0.8
on the test set combining MFs to a similarity score. The authors used the same scheme to
obtain 0.69 on NR-AR and 0.75 on SR-ATAD5. From MAACS MFs and working with an RF
classifier, the researchers in [48] reported 0.8151 AUC on SR-ATAD5, adopting a synthetic
data generation scheme to solve the class instances’ imbalance. The same group obtained
0.8232 without imbalance adjustments on NR-AR and 0.9133 on NR-ER-LBD with random
undersampling.

2.3.2. Previous Literature Applying More Sophisticated Data Representations

In [49], the authors tested SMILES molecular data representations paired to NNs
derived from natural language processing on Clintox benchmark. They also verified the
outcomes on other frameworks, and statistical learning classifiers with HPs tuned according
to the previous literature, as shown in Table A3. In [40], the “directed Message Passing
Neural Networks” [50] were attempted on several benchmarks, both as a single estimator
or in an ensemble learning configuration (Table A4). The authors of [51] compared pre-
trained classification models (self-supervised learning approach) constructed on large
molecules databases to MFs generated by autoencoders or traditionally. They evaluated
those inputs by statistical learning estimators such as gradient-boosted decision trees,
RF, and support vector machines (Table A5). The work of [52] assessed the usage of a
transformer-based architecture through interaction scores between each character of the
SMILES (aka self-attention); on SIDER, the AUC was 0.858.

2.3.3. Positioning of SNN Results in the Current Body of Knowledge

The following bar plots show AUC obtained by the SNNs’ best models for each dataset
employed in the study, referencing previous results as reported in Sections 2.3.1 and 2.3.2.
For Tox21 benchmarks, the comparisons are in Figure 1. For SIDER, Figure 2 collects
classification outcomes for the immune and nervous system disorders as side effects of
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chemicals. Regarding BBBP and Clintox, a meta-analysis of the classifiers’ AUC coming
from other sources in the previous literature was included in Figure 3a,b, respectively.
Only in the case of Toxcast and probably due to dataset characteristics, more compatible
references with the current investigation were needed to prepare a graph (one reference
was found).

(a) Tox21 NR-AR. (b) Tox21 NR-ER-LBD. (c) Tox21 SR-ATAD5.

Figure 1. Visual summary of meta-analysis on Tox21. Standard deviation was included if reported in
the original papers. AUC values from [40–45,47,48].

(a) SIDER ISD. (b) SIDER NSD.

Figure 2. Classification of side effects of chemicals from SIDER dataset in the present and other works.
AUC included from [45,52].

(a) Meta-analysis results on BBBP. (b) Meta-analysis results on Clintox.

Figure 3. Outcomes for BBBP and Clintox compared to the previous literature. AUC values as
reported in [40,41,46,49,51,53–56].
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2.4. Scalability of SNNs with Longer MF

During this numerical experiment, MAACS MFs was compared to extended-
connectivity fingerprints (i.e., ECFP) calculated with a radius of 2 and 1024 bits in length.
Balanced accuracy for BBBP and Clintox datasets was tested using ECFP as input and
employing the best models of Table 9. It should be underlined that the number of neurons
in the hidden layer or other parameters of the SNN were not re-optimized but left in the
same configuration initially calculated for MAACS MF. The BBBP and Clintox datasets were
selected due to the high number of cited papers working on these databases, as previously
reported in Sections 2.3.1 and 2.3.2.

Table 10. BA of SNNs with MFs of different length as input patterns.

MF Type BBBP Clintox

ECFP 93.451 ± 0.684 97.772 ± 0.522
MAACS 94.481 ± 1.068 97.845 ± 0.661

Final scores were noted on Table 10: accuracies do not significantly depart from
those collected with shorter MF, proving the good scalability of SNNs to longer inputs.
Appendix C Table A6 reports the computational times for each dataset.

3. Discussion

The numerical experiments demonstrated the application of SNNs for the virtual
screening of molecule databases targeting toxicity. Using structural information derived
from MF, the SNNs obtained remarkable results compared to the previous literature. The
meta-analysis of Section 2.3 showed the consistent performance of SNNs with other high-
quality methods previously employed for toxicity prediction. One advantage of SNNs
is their ability to handle MFs binary inputs directly without requiring more complex
mechanisms to generate learnable input patterns. This investigation is currently the first
one employing SNNs for QSAR, proposing this technique as an alternative to classical
machine learning or NN methods. Furthermore, exploring neuromorphic computation
solutions as alternatives to tackle the von Neumann bottleneck problem [57] could provide
new insights to drive future technologies for drug discovery and virtual screening. In von
Neumann’s architecture, the chips move information continuously and at high bandwidth
between the central processing unit and memory, wasting time and energy. Spiking
neuromorphic hardware works differently, being asynchronous and event-based, subject to
neuron dynamics and firing timings, with memory located alongside the computational
units [58]. Consequently, even if this investigation proposed SNNs employing traditional
hardware (laptop computer with Intel i5 CPU and 16Gb RAM), the best computational
performance could be achieved by implementing SNNs on neuromorphic silicon-based
devices. Regarding computational times, it should be underlined that they were heavily
influenced by the number of training epochs required for instructing the network; therefore,
the values included in Appendix C Table A6 serve as a reference. Indeed, in light of on-chip
learning given by some neuromorphic platforms (Intel Loihi, Darwin neural processing unit,
or BrainScaleS), the possibilities of continuously learning new molecules and predicting
the target activity in real-time may make the inclusion of computational times irrelevant.

One complication of SNNs mentioned in other sources is the difficulty in setting the
right HPs [59]. During the present investigation, the SNNs’ HPs in the best-performing
models did not vary significantly (Table 9), reducing the severity of the claim reported in
previous papers. In general, the number of HPs for SNN neurons is higher than those in
artificial NNs, and more complex neuron models increase the user’s required settings. For
example, a slightly more complex neuron than the LIF integrates synaptic conductance that
considers the time course of the neurotransmitter released by the pre-synaptic neuron. This
addition translates into the introduction of a novel parameter that simulates AMPA (i.e.,
alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid), and at a lesser extent, NMDA
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(i.e., N-methyl-D-aspartate), glutamate receptor activity [60], and modulates the synaptic
strength of the LIF. This kind of second-order neurons in MF-based QSAR may be helpful
to maintain extensive sparsity coding [61], and they could be evaluated on MFs with a bit
length longer than those tested in the current work.

Another remark regarding SNNs that may be of interest for future developments in
drug discovery is that the existing architectures do not fully cover all mechanisms of learn-
ing, and ongoing research is needed both on the software and hardware side. For example,
the authors of [62] recently proposed a method to implement biologically plausible mecha-
nisms to simulate on hardware long–short time dependencies as found in deep learning.
This advancement may offer an opportunity for integrated hardware and software solutions
to solve complex in silico tasks of medical chemistry. Indeed, one approach followed by
some authors [63] was to use recurrent neural networks on bi-dimensional fingerprint-like
representations of atoms and bonds. Consequently, technological progress in neuromorphic
computing could provide further applications to chemoinformatics, employing systems
that reflect the mechanisms of brain activity and thus more explainable than standard
“black-box” approaches derived from ANNs.

4. Materials and Methods

Five public-domain toxicological datasets were investigated, each evaluated in sepa-
rate numerical experiments through specific SNNs. All SNNs had in common the neuronal
model, the leaky integrate-and-fire (i.e., LIF) [64], and the architecture. An overview of the
experimental sequence is illustrated in Figure 4.

Figure 4. Overview of the procedure during the numerical experiments. The input bit strings were
created from SMILES, and a binary label accompanied each instance. The binary sequences were
input directly to the SNN, which was evaluated by nested cross-validation with an inner loop for
model selection and an outer loop for evaluating the quality of the outcomes.

4.1. Neuron Model

Compared to normal cells, biological neurons have peculiar features such as dendrites
to capture incoming external signals, an axon to transmit pulses at a distance, and terminal
parts called synapses to forward information to the dendrites of other neurons. Through
the axon, information is transmitted temporarily varying the concentration gradient of
transmembrane ions. This change affects the axon from the beginning to the end, creating
a charged ionic flow similar to electric currents in a cable [65]. When a neuron receives
inputs from the dendrites, the cell body weighs all ionic charges received, and if the total
signal is enough, the cell’s polarity changes. This initial polarization influences the axon
membrane gradient that is modified due to the influx of positive ions. Ions rapidly move
inside the neuron through ionic channels following gradient concentrations sequentially
along the neuron membrane up to the synapse. Once the process is moving toward the
synapse, a short hyperpolarization called the refractory period is accompanied by restoring
the equilibrium potential by accumulating outside the neuron positively charged ionic
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species. The complexity of these biological mechanisms is simplified using the single-
compartment LIF neurons: the weighted sum of inputs (aka “integration”) triggers ionic
changes across the membrane (aka “firing”) [66]. However, the integrator is “leaky” because
a small amount becomes lost while integrating inputs over time. The membrane potential
fluctuations resulting from the received input sequences are exemplified in Figure 5. The
ones in the incoming stimuli are represented as square current pulses that disrupt the
ionic equilibrium between axonal cytosol and extracellular fluid, eventually generating
a spike (ones in the output sequence). Single perturbations are not enough to activate
the neuron response (firing), whereas multiple stimuli overcoming the voltage threshold
(red dashed line) elicit a response. After a neuronal spike, the voltage drops rapidly
to a hyperpolarization state; later, the neuron is ready to respond again—single stimuli
below the threshold return to equilibrium with a slower decay rate than in the case of
hyperpolarization. Figure 5 does not explicitly show hyperpolarization but summarizes
the different decay to equilibrium in case of firing or not. In the neurophysiological
nomenclature, the neuron membrane depolarization responding to an over-threshold input
stimulus is called action potential or spike, meaning the neuron is firing and usually
marked with a one in a vector describing the neuron activity over time. Mathematically,
this could be associated with a Heaviside step function. Periods of below-threshold stimuli
are equivalent to zeros, meaning no firing occurs on the neuron membrane. The binary
sequences describing neurons’ activity are formally equivalent to bit strings of molecular
fingerprints; this aspect allows for a direct usage of MFs as input for SNNs, and no format
conversion is needed.

Figure 5. Membrane potential in LIF neurons is modeled receiving a binary train as input and
producing a binary output in response: only when membrane potential is over-threshold do LIF
neurons fire a spike marked by ones in the output sequence.

A first-order low-pass filter could represent a leaky integrator, and from this assump-
tion, the LIF equations are described mathematically in terms of electrical circuits [67].
Ions passing the neuron membrane wall experience a resistance R and are subject to a
capacitance C: the resistance depicts the narrowness of the membrane’s ion channels that
slow down the influx, and the capacitance is the lipidic membrane bilayer acting as an
insulator (Figure 6).

R C

Iin

Vt

Figure 6. LIF circuit equivalent. A parallel resistor and capacitor represent the neuron, a configuration
that could easily describe membrane behavior and, at the same time, is effortlessly implementable on
silicon chips.
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Considering the time constant of the circuit is τ = RC, Equation (1) describes variations
of the LIF membrane potentials as voltage shifts measured by the voltmeter in Figure 6.

τ
dVt

dt
= −Vt + RIin (1)

The linear ordinary differential equation could be solved with the forward Euler
method for practical application in the SNN. Another characteristic of neurons is the
hyperpolarization following a membrane depolarization or firing. This could be achieved
with a reset mechanism subtracting a fixed voltage value until reaching equilibrium or
simply resetting the voltage to zero; all SNNs were assembled with the first reset option
by subtraction.

4.2. SNN Architecture

The SNNs were programmed in Python language, using Torch and derived
libraries [68,69]. All networks had the same number of input neurons, equal to the number
of bits in the fingerprints’ vectors, one hidden layer, and an output layer of two neurons, as
shown in Figure 7. The number of hidden neurons was the subject of investigation during
the hyperparameters search.

Figure 7. Exemplification of the common SNN architectures. All SNNs employed were shallow with
one hidden layer. The fingerprints’ bits were passed to the input layer, whereas the last layer firing
counts determined the predicted class.

Class membership was determined by the number of spikes fired by the last two
neurons, assigning it to the neuron that fired more spikes. The SNNs were fully connected
with input data distributed in mini batches of 64 samples. The subdivision of the input
samples in mini-batches avoided the “generalization gap” noticed with large input sample
sizes [70]. The discrete nature of the binary vectors employed by SNNs poses the challenge
of the lack of differentiability during backpropagation calculations through the chain
rule. The solution to this problem has been proposed in [71], by applying a surrogate
function that replaces the hard threshold. In other words, during backpropagation, a
sigmoid activation is selected with a finite slope instead of computing the derivative of the
Heaviside step function (the Dirac delta function).

4.3. Model Evaluation and Hyperparameters Tuning

Each SNN had several hyperparameters (i.e., HPs) to be tuned: in the previous
literature [72–74], this part is usually reported as time-consuming and challenging to
perform due to the non-linear relationship between LIF output and HPs. In the current
investigation, nested cross-validation (i.e., CV) has been employed to separate the phase of
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HP optimization and model evaluation. The HP selection was achieved during the inner
loop, while the outer loop evaluated model quality. Additionally, the CV has been repeated
ten times to analyze model variability and generalization error extensively. Among the
HPs searched, the membrane decay rate β, expressed as Vt+∆t = β × Vt, and the slope of
the surrogate gradient were LIF-specific. More general HPs were the number of hidden
neurons, the optimizer type and its parameters, the number of epochs needed for training,
and the presence or lack of gradient clipping (i.e., GC). This latter technique is mainly
utilized to circumvent exploding gradient issues [75]. Another optimizer HP included was
the weight decay (i.e., WD), usually adopted to regularize the network [76].

HP optimization was performed with a random search over a regularly spaced grid
of values, except for the learning rate (i.e., LR) with pre-selected intervals. The search
range is reported in Table 11. The optimizers implemented in the Python Torch library and
surveyed were “Adam” and “Adamax” [77], “Stochastic Gradient (Descent) Optimizer”
(i.e., SGO [78]), “Adaptive Gradient Algorithm” (i.e., Adagrad [79]), “Adadelta” [80],
“AdamW” [81], and “RMSProp” [82].

Table 11. Parameter grid range during HP tuning. The goal was to identify the HP configuration
driving the learning process to reach the best performance on each benchmark dataset.

Hyperparameter Lower Limit Upper Limit Levels

Hidden neurons 500 2000 5
β 0.6 0.95 6

Grad. slope 25 75 3
LR 1 × 10−5 0.5 15
WD 0.001 0.05 4

4.4. Benchmark Datasets Employed in the Study

The compounds explored came from the following repositories, with a summary in
Table 12:

• TOXCAST [83], containing results of in vitro toxicological experiments. In particular,
the outcomes for “Tox21-TR-LUC-GH3-Antagonist” were considered due to the best
sample ratio;

• Tox21 [84], predicting the toxicity on biological targets, including nuclear receptors
or stress response pathways. Activities selected were “SR-ATAD5”, “NR-EL-LBD”,
and “NR-AR” for the relatively low number of missing entries compared to the others
inside the dataset;

• BBBP [85] assessing drug’s blood–brain barrier penetration;
• SIDER [86], employed for predicting drug’s side effects on the immune and nervous

systems;
• Clintox [87], containing drugs that failed or passed clinical trials for toxicity.

All of the datasets’ molecules were in the SMILES format with annotated binary labels.
The number of instances was unequal in all cases, processed balancing by oversampling the
minority class. If class balancing was not performed, the risk was that the classifiers may
be over-exposed to the majority class during training. The last column of Table 12 reported
the initial instances for the negative and positive classes and the number of examples after
equalization inside parenthesis. The results of the numerical experiments were judged
through balanced accuracy (i.e., BA). Although equalizing class counts could be sufficient to
evaluate models fairly by accuracy, balanced accuracy further ensured unbiased appraisal.
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Table 12. Datasets information.

Dataset Activity Studied Acronym Instances

Clintox Toxicity in clinical trials Clintox 1366 (1366)–112 (1366)
Tox21 Androgen receptor nipple retention NR-AR 6956 (6956)–309 (6956)
Tox21 Hepatotoxicity NR-ER-LBD 6605 (6605)–350 (6605)
Tox21 DNA damage SR-ATAD5 6808 (6808)–264 (6808)

TOXCAST Thyroid homeostasis disruption TR-LUC-GH3-Ant 1 6170 (6170)–1761 (6170)
BBBP Blood–brain barrier permeability BBBP 479 (1560)–1560 (1560)
SIDER Immune system disorders (iatrogenic toxicity) ISD 403 (1024)–1024 (1024)
SIDER Nervous system disorders (iatrogenic toxicity) NSD 123 (1304)–1304 (1304)

1 Murine tissue assays.

4.5. Fingerprints Characteristics

After standardizing and normalizing the functional groups, the SMILES to fingerprint
conversion was performed via the RDkit Python library [88]. Preprocessing has been
performed with MolVS [89], a software tool included in RDkit. The selected MFsformat
was the SMARTS-based implementation of the 166 bits long public MACCS keys.

Another preliminary aspect to verify was the similarity of the molecules inside each
dataset. If the compound similarity is high, the classifier may learn representations of
analogous molecular structures, affecting the model’s generalization. The heterogeneity
of the molecules in each dataset was evaluated through the Jaccard–Tanimoto index and
reported as mean values in Table 13. This coefficient demonstrated high reliability in
quantifying molecule similarity from MF [90].

Table 13. Mean Tanimoto indices of each dataset.

Dataset Tanimoto Index

Clintox 0.315
NR-AR 0.21

NR-ER-LBD 0.209
SR-ATAD5 0.208

TR-LUC-GH3-Ant 0.211
BBBP 0.335
ISD 0.308
NSD 0.308

In the datasets, the probability of co-occurrences between compounds ranged from
20.8% to 33.5%, or conversely, a mean dissimilarity ranging from 79.2% to 66.5%. The
Tox21 family of data and TOXCAST exhibited the most significant heterogeneity between
molecules, while BBBP, Clintox, and SIDER collected closer compound types.

4.6. Meta-Analysis Criteria

Current classification results on MAACS MFs applying SNNs were compared to the
previous literature for each dataset. Journal articles were selected using the Google Scholar
engine, integrated with Università del Piemonte Orientale library resources. The dataset
name was inserted as keyword together with “molecular fingerprint”. Pre-prints were
not considered because they were not yet peer-reviewed. The article list was sorted per
publication data, with the most recent on the top, and results scanned in descending order;
priority was assigned to works showing outcomes on MAACS MFs for direct comparison
with the current investigation. Only articles employing area under the receiver operating
characteristic curve (i.e., AUC) or accuracy as evaluation metrics on the test set were
considered for compatibility with current outcomes. Another precaution as inclusion
criteria involved the selection of studies dividing the samples of the original datasets in
random splits (consistent with Molecule Net [85]); other methods, such as scaffold splits,
are usually associated with lower AUC due to increased difficulty. In a few cases, the results
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were presented as figures only, without providing tables to collect numerical information,
and consequently, the values could not be retrieved.

5. Conclusions

This work witnessed the usage of spiking neural networks for the virtual screening of
multiple databases of compounds targeting toxicity. The results were in line with top-notch
predictors from the literature, opening the door to the possible usage of neuroscience-
inspired artificial intelligence for quantitative structure–activity or property relationship
analysis. Future works will further evaluate the applicability of spiking neural networks to
other chemoinformatics domains, with the intent of employing an integrated software and
hardware neuromorphic architecture.
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LR Learning Rate
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SNN Spiking Neural Network
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Appendix A

Table A1 reports validation and test set accuracies of the nested CV rounds.
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Table A1. Balanced accuracy at validation and test sets as percentages.

Dataset Validation Set Test Set

Clintox 96.6 ± 0.5 97.8 ± 0.7
NR-AR 98.8 ± 0.4 98.3 ± 0.5

NR-ER-LBD 97.8 ± 0.4 98.5 ± 0.4
SR-ATAD5 95.0 ± 0.6 99.0 ± 0.2

BBBP 92.7 ± 1.3 94.5 ± 1.1
TOXCAST 89.0 ± 1.0 91.4 ± 0.9

NSD 95.8 ± 1.1 97.0 ± 0.8
ISD 78.5 ± 2.3 81.8 ± 2.0

Appendix B

Table A2 collects the AUC outcomes of [45] as described in Section 2.3.1.

Table A2. AUC from single and multiple task learning as shown in [45].

Benchmark Single Multiple

ISD 0.670 ± 0.038 0.801 ± 0.040
NSD 0.820 ± 0.083 0.901 ± 0.049

NR-AR 0.810 ± 0.027 0.851 ± 0.043
NR-ER-LBD 0.898 ± 0.040 0.952 ± 0.041
SR-ATAD5 0.844 ± 0.033 0.905 ± 0.038

BBBP 0.713 ± 0.006

Table A3 shows results as reported in [49] (Section 2.3.2).

Table A3. AUC on ClinTox from [49].

Method Ref. Clintox

TOP [49] 0.946 ± 0.003
CheMixNet [53] 0.944 ± 0.004
DeepAOT [54] 0.894 ± 0.003
DeepTox [46] 0.843 ± 0.003

Chemception [55] 0.745 ± 0.006
SMILES2Vec [56] 0.693 ± 0.004

RF 0.769 ± 0.002
SVM 0.751 ± 0.002

KNN 1 0.698 ± 0.003
1 k-nearest neighbors algorithm.

Table A4 presents AUC values from [40] (Section 2.3.2).

Table A4. AUC from the numerical experiments in [40].

Benchmark D-MPNN 1 D-MPNN (ensemble)

BBBP 0.913 ± 0.026 0.925 ± 0.036
Tox21 0.845 ± 0.015 0.861 ± 0.012
SIDER 0.646 ± 0.016 0.664 ± 0.021
Clintox 0.894 ± 0.027 0.906 ± 0.043

1 directed Message Passing NN.

Table A5 displays scores as detailed in [51] (Section 2.3.2).
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Table A5. Best models AUC in [51] for Clintox and BBBP applying different MF sets.

MF Type Features BBBP Clintox

SSLP-FPs C [51] 0.949 ± 0.016 0.963 ± 0.044
SSLP-FPs CP [51] 0.953 ± 0.009 0.939 ± 0.047
SSLP-FPs CPZ [51] 0.946 ± 0.015 0.941 ± 0.035
Auto-FPs 0.969 ± 0.01 0.95 ± 0.037

ECFC2 1024 bits 0.92 ± 0.015 0.821 ± 0.058
ECFC2 2048 bits 0.919 ± 0.021 0.833 ± 0.053
ECFC2 512 bits 0.913 ± 0.019 0.831 ± 0.056
ECFC4 1024 bits 0.914 ± 0.024 0.782 ± 0.052
ECFC4 2048 bits 0.916 ± 0.021 0.784 ± 0.053
ECFC4 512 bits 0.908 ± 0.025 0.801 ± 0.049
ECFC6 1024 bits 0.907 ± 0.029 0.77 ± 0.054
ECFC6 2048 bits 0.911 ± 0.026 0.75 ± 0.059
ECFC6 512 bits 0.9 ± 0.032 0.77 ± 0.048

Appendix C

Table A6 reports the average number of seconds taken during the ten repetitions of
nested CV ECFP analysis on BBBP and Clintox datasets. Computations were accomplished
on commodity hardware (laptop computer with Intel i5 CPU and 16Gb RAM). Furthermore,
the table includes the number of training epochs as a parameter directly affecting the
computational time.

Table A6. Computational times for ECFP.

Dataset Computational Time (s) Training Epochs

Clintox 4109.55 300
BBBP 1522.74 100

In general, computational times could be heavily influenced by several factors (for
example, the number of training epochs, the batch size, the number of parallel jobs on the
computer, the use of CPU or GPU, etc.); thus, they should be evaluated considering all these
aspects. Additionally, SNN architectures should be programmed on neuromorphic boards
to improve computational performance because adapting SNN on traditional hardware
may only highlight some advantages of this technique.
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