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Abstract: Fluorescent organic dyes that absorb and emit in the near-infrared (NIR, 700–1000 nm)
and shortwave infrared (SWIR, 1000–1700 nm) regions have the potential to produce noninvasive
high-contrast biological images and videos. BODIPY dyes are well known for their high quantum
yields in the visible energy region. To tune these chromophores to the NIR region, fused nitrogen-
based heterocyclic indolizine donors were added to a BODIPY scaffold. The indolizine BODIPY dyes
were synthesized via microwave-assisted Knoevenagel condensation with indolizine aldehydes. The
non-protonated dyes showed NIR absorption and emission at longer wavelengths than an aniline
benchmark. Protonation of the dyes produced a dramatic 0.35 eV bathochromic shift (230 nm shift
from 797 nm to 1027 nm) to give a SWIR absorption and emission (λmax

emis = 1061 nm). Deprotonation
demonstrates that material emission is reversibly switchable between the NIR and SWIR.

Keywords: near-infrared (NIR) emission; shortwave infrared (SWIR) emission; BODIPY; indolizine;
fluorescence imaging agents

1. Introduction

The demand for affordable, non-invasive, high-resolution, high-frame-rate biological
imaging is obvious [1–3]. The growing field of fluorescence imaging has the potential to
meet this demand; however, few small-molecule probes provide optimal photophysical
and biological properties to be used at the clinical scale [1–3]. Optimal photophysical
properties include: absorption and emission wavelengths (λmax

abs and λmax
emis) lying

in the near infrared (NIR, 700–1000 nm) or, preferably, in the shortwave infrared (SWIR,
1000–1700 nm) regions, strong molar absorption coefficients (ε), and high emissive quantum
yields (Φ) [4–9]. Longer emission wavelengths offer diagnostic imaging capability with
improved signal-to-noise ratios, due to the diminishing autofluorescence and scattering of
biological tissue [1,10,11]. The product of molar absorptivity and emissive quantum yield
gives molecular brightness (ε × Φ = MB). A high MB at longer wavelengths is crucial for
minimizing dye dosage and maximizing the imaging signal [10,11]. Designing a molecule
with a high MB and SWIR emission would improve the quality, accuracy, and imaging
feedback time of current non-invasive in vivo fluorescence imaging.

Boron-dipyrromethene (BODIPY) is a fused nitrogen- and boron-containing hete-
rocyclic fluorophore core that is known for bright emission in the visible and NIR re-
gions [12–16]. When compared to cyanines and xanthenes, few BODIPY dyes emit in
the SWIR [17–21]. Tuning electron donating groups on a BODIPY scaffold can poten-
tially produce bright NIR/SWIR dyes. Indolizine is a fused nitrogen-based heterocycle
that displays exceptional electron donating ability due to its planarity, full-conjugation,
and proaromaticity in the donated configuration [22]. Our group has recently reported
squaraines [23,24], cyanines [25,26], and xanthenes [18,27] equipped with indolizine donors
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to replace common amine and indoline donors, which significantly shifted the parent
chromophores to longer emission wavelengths. Thus, we aimed to do the same with a
classic BODIPY scaffold to embark on a fundamental chromophore design study similar to
our previous publications on cyanines and squaraines [23,25]. These fundamental studies
are critical to designing desirable chromophore properties and synthetic routes to these
systems before synthetically complicating water solubilizing functionality is installed for
biological imaging purposes. Additionally, according to the literature, meso-C BODIPY dyes
(where a carbon is located at the middle, or meso, position in the BODIPY core) seem to rely
heavily on extended conjugation, as well as donation strength, to access longer wavelengths.
Installing styryl substituents on a tetramethyl BODIPY bathochromically shifts the λmax

emis

by 0.64 eV (186 nm shift from 514 nm to 700 nm; Figure 1) [28,29]. However, exchanging the
phenyl substituents (no donors) with dimethylanilines (strong donors) minimally affects
the λmax

emis (700 vs. 737 nm) [12]. Herein, we show that using an indolizine donor in place
of the dimethyl aniline donor produces a significant bathochromic shift of the λmax

emis by
0.26 eV (135 nm shift from 737 nm to 872 nm) in the meso-C BODIPY scaffold that is well
into the NIR region.
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Figure 1. Previously published BODIPY dyes [12,28,29] and novel indolizine-BODIPY dyes organized
by peak emission wavelength (λmax

emis).

2. Results and Discussion
2.1. Computational Studies

The neutral indolizine BODIPY dyes (2Ph and 1Ph) and the dimethylaniline literature
benchmark dye (DMA) were evaluated computationally to predict absorption maxima,
HOMO and LUMO orbital localization, and protonation position. These data were de-
termined by density functional theory (DFT) at the B3LYP/6-311G (d,p) level of theory
with dichloromethane implicit solvation via a polarizable continuum model [30–35]. All
neutral targets exhibited NIR (DMA = 708 nm, 2Ph = 765 nm, and 1Ph = 761 nm) vertical
transitions, with the indolizine-based dyes exhibiting lower energy vertical transitions
compared to the aniline benchmark. All targets also exhibited high oscillator strengths
(>0.86, Table S1 from Supplementary Materials). For the two novel targets, the HOMO and,
to a slightly lesser extent, the LUMO orbitals were delocalized across the indolizine donors
and BODIPY core, which indicated potential π–π* behavior (Figure 2). To understand how
the bulky phenyl substituent on the indolizine affected the photophysical properties of the
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indolizine BODIPY scaffold, both the 2-phenyl (2Ph) and 1-phenyl (1Ph) indolizine donors
were selected as synthetic targets for this study. The dimethylaniline BODIPY dye (DMA)
was also prepared to compare the effects of changing an aniline to an indolizine on the
BODIPY scaffold [12].
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Figure 2. HOMO (bottom) and LUMO (top) orbitals for the three BODIPY dyes (DMA, 2Ph,
and 1Ph).

2.2. Synthesis

Both starting material indolizines (2Ph-Indz [22] and 1Ph-Indz [36]), the tetramethyl-
BODIPY core (1 [37]), and dimethylaniline BODIPY (DMA [12]) were all prepared according
to the literature precedent. The indolizines were formylated via the Vilsmeier–Haack
reaction with phosphorus(V) oxychloride (POCl3) and N,N-dimethylformamide (DMF)
in 1,2-dichloroethane (DCE) to afford the corresponding indolizine aldehydes in good
yield (Scheme 1). 2Ph-CHO had been previously reported [38], and novel 1Ph-CHO
was formed in an 84% yield. Finally, the indolizine aldehydes were reacted with 1 in
a microwave-assisted Knoevenagel-type condensation, using conditions modified from
literature procedures [39,40], to afford the indolizine-BODIPY products (2Ph and 1Ph)
in moderate to low yields (11–46%). Such condensation reactions between 1 and aryl
aldehydes have been reported to be low yielding [41–43], especially with increased donation
into the aldehyde, as was seen with the indolizine aldehydes. The final zwitterionic
indolizine BODIPY dyes were isolated via a short silica plug, suspension of the solid dye
in hot hexanes with sonication, and centrifugation to collect the pure dye. The dyes were
stable under ambient atmosphere in a dark refrigerator for up to one month. A slight
decomposition is observable on longer time scales to give the starting material aldehyde,
which can be removed with the aforementioned hexanes sonication and centrifugation
treatment. Additionally, the dyes exhibited minimal change in their absorption spectra
after 5 days of stirring in a dilute dichloroethane solution (room temperature, dark, and
ambient atmosphere; Figure S12 from Supplementary Materials). Finally, 2Ph and 1Ph were
characterized via 1H, 19F, and 11B NMR, along with IR spectroscopy and high-resolution
mass spectrometry.
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2.3. Photophysical Studies

The photophysical properties of all three BODIPY dyes were studied in dichloromethane
(CH2Cl2). All three dyes absorbed and emitted in the NIR region (Table 1 and Figures 3a and
S20–from Supplementary Materials). As predicted computationally, 2Ph and 1Ph exhibited
bathochromic shifts in absorption (798 nm and 797 nm, respectively) and emission (867 nm
and 872 nm, respectively) compared to DMA (707 nm absorption and 760 nm emission).
1Ph emitted at a slightly longer wavelength than 2Ph. The molar absorptivity of 1Ph was
higher than that of 2Ph (121,000 M−1 cm−1 and 97,000 M−1 cm−1, respectively), most
likely owing to less steric hindrance caused by the phenyl substituent at the 2-position
on the indolizine in 2Ph. The emissive quantum yield of 1Ph was also higher than that of
2Ph (5.6% and 3.5%, respectively, ref. IR820, Φ = 4.4% [44]), which was possibly due to
the reduced steric hindrance of the indolizine donor leading to less non-radiative decay.
Noticeably, the emissive quantum yield of DMA (34.6%, ref. HITCI, Φ = 28.3% [45]) was
an order of magnitude higher than 2Ph and 1Ph. The product of the molar absorptivity
and quantum yield of 2Ph and 1Ph gave good MB values at 3400 M−1 cm−1 and 6800 M−1

cm−1, respectively, for NIR emission wavelengths.
Inspired by the dramatic bathochromic shift in absorption and emission upon the

treatment of azulene BODIPY dyes with trifluoroacetic acid (TFA) that was reported by
Zhao, et al. [46], DMA, 2Ph, and 1Ph were subjected to 1% TFA solution in CH2Cl2 (ca.
10 µM dye concentration, Figure 3b). As expected, at least one of the aniline donors of
DMA was protonated, which hypsochromically shifted the λmax

abs to 627 nm with no lower
energy peaks observed (Figure S13 from Supplementary Materials). Similarly, the λmax

abs

of 2Ph hypsochromically shifted to 574 nm, which suggested protonation of the indolizine
nitrogen, therefore quenching electron donation into the π-system of the BODIPY dye.
However, a peak began forming at 981 nm and continued to grow over 24 h as the 574 nm
peak decreased in intensity. At 24 h, the 981 nm peak changed shape slightly and reached
its maximum intensity. Beyond 24 h, the peak continued to change shape and decrease
in intensity (Figure S14 from Supplementary Materials). Interestingly, when subjected
to the acidic conditions, 1Ph immediately formed an absorption peak at 1027 nm, which
maintained its shape and increased in intensity to become more intense than the original
non-protonated dye absorption peak after 2 h. Between 2 h and 21 h, the shape of the
peak changed, and its intensity decreased (Figure S15 from Supplementary Materials). The
protonated dye, 1Ph-TFA (1Ph in CH2Cl2 with 1% TFA after sitting for 2 h), displayed a
high molar absorptivity of 133,500 M−1 cm−1, more than that of the original dye. 1Ph-TFA
also emitted weakly in the SWIR region, with a λmax

emis at 1061 nm and a 0.0020% quantum
yield (ref. IR-1061, Φ = 0.32% [47], Table 1).
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Table 1. Photophysical data for BODIPY dyes in CH2Cl2.

Dye λmax
abs

(nm|eV)
λmax

emis

(nm|eV)
ε

(M−1 cm−1)
Φ

(%)
MB

(M−1 cm−1)
Stokes Shift

(eV)

DMA 707|1.75 760|1.63 87,500 34.6 ± 1.8 30,300 0.12
2Ph 798|1.55 867|1.43 97,000 3.5 ± 0.3 3400 0.12
1Ph 797|1.56 872|1.42 121,000 5.6 ± 0.6 6800 0.14

1Ph-TFA 1 1027|1.21 1061|1.17 133,500 0.0020 ± 0.0001 2.7 0.04
1 Solution contains 1% TFA (v/v).
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Figure 3. Photophysical studies of BODIPY dyes: (a) Absorption (solid line) and emission (dashed
line) of neutral dyes DMA, 2Ph, and 1Ph in CH2Cl2; (b) Absorption (solid line) of protonated dyes
DMA-TFA, 2Ph-TFA, 1Ph-TFA, and emission (dashed line) of 1Ph-TFA in CH2Cl2. (c) Reversible
protonation observed in the absorption curves of 1Ph, 1Ph-TFA, and 1Ph-TFA-TEA in DMSO-d6. (d)
Photographs of the solutions used in graph (c).

Lastly, the protonation of 1Ph was found to be reversible (Figure 3c). 1Ph was dis-
solved in a DMSO-d6 solution (ca. 3 mM), then 3000 equivalents of TFA-d were added
and mixed thoroughly. Deuterated solvents were selected in an attempt to monitor the
reaction by 1H NMR and UV-vis-NIR absorption spectroscopy; however, the NMR study
gave poorly resolved peaks. This solution immediately produced the absorption spec-
trum in Figure 3c, which is titled 1Ph-TFA. Then, 3000 equivalents of triethylamine (TEA)
were added and mixed thoroughly. This solution immediately produced the absorption
spectrum in Figure 3c, which is titled 1Ph-TFA-TEA. The original dye absorption peak
at 797 nm was reformed with an enhanced shoulder peak around 700 nm, which was
most likely a by-product of the protonation–deprotonation reaction. The solutions of
1Ph, 1Ph-TFA, and 1Ph-TFA-TEA displayed colorimetric changes upon reversible proto-
nation (Figure 3d). This reversible protonation was observed for DMA and 2Ph as well
(Figures S16 and S17 from Supplementary Materials). Interestingly, the protonation of 2Ph
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and 1Ph with 1% AcOH (v/v) only partially formed the SWIR peak (Figures S18 and S19
from Supplementary Materials).

Attempts to elucidate the structure of the protonated dye 1Ph-TFA by 1H NMR were
complicated by broadened peaks when using TFA-d and DMSO-d6. Thus, computational
investigations were undertaken to help identify a plausible protonated structure. To
the optimized geometry of 1Ph, a single proton was added above the electron rich six-
membered ring of one indolizine donor, which was equidistant (~2.3 Å) from each of the
6 atoms in the ring. The geometry was then optimized, and data was obtained by DFT at the
B3LYP/6-311G (d,p) level of theory with dichloromethane implicit solvation. Interestingly,
the proton was added at the 5-position (at a carbon) of the indolizine. This protonated
structure (Figure 4a) was consistent with other examples in the literature of SWIR-emitting
BODIPY dyes where an additional cation has been introduced in conjugation via synthetic
design or protonation [46,48]. 1Ph-TFA exhibited a 954 nm vertical transition (Table S1
from Supplementary Materials), which was 0.33 eV lower in energy than that of neutral
1Ph. That computational shift in vertical transition was similar to the experimental shift
in absorption (0.35 eV) seen in Figure 3b, which supported the structure proposed in
Figure 4a as being a plausible structure responsible for the observed SWIR absorption
and emission. The HOMO and LUMO orbitals (Figure 4b) indicated slight charge transfer
behavior, with electron density slightly shifting from the neutral indolizine donor to the
cationic indolizine. Additionally, the orbitals indicated a fully conjugated π system, which
supports the hypothesis that a cation was likely introduced in conjugation without the
proton disrupting conjugation in order to produce the bathochromic shift observed.
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3. Experimental Details
3.1. General Experimental and Computational Information

All reagents, solvents, and starting materials were purchased from commercial ven-
dors and were used without further purification. Microwave synthesis was conducted
using a CEM Discover 1.0 with 10 mL CEM glass vials and caps. All microwave reac-
tion conditions included irradiation with 300 W of power, a maximum pressure setting
of 150 psi, a maximum run time (time to ramp temperature up to reaction temperature)
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of 5 min, temperature monitoring using a built-in IR sensor, and compressed air cooling
after reaction hold time. Thin-layer silica gel chromatography (TLC) was conducted with
Sorbent Technologies, Inc. (Atlanta, GA, USA) glass-backed 250 µm Silica Gel XHL TLC
plates and visualized under a UV (254 nm) lamp. Flash column chromatography was per-
formed on a Teledyne CombiFlash Rf+ with prepacked Silica Luknova SuperSep 12–80 g
cartridges. Short plugs of silica were performed with Sorbtech technical grade 60 Å pore
size (230 × 400 mesh) silica gel. In all cases where flash column chromatography was used,
a gradient was established from 100% nonpolar solvent that increased to and went beyond
the ratio of solvents at which each compound was eluted, which was reported herein.
The 1H, 19F, 11B, and 13C NMR spectra were recorded on a Bruker Avance-300 (300 MHz)
or Bruker Avance-400 (400 MHz) spectrometer, and the chemical shifts were reported
in ppm using residual solvent signals as internal standards (chloroform-d δ = 7.26 ppm
or DMSO-d6 δ = 2.50 ppm for 1H NMR, and chloroform-d δ = 77.16 ppm for 13C NMR).
Data were reported as s = singlet, d = doublet, t = triplet, q = quartet, p = pentet, m =
multiplet, br = broad; coupling constants, J, were in Hz. For electrospray ionization (ESI)
high-resolution mass spectrometry (HRMS), quadruple-TOF was used to obtain the data,
both in positive and negative modes, with a Waters Synapt HDMS or Orbitrap Exploris
240 to obtain the data in positive mode with a spray voltage of 3600 V, a resolution of
240,000, the ion transfer tube temperature set at 300 ◦C, and the mass analyzer set to the
200–2000 Da range. ATR-IR was taken using a Bruker Alpha Platinum-ATR FTIR Spectrom-
eter, and spectra were processed on OPUS 6.5 software. All IR samples were taken as a
solid/neat, unless otherwise noted. UV-vis-NIR-SWIR absorption spectra were measured
using an Avantes/AvaSpecULS2048-USB2-50 spectrometer (Pine Research part RRAVSP3)
with an Avantes/AvaSpec light source (Pine Research part RRAVSP) and AvaSoft8 software
program, and the Ocean Insight Flame-NIR+ spectrometer (FLMN02855) with an Ocean
Insight Halogen light source (HL-2000) and Ocean Insight OceanView software program
were used.

The emission data for DMA were collected using a Horiba FluoroMax SpectroFlu-
orimeter with a 685 nm excitation source, an excitation slit width resolution of 2 nm,
and an emission slit width resolution of 2 nm, with HITCI in EtOH as the reference dye
(Φ = 23.8% [45]). The emission data of 2Ph and 1Ph were collected using a Horiba LabRAM
HR Evolution Raman spectrometer with a 785 nm excitation laser with a hole size of 100 µm
and a 600 g/mm. The detector used was a silicon-based CCD detector with IR820 in MeOH
as the reference dye (Φ = 4.4% [44]). The emission data for 1Ph-TFA were collected using a
Horiba PTI QuantaMaster QM-8075-21 fluorometer with a liquid nitrogen cooled InGaAs
detector that used a 992 nm excitation source, an excitation slit width of 10 mm, and an
emission slit width of 15 mm, with IR-1061 in CH2Cl2 as the reference dye (Φ = 0.32% [47]).
Rectangular 10 mm path cuvettes were used for all fluorescence measurements under
ambient atmosphere. The photoluminescent quantum yields (PLQY) of the dyes were
determined using the integrated emission intensity values (summation of all Y-value data
points using Microsoft Excel) by using the relative quantum yield equation [49]:

Φsample = Φre f erence ×
Esample

Ere f erence
×

Sre f erence

Ssample
×

η2
sample

η2
re f erence

where Φ denotes the quantum yield; E refers to integrated emission intensity; S is equal to
1–10−A, with the superscript A being the absorbance value at the excitation wavelength;
η is the refractive index of the solvent; sample is the dye studied herein; and reference is
the reference standard chosen for quantum yield studies. The absorbances were 0.10–0.33
at the excitation wavelength for all of the dye emission samples. Quantum yields were
calculated as an average of multiple emission experiments (three experiments for 2Ph
and 1Ph, two experiments for DMA and 1Ph-TFA). The error reported was calculated
as the standard deviation between the independent quantum yield calculations. Molar
absorptivity values were determined using the Beer–Lambert law equation with three
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individual concentrations plotted with a linear fit (R2 >0.99) whose slope gave the molar
absorptivity and was rounded to the nearest 500 M−1 cm−1.

For all computations, molecules were drawn in ChemDraw (18.0.0.231) and saved as
an MDL Molfile. These geometries were then optimized with the MMFF94 force field via
Avogadro (1.2.0). Accurate geometry optimization was performed sequentially by DFT
using Gaussian 16 [50] with the B3LYP functional [30,31] with the following basis sets:
first 3-21G, second 6-31G (d,p) [51,52], and finally 6-311G (d,p) [32]. These were all in
dichloromethane as a polarizable continuum model (PCM) [33–35]. Time-dependent den-
sity functional theory (TD DFT) computations were performed with optimized geometries
with the B3LYP functional and 6-311G (d,p) basis set to compute vertical transition ener-
gies and oscillator strengths. All optimized geometries displayed no negative vibrational
frequencies, which were computed with optimized geometries with the B3LYP functional
and 6-311G (d,p) basis set.

3.2. Procedure for the Preparation of 1-Phenylindolizine-3-Carbaldehyde (1Ph-CHO)

To a 25 mL flame-dried round bottom flask under nitrogen atmosphere charged with a
magnetic stir bar at 0 ◦C (ice bath), anhydrous 1,2-dichloroethane (DCE, 0.4 M concentration
with respect to limiting reagent, 7.2 mL), phosphorous(V) oxychloride (POCl3, 1.2 equiv.,
5.742 mmol, 880 mg, 0.535 mL), and dimethylformamide (DMF, 1.5 equiv., 7.178 mmol,
525 mg, 0.556 mL) were added and stirred for 20 min. at 0 ◦C. Then, the starting material
1-phenylindolizine (1Ph-Indz, 1.0 equiv., 4.785 mmol, 924 mg) was added as a solution
in DCE (remaining amount, 4.8 mL) at 0 ◦C. The resulting reaction mixture was stirred
while warming up to room temperature until all the starting material indolizine was
consumed according to TLC (4 h). The reaction was quenched with KOH(aq) and extracted
with CH2Cl2. The organic layer was dried with anhydrous Na2SO4, and the solvent was
removed in vacuo. The crude was then purified with flash column chromatography using
15% EtOAc/85% hexanes to afford the pure aldehyde product 1Ph-CHO in 84% yield
(4.038 mmol, 894 mg) as a brown solid (0.25 Rf in 10% EtOAc/90% hexanes). The 1H
NMR (400 MHz, chloroform-d) shifts were δ 9.77 (s, 1H), 9.75 (d, J = 7.3 Hz, 1H), 7.87 (d,
J = 9.0 Hz, 1H), 7.58 (d, J = 7.6 Hz, 2H), 7.55 (s, 1H), 7.48 (t, J = 7.5 Hz, 2H), 7.34 (t,
J = 7.4 Hz, 1H), 7.30–7.18 (m, 1H), and 6.97 (t, J = 6.9 Hz, 1H) ppm. The 13C NMR (101 MHz,
chloroform-d) shifts were δ 177.6, 136.9, 134.6, 129.1, 128.9, 128.0, 126.9, 125.8, 125.4, 123.8,
118.8, 117.9, and 114.6 ppm. The IR (neat, cm−1) peaks were 1638, 2776, 2807, 2836, 3000,
3031, 3060, 3084, and 3109. The HRMS (ESI) in m/z calculated for C15H12NO [M + H]+

was 222.092, and 222.091 was found. The starting material indolizine 1Ph-Indz [36] and
indolizine aldehyde 2Ph-CHO [38] were synthesized according to the literature precedent.

3.3. General Procedure for the Preparation of Indolizine-BODIPY Dyes 2Ph and 1Ph

To a 10 mL flame-dried CEM microwave vial under nitrogen atmosphere charged with
a magnetic stir bar and ~300 mg oven-dried 3Å molecular sieves, methyl 4-(4,4-difluoro-
1,3,5,7-tetramethyl-3a,4a-diaza-4-bora-s-indacen-8-yl) benzoate (1, 1.0 equiv.), indolizine
aldehyde (4.0 equiv.), anhydrous toluene (0.035 M concentration with respect to limiting
reagent), and piperidine (0.265 M concentration with respect to limiting reagent) were
added. The microwave vial was then stirred and subjected to microwave irradiation at
150 ◦C for 1-h increments until all the starting material BODIPY (1) and mono-substituted
intermediate was consumed by TLC and UV-vis-NIR absorption of the reaction mixture
samples diluted in CH2Cl2. The reaction mixture was then quenched with water & extracted
multiple times with CH2Cl2 until the aqueous layer was colorless. The organic layer was
dried with anhydrous Na2SO4, and the solvent was removed in vacuo. The crude mixture
was then passed through a plug of silica gel with a mixture of CH2Cl2/hexanes (70/30
for 2Ph, 80/20 for 1Ph). The solvent was then removed in vacuo. The resulting silica gel
purified mixture was suspended in hot hexanes and sonicated, then centrifuged for >1 h, at
which point the supernatant was pipetted off. This sonication/centrifugation procedure
was repeated multiple times until the black powdery pellet became pure dye by NMR.
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The starting material BODIPY 1 [37] was synthesized according to the literature precedent.
Note that these indolizine BODIPY dyes were not soluble enough in DMSO-d6 to obtain an
adequate 13C NMR. Dimethylaniline BODIPY DMA was prepared under these modified
conditions, and its spectra matched those published in the literature [12].

Methyl 4-(5,5-difluoro-1,9-dimethyl-3,7-bis((E)-2-(1-methyl-2-phenylindolizin-3-yl)vinyl)-5H-
4λ4,5λ4-dipyrrolo[1,2-c:2′,1′-f][1–3]diazaborinin-10-yl) benzoate (2Ph): Together, 1 (1.0 equiv.,
0.0523 mmol, 20 mg), 2Ph-CHO (4.0 equiv., 0.2093 mmol, 49 mg,), piperidine (0.265 M,
0.20 mL), and anhydrous toluene (0.035 M, 1.5 mL) were used to afford 2Ph in an 11%
yield (0.0059 mmol, 5 mg) as a black/red solid (0.50 Rf in 60% CH2Cl2/40% hexanes) after
reacting for 5 h with a plug of silica with 70% CH2Cl2/30% hexanes; then, the hexanes
sonication/centrifugation procedure was performed as described above. The 1H NMR
(300 MHz, DMSO-d6) shifts were δ 8.67 (d, J = 6.9 Hz, 2H), 8.10 (d, J = 8.0 Hz, 2H), 7.68 (d,
J = 9.0 Hz, 2H), 7.62–7.46 (m, 8H), 7.41 (d, J = 7.4 Hz, 4H), 7.31 (t, J = 7.3 Hz, 2H), 7.15–6.93
(m, 6H), 6.79 (s, 2H), 3.90 (s, 3H), 2.23 (s, 6H), and 1.31 (s, 6H) ppm. The 19F NMR (376 MHz,
DMSO-d6) shifts were δ −132.8–(−141.1) (br m) ppm. The 11B NMR (128 MHz, DMSO-d6)
shifts were δ 0.76 (t, J = 34.8 Hz) ppm. The IR (neat, cm−1) peaks were 1732, 2861, 2917, 2947,
3028, 3052, 3070, 3094, and 3106. The HRMS (ESI) in m/z calculated for C53H43BF2N4O2
[M]+ was 816.345, and 816.342 was found.

Methyl 4-(5,5-difluoro-1,9-dimethyl-3,7-bis((E)-2-(1-phenylindolizin-3-yl)vinyl)-5H-4λ4,5λ4-
dipyrrolo[1,2-c:2′,1′-f][1,3,2]diazaborinin-10-yl) benzoate (1Ph): Together, 1 (1.0 equiv., 0.1047 mmol,
40 mg), 1Ph-CHO (4.0 equiv., 0.4186 mmol, 93 mg,), piperidine (0.265 M, 0.40 mL), and
anhydrous toluene (0.035 M, 3.0 mL) were used to afford 1Ph in a 46% yield (0.0496 mmol,
39 mg) as a black/green solid (0.50 Rf in 70% CH2Cl2/30% hexanes) after using a plug of
silica with 80% CH2Cl2/20% hexanes, and the hexanes sonication/centrifugation procedure
was performed as described above. The 1H NMR (400 MHz, DMSO-d6) shifts were δ 8.90
(d, J = 7.3 Hz, 2H), 8.15 (d, J = 8.2 Hz, 2H), 8.02 (d, J = 15.7 Hz, 2H), 7.85 (d, J = 9.0 Hz, 2H),
7.74 (d, J = 7.3 Hz, 4H), 7.64 (d, J = 10.2 Hz, 4H), 7.54–7.42 (m, 6H), 7.33 (t, J = 7.4 Hz, 2H),
7.21 (s, 2H), 7.06 (dd, J = 8.8, 6.6 Hz, 2H), 6.92 (t, J = 6.9 Hz, 2H), 3.93 (s, 3H), and 1.42 (s,
6H) ppm. The 19F NMR (282 MHz, DMSO-d6) shifts were δ −136.1–(−137.0) (br m) ppm.
11B NMR (128 MHz, DMSO-d6) shifts were δ 1.27 (t, J = 35.8 Hz) ppm. The IR (neat, cm−1)
peaks were 1726, 2858, 2918, 2950, 3039, 3075, and 3110. The HRMS (ESI) in m/z calculated
for C51H39BF2N4O2 [M]+ was 788.3143, and 788.3172 was found.

4. Conclusions

Two indolizine BODIPY dyes (2Ph and 1Ph) with varying substitution around the
indolizine donors were synthesized to compare against the literature benchmark dimethy-
laniline BODIPY (DMA). Installing the indolizine donors in place of the dimethylaniline
donor produced a 0.26 eV bathochromic shift (135 nm shift from 737 nm to 872 nm) in the
emission peak wavelength that was deep into the NIR region. Exchanging the strong donor
from the literature with indolizine donors provided new access to NIR absorbing and emit-
ting BODIPY dyes and expanded the synthetic versatility of the strong indolizine donor in
fluorescent dye synthesis. Protonation of the indolizine BODIPY dyes with trifluoroacetic
acid showed a dramatic 0.35 eV shift (230 nm shift from 797 nm to 1027 nm) of the maxi-
mum absorption peak into the SWIR region, with a maximum SWIR emission at 1061 nm.
Protonation of the indolizine BODIPY dyes was shown to be reversible with triethylamine,
thus reforming the original dye maximum absorption peaks. This protonation behavior is
unique to the indolizine-based dyes, since the maximum absorption peak of DMA shifts to
shorter wavelengths upon acid exposure. Computational studies support the protonation
of an indolizine carbon to place a cation in conjugation with the π-system to lead to a lower
energy absorbing material. This switchable NIR/SWIR absorption and emission remains as
an interest for further studies to isolate and identify the SWIR fluorophore and expand its
mechanism to other dye scaffolds. Since these BODIPY dyes are insoluble in aqueous media,
our future directions also focus on making synthetic modifications—similar to those in our
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previous publication on cyanines and squaraines [24]—to incorporate water-solubilizing
groups on the indolizine BODIPY scaffold to allow for aqueous biological imaging.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28031287/s1, Figures S1–S11: NMR and HRMS spectra
of new compounds; Table S1: Computational data from TD DFT experiments; Figure S12: BODIPY
dyes stability in DCE; Figures S13–S15: Protonated BODIPY dyes over time; Figures S16 and S17:
Reversible protonation of DMA and 2Ph with TFA/TEA; Figures S18 and S19: Comparison of TFA
versus AcOH protonation of BODIPY dyes; Figure S20: Full spectrum UV-vis-NIR absorption and
emission of BODIPY dyes.
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