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Abstract: To provide carbon steel a long-term corrosion protection effect in NaCl solutions with
different pH values, based on poly-acrylamide (PAM) and oleate imidazoline (OIM), a solid corrosion
inhibitor with the properties of pH-controlled release was synthesized. SEM, FTIR and TGA results
indicated that the OIM inhibitors were successfully loaded into PAM hydrogel with a high OIM
encapsulation content (39.64 wt.%). The OIM release behavior from the hydrogel structure has two
stages, quick release and sustained release. The pH of solutions could affect the initial release kinetics
of OIM inhibitors and the diffusion path in the hydrogel structure. Weight loss measurement of L80
steel in different pH solutions with OIM@PAM proved the inhibitor responsive release mechanism
and anticorrosion performance. The inhibition efficiency of OIM@PAM can maintain over 80%
after long-term immersion in a harsh corrosive environment (pH 3), which is much higher than the
inhibition efficiency of OIM@PAM in a moderate corrosive solution.

Keywords: solid corrosion inhibitor; oleate imidazoline; polyacrylamide; pH-controlled release; L80
carbon steel

1. Introduction

Corrosion leads to material degradation in various environments, which is due to the
inter-chemical and electrochemical actions between metal substrates and environments [1].
Organic inhibitors have been wildly used to solve the corrosion issue due to their high
inhibition efficiency, wild application range, good solubility and relatively low toxicity [2–4].
The inhibition mechanism of organic inhibitors has been explained by the formation of an
adsorption film. Organic inhibitors adsorbed on metal surfaces through the delocalized
electrical charge on the heteroatoms such as N, S, and O [1,5]. Many scholars have focused
on the effect of inhibitor functional group type, quantity, and molecular structure on
inhibition efficiency [5–7]. However, there are several drawbacks to the direct use of
inhibitors in an aqueous corrosion environment. To ensure the corrosion protection effect
of organic inhibitors, the excessive use of inhibitors will lead to a waste of resources, and
the inhomogeneous distribution of inhibitors in corrosive environments will limit the
long-lasting effect and anticorrosion effect of inhibitors. In addition, adding inhibitors
is a high-selectivity corrosion protection method, which means the inhibitors are usually
suitable for a certain material and corrosion environment.

Recently, scholars became interested in encapsulating corrosion inhibitors into contain-
ers to extend the inhibitor protection time and enhance anticorrosion effectiveness as the
drawbacks of direct using inhibitors. Many researchers try to encapsulate organic inhibitors

Molecules 2023, 28, 1314. https://doi.org/10.3390/molecules28031314 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules28031314
https://doi.org/10.3390/molecules28031314
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0003-4114-4409
https://doi.org/10.3390/molecules28031314
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules28031314?type=check_update&version=1


Molecules 2023, 28, 1314 2 of 18

into MOFs [8], hollow particles [9], core–shell nanofiber [10], gel materials [11], and so on.
A critical application of encapsulated inhibitors is to provide self-healing properties to
organic coating [8–11]. However, the low inhibitor concentration and complex construction
of self-healing coating limited the industrial applications. Another important application
of encapsulated corrosion inhibitors is solid inhibitors. The inhibitor release behavior from
encapsulated container is adjusted according to the change of environment by modifying
the inhibitor container. Wang et al. [12] reported calcium alginate gel capsules loaded with
inhibitors. The synthesized capsules could release inhibitors during the sinking process,
and effectively prevent the tube in oil well from corrosion. Dong and his coworkers [13–15]
reported a series of solid intelligent inhibitors. The container could release inhibitors faster
in an acidic environment in comparison with a neutral environment, and provide better
anticorrosion performance.

Hydrogel material is a hydrophilic 3D natural or synthetic polymer network structural
gel, which could swell in water. Hydrogel has been used in drug delivery systems due
to the controllable release rate [16]. Researchers have tried to use hydrogel in corrosion
protection systems. Wen et al. [17] reported an solid hybrid hydrogel coating for steel
corrosion protection. The weight percentage of loaded inhibitor is about 10%, and the
releasing property of inhibitors rises as the external environment pH value decrease. Dong
et al. [13] tried to use hydrogel to synthesize solid inhibitors, which benefits long-term
corrosion inhibition due to the sustained inhibitor supply. Hydrogel is an ideal container
material to synthesize a solid inhibitor, and still needs further investigation on increasing
the inhibitor content, controlling inhibitor release behavior, and enhancing the mechanical
property to make the application of a solid inhibitor based on the hydrogel.

Owing to the advantages of excellent corrosion protection performance, low toxicity,
stability and low economy cost, imidazoline and its derivatives are widely utilized in the
industrial fields. The high inhibition efficiency of oleate imidazoline (OIM) derivatives is
associated with good adsorption characteristics and the ability to form a hydrophobic film
on metal surfaces [11,18]. Imidazoline and its derivatives have excellent inhibition effects
in acid [19], neutral [20] and alkaline [21] mediums. In our previous work [11], OIM was
introduced into gel coating to enhance the anticorrosion performance of coating in 3.5 wt.%
NaCl. In this study, the anticorrosion performance is mainly dependent on the physical
shielding effect of the coating, but the combination of gel material and corrosion inhibitor
to enhance the anticorrosion performance is feasible and effective. Inspired by this work,
gel material could be an ideal carrier for encapsulating material to protect carbon steel. The
controllable release behavior of inhibitors could enhance the environment applicability
and protection time. Therefore, the drawbacks of directly using inhibitors in an aqueous
corrosion environment would be significantly improved.

This work successfully synthesized a pH-controlled release solid inhibitor based on
PAM hydrogel and OIM. Scanning electron microscope (SEM), Fourier-transform infrared
spectroscopy (FTIR), thermal gravimetric analysis (TGA), and mechanical tests were em-
ployed to investigate the structure and characteristics of OIM@PAM. The OIM release
behavior of OIM@PAM in various pH value aqueous environments was studied by the
UV–visible spectrophotometer, and the release mechanism is discussed in-depth. The
outstanding anticorrosion performance of OIM@PAM in different pH corrosion mediums
was carried out by weight loss measurement and SEM observation, and the solid inhibitor
might be applicable for the corrosion protection of facilities and pipelines in oil production.

2. Results and Discussion
2.1. Characteristics of OIM@PAM
2.1.1. Surface Morphology of OIM@PAM

Figure 1 shows the surface and interior morphologies of synthesized PAM hydrogel
and OIM@PAM. It can be seen that OIM loaded into PAM hydrogel causes different mor-
phology. For the PAM hydrogel (Figure 1a,b), the surface and interior morphology are
relatively smooth and flat without pore canals. This result is due to the surface tension of
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water and the PAM interface, which lead to the tight bonding between PAM molecules dur-
ing the evaporating progress [22], while the surface and interior morphology of OIM@PAM
includes numerous pore canals, which is the characteristic structure of hydrogel containers
loaded with corrosion inhibitors after vacuum drying [17]. The pores area distribution in
the surface and interface of OIM@PAM is counted through the software of “Image–J”, and
the results are displayed in Figure S1. The pore canals existing in OIM@PAM can provide
space for OIM accommodation and release.
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Figure 1. The surface (a) and interior (b) SEM micrographs of the as-prepared PAM after
vacuum-drying; The surface (c) and interior (d) SEM micrographs of the as-prepared OIM@PAM
after vacuum-drying.

2.1.2. FTIR Analysis

Figure 2 illustrates the FTIR spectra of OIM@PAM, and the pure OIM and PAM
were also tested as control samples. The high-intensity broad absorption peak located in
3440 cm−1 is assigned to the antisymmetric stretching vibration of the –NH– group that
existed in OIM, PAM and OIM@PAM [23,24]. The sharpened peak at 1640 cm−1 contributed
to the −C=C−, −C=N− and −C=O− double bonds [12,24], which can be found in OIM,
PAM and OIM@PAM. The stronger peak at 1640 cm−1 of OIM@PAM than PAM indicates
the load of OIM corrosion inhibitor. There are several characteristic peaks only appearing
in OIM and OIM@PAM FTIR spectra. The weak peaks at 2923 cm−1 and 2861 cm−1

correspond to the symmetric and antisymmetric stretching vibrations of the −CH2− group,
respectively, which only consisted of OIM and OIM@PAM [25]. The interferential peak at
2359 cm−1 is associated with the antisymmetric stretching vibration of CO2 due to infrared
spectrometer optical path imbalance [26], and the peak located in 1290 cm−1 is attributed
to the stretching vibration of the tertiary amine group in OIM’s imidazole ring [12,23]. The
above peaks indicate that OIM was successfully loaded in PAM hydrogel. In addition, there
is no new peak in OIM@PAM in comparison with the FTIR spectra of OIM or PAM. The
OIM is doped into the network structure of PAM without a chemical reaction, which result
is consistent with the interior morphology of PAM hydrogel.
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Figure 2. FTIR spectra of pure OIM, PAM and OIM@PAM.

2.1.3. Thermostability and Inhibitor Loading Content of OIM@PAM

Figure 3 compares the thermal gravimetric analysis (TGA) results of OIM, PAM and
OIM@PAM. The investigated OIM and PAM hydrogel showed two main degradation stages.
The first stage is related to the evaporation of water molecules and other volatile impurities
through dehydration [27]. For OIM, the weight loss of this stage (40–190 ◦C) is 8.56%, and
for PAM hydrogel, the weight loss of the first stage (40–190 ◦C) is 6.48%. These results
reveal that the water content in PAM is lower than that of OIM. More importantly, the
OIM has better thermal stability in comparison with PAM. The second stage is related to
decomposition [27,28]. OIM started to decompose at 190 ◦C and achieved the maximum
decomposition rate at 375 ◦C. The mass change of OIM stopped at 500 ◦C, the weight loss
was 86.03%, and 3.60% substance remained. The decomposition of PAM started at about
190 ◦C and reached the highest decomposition rate at about 400 ◦C. The weight loss of PAM
was 66.30% mainly due to the intramolecular and intermolecular imidization reactions
on the amide group of PAM. These imidization reactions occurred when the temperature
reached 190 ◦C, and released NH3, H2O and CO2 [29].
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For the TGA curve of OIM@PAM, the first weight loss stage was at 40–190 ◦C. The
weight loss caused by water volatilization was about 6.93%. As the temperature increased
to 250 ◦C, the TGA curve of OIM@PAM was parallel to that of PAM. This result is due to
the high thermal stability of OIM at this temperature, and the weight loss of synthesized
composition is mainly caused by PAM. As the temperature further increased, the OIM@PAM
rapidly decomposed. OIM@PAM had the highest decomposition rate at about 375 ◦C, which
was consistent with OIM. The capacity of OIM in OIM@PAM could be calculated by the
decomposition ratio of TGA curves using the following equation (1) [30]:

DOIM × COIM + DPAM × CPAM = DOIM@PAM (1)

where DX is the decomposition ratio of the compound, and CX is the content of OIM
or PAM in OIM@PAM. Therefore, the content of anticorrosion inhibitor OIM loaded
in the OIM@PAM is 39.64%, which is quite a high value in comparison with other re-
searchers [13,31]. The TGA results reveal the excellent thermal stability of synthesized
OIM@PAM, which could be used in the corrosion environment of temperature lower than
190 ◦C, and the high OIM load content could ensure the anticorrosion performance of this
solid inhibitor, which will be discussed in the following section.

2.1.4. Mechanical Properties of OIM@PAM

Appropriate mechanical property is the premise to ensure the practical application
of OIM@PAM in a corrosion environment, especially for the flowing harsh corrosion
environment. The stress–strain curves of PAM hydrogel and synthesized OIM@PAM are
shown in Figure 4. The average tensile strength (σb) values of PAM and OIM@PAM are
17.69 MPa and 13.21 MPa, respectively. Compared with PAM, the hybrid of OIM into PAM
leads to the decrease of OIM@PAM strength and a remarkable increase of elongation at
break. From the TGA, the OIM load content in OIM@PAM is 39.64%, and the PAM content
is almost 60.36%. The hybrid of OIM into PAM leads to the monomer concentration of
PAM decreasing and weakening the length of the PAM polymer chains. PAM with a shorter
chain length leads to the decrease of the physical entanglement strength. Therefore, a lower
tensile strength of OIM@PAM is obtained compared with PAM [32]. When the OIM@PAM
sample was stretched, reversible non–covalent interactions between the PAM network
and OIM, such as π–π stacking and hydrogen bond, etc., can break to effectively dissipate
energy and prevent crack propagation, thus increasing its elongation at break [33].
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Figure 4. (a) Tensile stress–strain curve of PAM and OIM@PAM after vacuum-drying for 24 h at 45 ◦C;
(b) the values of the tensile strength and the elongation at break of OIM and OIM@PAM.

2.2. Inhibitor Releasing Characteristics and Mechanism of OIM@PAM
2.2.1. Release Behavior of OIM@PAM in Different pH Environment

Figure 5 shows the release behavior of OIM@PAM in wide range pH solutions. From
Figure 5a, the concentration of OIM in the test solutions declined as the immersion time
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increased. In the first 24 h, the inhibitor concentration decreased from over 350 mg/L to
about 100 mg/L. As the releasing time further increased, the inhibitor OIM concentration
maintained at several dozen mg/L. The two release stages might be caused by the different
releasing mechanisms. OIM is a highly effective corrosion inhibitor in various corrosive
environments. In our previous study [11], the inhibition efficiency of 10 mg/L OIM in
a simulated 3.5 wt.% NaCl corrosion environment could reach up to 92%. The inhibitor
release behavior of OIM@PAM in different pH solutions had no definite difference. The
released OIM concentration in pH 3 solution was the highest, which could reach 60 mg/L
after 168 h of immersion. As the immersion solution pH increased to 7, the released OIM
concentration after 168 h decreased to about 20 mg/L. As the solution pH value further
increased, the OIM concentration increased to 30 mg/L. Figure 5b shows the cumulative
release ratio of inhibitors from OIM@PAM in different pH solutions. In the first 24 h, the
cumulative release ratio of the inhibitor reached about 20% to 30% for each condition. As
the release time increased, the apparent release ratio could be observed. After the 168 h
release test, the cumulative release ratio of the tested sample in pH 3 solution reached the
highest value at 81.09%. As the test solution pH value increased, the release ratio decreased
to 47.40% in a neutral environment, and then slightly increased in an alkaline solution. The
release behavior of OIM from OIM@PAM is directly affected by the pH value of solutions.
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creased to 47.40% in a neutral environment, and then slightly increased in an alkaline so-
lution. The release behavior of OIM from OIM@PAM is directly affected by the pH value 
of solutions. 
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Figure 5. the three-times-tested average concentration (a) and the cumulative release (b) of OIM 
from OIM@PAM in different pH solutions at 25 °C. 

Figure 5. The three-times-tested average concentration (a) and the cumulative release (b) of OIM
from OIM@PAM in different pH solutions at 25 ◦C.

2.2.2. Release Mechanism of OIM@PAM

From Figure 5, two release stages of OIM@PAM could be observed [34]. When
OIM@PAM was immersed in solutions, OIM could be released quickly through the short
diffusion path in the first 2 h, which led to the high concentration of OIM in the first 2 h.
The OIM concentration gradually decreased over 2 to 24 h in the releasing process, which
was related to the enlargement of the transport path of OIM from the interior of OIM@PAM
to the test solution. As the immersion time increased, the decrease of the OIM amount in
OIM@PAM and the increase of the transport distance led to the released OIM concentra-
tion continuing to decline from 24 h to 168 h. The two release stages of the cumulative
release curve were fitted by the Korsmeyer–Peppas equation [17,35,36] and the Parabolic
equation [37,38], respectively.

Stage I (0 to 24 h) : Korsmeyer–Peppas :
Mt

M∞
= ktn (2)

Stage II (24 to 168 h) : Parabolic :
(M t/M∞)

t
= kt−0.5 + a (3)

where Mt and M∞ are the cumulative release ratio of OIM at time t and infinite time, respec-
tively. k is the release behavior kinetic constant, which is associated with the OIM delivery



Molecules 2023, 28, 1314 7 of 18

system. For the Korsmeyer–Peppas model in the first stage, n is an important exponent,
which could determine the release mechanism of OIM from OIM@PAM [17]. If n ≤ 0.45, the
release mechanism follows Fick diffusion, and the inhibitor release is controlled by inhibitor
concentration gradient [39,40]. If 0.45 < n < 0.89, the release mechanism is dominated by
Anomalous transport or non-Fick transport [17,41]. If n ≥ 0.89, the release behavior is
followed Case II transport [39,41], which means the release rate is only controlled by the
matrix relaxation [39]. For the second stage, a is a constant. The parabolic model of the
second stage indicates a sustainable release range [38]. All fitted results are presented in
Figure 6, and the fitted parameters are presented in Table 1.
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the release of OIM from OIM@PAM in the two stages.

Table 1. The fitting parameter and mechanisms of OIM from OIM@PAM in different pH solutions.

pH Value

Stage 1 (0~24 h) Stage 2 (24~168 h)

Korsmeyer–Peppas Model Parabolic Model

n k R2 Release Mechanism k a R2 Release Mechanism

3 0.5340 0.00351 0.9952 Anomalous transport 0.07034 0.00044 0.9978 Sustainable release
5 0.7435 0.0028 0.9962 Anomalous transport 0.1304 −0.00413 0.9998 Sustainable release
7 0.6514 0.0033 0.9949 Anomalous transport 0.1156 −0.00307 0.9988 Sustainable release
9 0.5526 0.0612 0.9960 Anomalous transport 0.1106 −0.00288 0.9918 Sustainable release

11 0.6114 0.0033 0.9939 Anomalous transport 0.1010 −0.00185 0.9984 Sustainable release

Figure 7 shows the schematic of the two OIM releasing stages. For the first stage, the
OIM release behavior is in good agreement with the Korsmeyer–Peppas equation, and
the fitted R2 is above 0.99. The n values for this stage in different pH solutions are in the
range of 0.45~0.89, which indicates the inhibitor release mechanism is in accord with the
anomalous transport [17,41]. The inhibitor release behavior is controlled by both diffusion
and matrix relaxation [39]. The released OIM due to the diffusion mechanism follows Fick’s
law presented in Equation (4):

∂c
∂t

= D
∂2c
∂x2 (4)
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The matrix relaxation of PAM gel is due to the absorption of water into the gel 3D
network, and the swelling of the PAM network is caused by water invasion, resulting in
the release of inhibitors. The OIM could dissolve in water. Once the OIM in OIM@PAM
contacts with corrosion mediums, the dissolution of OIM becomes the initial dynamic
force of the inhibitor release. The process of water invasion into gel also follows Fick’s
second law [42,43], which means the axial water transfer is according to the concentration-
dependent diffusivities in Equation (5):

∂Cw

∂t
=

∂

∂z

(
Dw

∂CW
∂z

)
(5)

where Cw is the water concentration in hydrogel, z is the water transfer distance, t presents
the time and Dw is the diffusion coefficient of water in the PAM gel at time t. Since it is
assumed that the diffusion coefficient depends on the solvent concentration (water in this
study), the Fujita model of free volume is used to model solvent ingress kinetics [42,44] in
Equation (6):

Dw = Dw,eqexp
(
−βw

(
1 − Cw

Cw,eq

))
(6)

where, Dw,eq is the diffusion coefficient of water in the fully swollen PAM, βw is a structural
parameter related to the PAM swelling rate, which will be further disused in 3.2.3, and
Cw,eq is the water concentration in the fully swollen PAM. In addition, this model is only
concerned with the initial absorption of water, and the water concentration change in PAM
at t = 0 and x = 0 is zero. The absorbed water into PAM gel could replace the inhibitor.
Therefore, the inhibitor content released into solutions is equal to the volume fraction of
the inhibitor in the PAM gel in Equation (7):

Cinh =
Vinh

Vhydro−Gel
Cw (7)
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The total released amount of OIM consists of Fick diffusion and hydrogel swelling, as
shown in Equation (8):

Qt = Qf + Qs (8)

where Qt is the total release amount of inhibitor, and Qf and Qs are the release amount
of inhibitor followed Fick and non-Fick diffusion, respectively. For this stage, the release
behavior of OIM@PAM shows little difference in various pH immersion solutions. On the
one hand, the pH values of solutions have no influence on the release behavior of Fick diffu-
sion. That is, the Qf of OIM@PAM release behavior has no difference in various immersion
solutions. On the other hand, the different dissolution behavior of PAM in solutions with
various pH values causes the difference of release behavior, and the dissolution behavior of
PAM will be discussed later. In brief, in the first stage, the stable status of OIM@PAM leads
to little difference in inhibitor release behavior at various pH values.

For the second stage, the inhibitor release behavior turns into the Parabolic model.
As the releasing time increased, the water penetrated into the PAM hydrogel and led to
the swelling of the hydrogel. The major effect of water penetrant on the gel entanglement
network is the inducement of viscoelastic stress [45]. During this process, water enhances
the mobility of gel chains by converting the glassy matrix into a swollen material, and there
are two moving fronts for this process:

(1) a sharp interface between unpenetrated gel and swollen gel (U–S interface), which
propagates inwards into the gel.

(2) a gel–water interface (G–W interface), which moves outwards and progressively
increases the gel layer thickness.

Several researchers used the water volume fraction Φ(xt) in the gel layer to describe
the penetration process and the moving behavior of the two fronts [45–48]:

∂Φ
∂t

= − ∂J
∂x

= − ∂

∂x

(
−D

∂Φ
∂x

+ ϑswΦ
)
=

∂y
∂x

(
D

∂Φ
∂x

(1 − Φ)

)
(9)

where D is the water diffusivity in the gel material and ϑsw is the swelling velocity of the
gel. x is the distance between the U–S interface and G–W interface.

Assuming the gel material would not dissolve during the immersion process means
the volume expansion is only caused by water absorption. Therefore, the absorbed water
and gel are incompressible and the mixture has no volume change. That is to say:

ϑsw(x, t) = D
∂Φ
∂x

(10)

For this stage, the OIM release has three steps. Firstly, at the fronts between unpene-
trated gel and swollen gel (U–S interface), the swelling of dry gel needs an initiate threshold
concentration of water [49]. Therefore, the initial release process of the inhibitor at the
U–S interface is controlled by the initial swelling of the gel, and the release kinetics of the
process were described in Equtions (6) and (7). Secondly, the diffusion of the inhibitor in
the swollen gel is influenced by the viscoelasticity of the hydrogel structure [50]. Finally, at
the gel–water (G–W) interface, the gel 3D net structure is filled with water. The inhibitor
release behavior could be regarded as an equilibrium state, which is only followed by
Fick’s law.

2.2.3. Swelling Behavior and Micromorphology of OIM@PAM

The macro morphology and volume change of OIM@PAM before and after the 168 h
releasing test are presented in Figure S2 and Figure 8, respectively. Before the release test,
the length of the cube shape OIM@PAM is 12.5 mm and the surface color is yellow, which
is mainly due to the color of OIM. After the 168 h test, the shape of OIM@PAM is still a
cube, which indicates the solid inhibitor could maintain the mechanical strength during
the immersion time. The surface color of OIM@PAM faded, especially for that immersed
in the pH 3 solution. In combination with the OIM releasing curves in Figure 5, the fade
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of OIM@PAM is caused by OIM releasing. The side length of the OIM@PAM cube after
immersion grew longer significantly in comparison with the pristine cube. These results
indicate that the swelling rate of OIM@PAM is related to the pH value of the corrosive
solution. According to Figure 8, the volume change rate of OIM in the pH 3 solution is
about 85 mm3/h, which is the highest one of all the test conditions, and the change rate
decreases as the immersion solution pH increases to 7, and then increase as the pH further
increase. PAM can react with H+ or OH− in solution [51–53]. In the acid medium, the AM
group in PAM has hydrolysis and imidization reactions [51]. As the medium pH decreases,
the imidization reaction would be the major reaction. In the alkaline solution, PAM would
hydrolyze into acrylic acid and ammonium salt [51,52]. Therefore, the volume change of
PAM during immersion is composed of three factors: (1) the swelling of hydro–gel during
immersion, (2) the dissolution of PAM material in an aqueous environment and (3) the
release behavior of inhibitors. It follows from the above that the volume change of gel
material is larger than the diffusion flux of water in Equation (12). This situation could
enhance the inhibitor release at the interface between unpenetrated gel and swollen gel,
and the initial release step of the inhibitor from PAM is strongly affected by the solution
pH value.
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Figure 8. The change in volume of OIM@PAM immersed in various pH test solutions for 7 days.

The internal micro images of the freezing-drying OIM@PAM after a 168 h release test
in different pH were observed via SEM at 20 kV, and the results are presented in Figure 9.
For all conditions, the internal morphology showed a palisading arrangement due to the
evaporation of water during the freezing-drying process. The fence-like channel could be
the passage of inhibitor release. The distribution of channels of a solid inhibitor in pH 3
and 11 is dense and orderly, and the distance between two channels is about 100 µm. For
the inhibitor immersed in pH 5 and 9, the distance between two channels slightly increased.
The distribution of channels in a PAM inhibitor immersed in pH 7 is much looser than
the other conditions. This result is consistent with the OIM release results in Figure 5. As
we discussed above, the diffusion behavior of the inhibitor in swollen gel is controlled by
the viscoelasticity of the gel structure and Fick’s law. Once the swollen gel material forms
the ordered channel, the inhibitor release rate will be enhanced, and the distribution of
inhibitor pathways could also affect the release behavior.
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(a) pH 3, (b) pH 5, (c) pH 7, (d) pH 9 and (e) pH 11.

2.3. Corrosion Protection Effect of OIM@PAM in Various pH NaCl Solutions
2.3.1. Weight Loss Measurements

Figure 10a shows the corrosion behavior of L80 steel in the different pH solutions
of 3.5 wt.% NaCl without OIM@PAM, and the relevant data are listed in Table S1. The
corrosion rates of L80 steel in test solutions without a solid inhibitor have high values,
especially in the acid solutions. As the immersion time increases, the corrosion rate of L80
steel in the test solutions slightly decreases. After the 168 h corrosion test, the corrosion
rate of L80 steel remains above 0.2 mm/y, which is classified as severe corrosion for steel
in pH 3 and 5 and high corrosion for steel in neutral and alkaline solutions, according
to the NACE–RP0775 standards. The unprotected steel in the test solution underwent
serious deterioration resulting from electrochemical corrosion. The corrosion mechanism of
steel is changed by the pH value of the corrosive medium. In an acid solution, a localized
electrochemical reduction–oxidation reaction is the main corrosion mechanism [54]. For
steel immersed in neutral and alkaline NaCl solutions, the corrosion rate increases with the
pH values augmented [55]. The corrosiveness of 3.5 wt.% NaCl solution at different pH
for L80 steel long-term soaking follows: pH 3 > pH 5 > pH 11 > pH 9 > pH 7. Therefore,
the corrosion protection requirements of L80 steel in various pH value test solution are
different, which requires the release of a solid inhibitor that could adapt to the environment
and provide an appropriate corrosion protection effect.
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Figure 10. corrosion rate and inhibition efficiency of L80 in different pH solution of 3.5 wt.% NaCl 
at 25 °C with and without OIM@PAM, (a) without OIM@PAM and (b) with OIM@PAM. 

Figure 10b shows the corrosion rate of L80 steel in test solutions with OIM@PAM, 
and the inhibition efficiency of OIM@PAM is calculated. The corrosion rate of L80 steel 
immersed in inhibited test solutions is dramatically decreased in contrast with solutions 
without solid inhibitors. The released OIM, as an imidazoline derivative, could absorb on 
the steel surface and form a hydrophobic film to suppress the corrosion reactions on steel 
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enhancing the adsorption effect of OIM on the steel surface. The oleate carbon chain tail 
in OIM would help to increase the hydrophobicity of the absorption film [56]. The good 
inhibition performance of OIM is the foundation of the solid inhibitor. For the steel im-
mersed in acid solution (pH 3 and 5), the corrosion rate decreased obviously in compari-
son with the other conditions. After 168 h of immersion, the corrosion rate of L80 steel in 
the pH 3 and 5 test solutions was 0.0432 mm/y and 0.0511 mm/y, respectively. For the steel 
immersed in neutral and alkaline solutions, the corrosion rate was also reduced to below 
0.076 mm/y according to Chinese standards SY/T 5329. The different inhibition effect of 
OIM@PAM is associated with the corrosivity of the test solution and the release character-
istics of OIM@PAM. The inhibition efficiency (IE%) calculated by the weight loss results 
are also presented in Figure 10b and Table S1. The highest IE% value for each condition 
was obtained at 24 h due to the quick release of inhibitors from OIM@PAM in the first 

Figure 10. Corrosion rate and inhibition efficiency of L80 in different pH solution of 3.5 wt.% NaCl at
25 ◦C with and without OIM@PAM, (a) without OIM@PAM and (b) with OIM@PAM.
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Figure 10b shows the corrosion rate of L80 steel in test solutions with OIM@PAM,
and the inhibition efficiency of OIM@PAM is calculated. The corrosion rate of L80 steel
immersed in inhibited test solutions is dramatically decreased in contrast with solutions
without solid inhibitors. The released OIM, as an imidazoline derivative, could absorb
on the steel surface and form a hydrophobic film to suppress the corrosion reactions on
steel surface [1,11]. N atom in the imidazole ring could provide electrons to the steel
surface, enhancing the adsorption effect of OIM on the steel surface. The oleate carbon
chain tail in OIM would help to increase the hydrophobicity of the absorption film [56].
The good inhibition performance of OIM is the foundation of the solid inhibitor. For the
steel immersed in acid solution (pH 3 and 5), the corrosion rate decreased obviously in
comparison with the other conditions. After 168 h of immersion, the corrosion rate of L80
steel in the pH 3 and 5 test solutions was 0.0432 mm/y and 0.0511 mm/y, respectively. For
the steel immersed in neutral and alkaline solutions, the corrosion rate was also reduced
to below 0.076 mm/y according to Chinese standards SY/T 5329. The different inhibition
effect of OIM@PAM is associated with the corrosivity of the test solution and the release
characteristics of OIM@PAM. The inhibition efficiency (IE%) calculated by the weight loss
results are also presented in Figure 10b and Table S1. The highest IE% value for each
condition was obtained at 24 h due to the quick release of inhibitors from OIM@PAM
in the first release stage (Figure 5). As the immersion time increased, the IE% slightly
decreased, especially for the pH 7 solution. This result was due to the release difference of
OIM@PAM in various pH solutions. According to the above discussion, the solid inhibitor
of OIM@PAM could provide an appropriate corrosion protection effect for steel in different
corrosive mediums, especially for an acid environment.

2.3.2. Surface Observation of L80 Steel after Immersion Test

The Raman spectrum is used to study the adsorption of OIM on a L80 steel surface
after the immersion test, and the results are shown in Figure 11. The pure OIM molecule
has three characteristic peaks. The peaks located at 1662 cm−1, 1440 cm−1 and 1302 cm−1

are attributed to vibrations of the C=N double bond, C−N bond and −CH2− group,
respectively [11]. For the L80 steel immersed in a solution without OIM@PAM, there are
characteristic peaks represented by γ−FeOOH (at 250 cm−1 and 389 cm−1), α−Fe2O3 (at
298 cm−1) and Fe3O4 (at 675 cm−1) [57]. For the L80 steel immersed in the pH 7 solution
with OIM@PAM, the characteristic peaks caused by corrosion products and OIM could
both be found. This result indicates the OIM released from OIM@PAM could be absorbed
on a steel surface and provide excellent long-term protection performance for steel.
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The SEM micrographs of L80 steel after the 168 h immersion test in uninhibited and
inhibited pH 3, 7 and 11 solutions are presented in Figure 12. According to Figure 12a, the
surface of L80 steel corroded in the pH 3 test solution looks similar to the lunar surface.
The rough surface contains several pits with diameters about 30 µm. The surface of
steel immersed in pH neutral and alkaline are presented in Figure 12b,c. The corrosion
morphology in these conditions shows similar characteristics, which means the corrosion
mechanism of these conditions is same. After adding OIM@PAM, the corrosion evidence
on the steel surfaces of all conditions shows a significant reduction. The surface roughness
of steel decreases in comparison with the uninhibited solution. For the steel in the pH 3
inhibited solution, there are some white dots and polishing traces on the steel surface. The
surfaces of steel immersed in pH 7 and 11 inhibited solution are similar, while the polishing
traces on the surface of steel in pH 11 is more obvious than that of steel in pH 7. The SEM
results further confirmed the excellent inhibition effect of OIM@PAM in NaCl solution with
a wide pH range, especially for the more corrosive environment.
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3. Materials and Methods
3.1. Synthesis of OIM@PAM Solid Corrosion Inhibitor

Acrylamide (AM), N,N-methylene-bis-acrylamide (BIS), ammonium persulfate (APS),
tetramethylethylenediamine (TEMED) and oleate imidazoline (OIM) all purchased from
Shanghai Macklin Biochemical Technology Co., Ltd. (Shanghai, China) for the preparation
of the solid corrosion inhibitor.

Firstly, as Figure 13 shows, 1.88 g acrylamide (AM) was dissolved into 5 mL deionized
water. Secondly, 1 g oleic imidazoline (OIM) was dispersed to the above solution with
continuous stirring until the inhibitor dissolved completely, followed by adding 0.032 g
N,N-methylene-bis-acrylamide (BIS) to the mixed solution, and all of the above steps were
processed under the temperature range of 0–4 ◦C to prevent acrylamide from polymerizing
prematurely. Thirdly, 0.015 g ammonium persulfate (APS) was introduced into the above
solution to convert acrylamide monomers to free radicals. The free radicals would react with
unactivated monomers to begin the polymerization chain reaction, while the addition of
TEMED aims to accelerate the rate of formation of free radicals from APS and, consequently,
catalyze the polymerization. After that, the as-prepared mixed solution was poured into
a silica gel mold (20 mm × 20 mm × 20 mm) and polymerized at 45 ◦C for 12 h. Finally,
after drying in a vacuum oven (D2T–6050, Jinghong Experimental Equipment Co., Ltd.,
Shanghai, China) at 45 ◦C for 24 h, the solid corrosion inhibitor was successfully synthesized
and recorded as OIM@PAM. The average weight of obtained OIM@PAM is 2.5583 g, and
the side length is 12.5 mm.
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Figure 13. Schematic diagram of the synthesis of OIM@PAM solid corrosion inhibitors.

3.2. Characterization Methods

The micromorphology of OIM@PAM was observed by scanning electron microscope
(ZEISS EV0 MA15, Carl Zeiss, Dublin, CA, USA) with the accelerating voltage of 20 kV. The
structure of OIM@PAM was measured by a fourier-transform infrared analyzer (Nicolet 6700,
Thermo Scientific, Waltham, MA, USA) with a wavelength range of 500 cm−1–4000 cm−1.
Thermo-gravimetric analysis (DSC823, METTLER TOLEDO, Greifensee, Switzerland) was
employed to estimate the loaded amount of OIM at a heating rate of 10 ◦C/min in a
temperature range of 40–600 ◦C in the N2 atmosphere. The tensile test of OIM@PAM
mainly referred to the ASTM standard D822 at room temperature in atmosphere, which
was measured by an electronic universal testing machine (ETM502C, Wance Co. Ltd.,
Shenzhen, China) with the crosshead speed of 5 mm/min [58]. Each sample was measured
three times to guarantee the accuracy of the results. A raman spectrometer (BWS465–785S,
B&W TEK, Newark, DE, USA) was used to study the OIM adsorption behavior at the L80
steel/corrosive solution interface. The selected laser wavelength was 785 nm.

3.3. Release Behavior of OIM from OIM@PAM

A UV–Visible spectrophotometer was used to investigate the release behavior of OIM
from OIM@PAM. The standard OIM solutions with concentrations of 50, 100, 125, 150,
175 and 200 mg/L were prepared. The UV–Vis curves of the standard OIM solution are
shown in Figure 14a, and the relationship between absorbance and OIM concentrations
was linearly fitted and is shown in Figure 14b.

To investigate the OIM release behavior from OIM@PAM, OIM@PAM was completely
immersed in 100 mL solution with various pH (3, 5, 7, 9 and 11). After a certain time (2 h,
4 h, etc.), 5 mL immersion solution was taken out and used to test the OIM concentration by
UV–Vis, and the OIM release amount can be calculated according to OIM standard curve
(Figure 14). At the same time, the rest solution was replaced by the appropriate pH solution
to simulate the flow state of the corrosive medium. According to the results of the releasing
test and TGA test, the cumulative release ratio of OIM from OIM@PAM can be calculated.
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3.4. Corrosion Protection Performance of OIM@PAM

The L80 carbon steel (wt. %: 0.36%C, 0.45%Si, 1%Mn, 0.03%P, 0.004%S, 0.25%Ni,
0.38%Mo, and balance Fe) purchased from China Jiangsu Xinyou Instrument Co., Ltd.
(Changzhou, China) was used as the corrosion substrate. The surfaces of L80 coupons were
polished with 160# to 2000# SiC grit paper [59] and rinsed with acetone, deionized water
and ethanol. The 3.5 wt.% NaCl solutions with different pH values (3, 5, 7, 9 and 11) were
selected as the corrosive medium. The above-mentioned reagents were purchased from
Chengdu Kelong Chemical Reagent Factory (Chengdu, China).

The corrosion protection performance of OIM@PAM on L80 steel in a wide range
pH value environments was tested by a weight loss experiment. The original qualities of
the L80 samples were recorded using an analytical balance with a precision of ±0.1 mg.
Then, the L80 samples were immersed in different pH values of 3.5 wt.% NaCl solution
with and without OIM@PAM. The above experiments were carried out at 25 ◦C, and the
different pH value corrosive solutions were replaced every 24 h to simulate the flow state
of the mediums.

Corrosion products were removed using an acid-washing solution composed of 10%
HCl + 0.5% ammonioformaldehyde (C6H12N4) [60]. After that, each L80 sample was
weighted three times through electronic balance to ensure the reliability of the tested data.
The corrosion rate (CR) and inhibition efficiency (IE) of L80 are calculated according to the
following equations [61]:

CR =
∆w × 87600

Stρ
(11)

IE(%) =

(
1 − CR

CR0

)
× 100 (12)

where ∆w with the unit of gram (g) is the mass diffidence of L80 before and after the
experiment. S with the unit of square centimeter (cm2) is the surface of L80. t with the unit
of hour (h) is the experiment time of L80. ρ with the unit of gram per cubic centimeter
(g·cm−3) is the density of L80. CR and CR0 with the unit of millimeter per year (mm·y−1)
are the corrosion rate of L80 in the medium with and without OIM@PAM, respectively.

4. Conclusions

(1) OIM is successfully loaded into the PAM gel network, and the load amount is up to
39.64%. The synthesized OIM@PAM has good thermal stability, which could be used in an
environment below 190 ◦C, and OIM@PAM also has good mechanical properties.

(2) The release behavior of OIM from OIM@PAM depends on the external solution
pH values, and its release has two stages. The first stage is the OIM quick release from the
PAM, which is followed by Fick’s law and hydro-gel swelling. The second stage is the OIM
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sustained release, when the release rate is controlled by the initiate threshold concentration
of water for the un-swollen gel and the inhibitor pathway in the swollen gel.

(3) The corrosion protection performance of the OIM@PAM solid inhibitor in 3.5
wt.% NaCl solutions with a wide range of pH values is checked through weight loss
measurement. The corrosion rate of L80 steel in the NaCl solution can be reduced to below
0.076 mm/y, and the IE% for the OIM@PAM in all conditions are higher than 80%. The
Raman and SEM results further confirmed the corrosion protection effect of OIM@PAM.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28031314/s1, Figure S1: The pores area distribution
of OIM@PAM, (a) the surface of OIM@PAM, (b) the interface of OIM@PAM; Figure S2: The macro
images of as-prepared OIM@PAM immersed in different time in 3.5% (wt) NaCl with virous pH
conditions; Table S1: Average corrosion rate and inhibition efficiency of L80 steel in different pH
solutions of 3.5% (wt) NaCl without and with OIM@PAM at 25 ◦C.
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