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Abstract: A simple analytical method was developed and evaluated for the determination of
two antifouling biocides using an ionic liquid-dispersive liquid–liquid micro-extraction (IL-DLLME)
and a high-performance liquid chromatography–electrospray ionization mass spectrometry (LC-
ESI-MS) analysis. Irgarol 1051 and Sea-Nine 211 were extracted from deionized water, lake water,
and seawater using IL 1-hexyl-3-methylimidazolium hexafluorophosphate ([HMIm][PF6]) and ethyl
acetate as the extraction solvent and the dispersion solvent. Several factors were considered, includ-
ing the type and volume of extraction and dispersive solvent, IL amount, sample pH, salt effect,
and cooling temperature. The developed method resulted in a recovery range of 78.7–90.3%, with
a relative standard deviation (RSD, n = 3) less than 7.5%. The analytes were enriched greater than
40-fold, and the limits of detection (LOD) for two antifouling biocides were 0.01–0.1 µg L−1. The
method was effectively applied for the analysis of real samples of freshwater as well as samples
of seawater.

Keywords: antifouling biocides; high-performance liquid chromatography–mass spectrometry
(LC-MS); ionic liquid-dispersive liquid–liquid micro-extraction (IL-DLLME)

1. Introduction

The marine industry is hindered by marine biofouling, which damages submerged
equipment and raises production costs. Antifouling biocides are commonly employed
to prevent the attachment of fouling organisms to ships and other equipment [1]. Since
harmful antifouling paints containing tributyltin (TBT) have been banned [2], new organic
booster biocides have become the main constituents of antifouling paints to enhance their
efficacy. These biocides include metal-based compounds such as zinc pyrithione and
zineb, as well as non-metallic compounds such as Irgarol 1051, Sea-nine 211, Kathon
5287, chlorothalonil, dichlofluanid, and thiram [3]. However, the use of these compounds
appears to be hazardous due to their residues, toxicity, and resultant contamination of
the aquatic environment, as well as the potential impact on public health. Irgarol 1051 is
highly toxic to non-target marine algae [4], as it destabilizes aquatic herbivorous mammal
populations [5] and causes coral bleaching [6]. The use of Irgarol 1051 in antifouling
paints is restricted in the European Union and the United States [7,8]. Despite having a
significantly better environmental profile, Sea-Nine 211 is still hazardous to fish [9], sea
urchins, and embryos [10].

Recently, these antifouling biocides have been widely identified in marinas and
harbors throughout the world [11]. In aquatic environments, concentrations of Irgarol
1051 ranged from 0.12–4800 ng L−1 [12,13], whereas concentrations of Sea-Nine 211 ranged
from 0.1–3300 ng L−1 [14,15]. Due to their prevalence at low concentrations, pre-concentration
techniques and sensitivity detection are generally highlighted. Most analysis strategies in
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recent years have been based on liquid–liquid extraction (LLE) [16], solid-phase extraction
(SPE) [17,18], and a few others, including solid-phase microextraction (SPME) [19], stir bar
sorptive extraction and thermal desorption (SBSE-TD) [20], and microfunnel-supported
liquid-phase microextraction (MF-LPME) [21]. In terms of the examination of antifouling
biocides, the aforementioned approaches have various drawbacks, such as being tedious,
time-consuming, expensive, complex, and harmful to the environment. Therefore, the
development of less complex, more effective, and safe extraction approaches for the identi-
fication of antifouling biocides is receiving a lot of focus.

Dispersive liquid–liquid micro-extraction (DLLME) is a simple, rapid, inexpensive,
sensitive, and effective technique for the extraction of target analytes. According to the
DLLME principle, a water sample containing target analytes is quickly mixed with a mix-
ture of an extraction solvent and a dispersion solvent to produce a ternary component
solvent system, in which the target analytes are enriched into the micro-extraction sol-
vent [22]. Organic solvents with a high density, incompatibility in water, and high solubility
for target analytes are commonly utilized as extraction solvents. Organic solvents that
are miscible with the extraction solvent and water are employed as disperser solvents
to assist the extraction solvent in forming dispersed micro-droplets in the water sample,
hence increasing the contact area between the extraction solvent and the target analytes [23].
Traditional DLLME employs highly toxic extraction solvents such as chlorobenzene, carbon
tetrachloride, chloroform, dichloro-methane, and tetrachloroethylene [24,25]. The DLLME
technique is currently being improved by employing low toxicity and new extraction
solvents [25]. Since the majority of target analytes are polar compounds, the ideal DLLME
extraction solvents must be liquid under standard conditions, have a low vapor pressure,
be incompatible with water, have a high polarity, and have a high density.

Ionic liquids (ILs) are organic salts with melting points lower than 100 ◦C, com-
posed of organic cations and organic or inorganic anions [22]. ILs have distinctive char-
acteristics, including high thermal stability, low vapor pressure, high viscosity, and low
toxicity [26]. Particularly, their physicochemical properties can be modified by select-
ing a particular combination of anions and cations to enhance the solubility of specific
analytes [27]. Therefore, various ILs have been used as extraction solvents of DLLME,
such as 1-hexyl-3-methylimidazolium hexafluorophosphate ([HMIM][PF6]), 1-butyl-3-
methylimidazolium hexafluorophosphate, tetradecyl (trihexyl) phosphonium chloride,
and 1-butyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide [23,28], which are
typically recognized as green solvents in analytical chemistry [29], thereby deriving the
IL-DLLME approach. Neurotransmitters [30], anthraquinones [31], phthalate esters [32],
organic dyes [33], metal ions [34,35], pesticides [36,37], antibiotics [38,39], and other bio-
logical compounds, as well as food and environmental pollutants, have all been focused
using IL-DLLME. However, the IL has not yet been used to extract antifouling biocides
from water samples.

In this study, the potential application of IL-DLLME and LC–MS for the identifi-
cation of two kinds of antifouling biocides in water samples was investigated. An IL
([HMIm][PF6]) was used as the extraction solvent, whereas ethyl acetate was selected as the
dispersion solvent. The effects of various experimental factors on the extraction were exam-
ined, and the process was validated via linearity, precision, and accuracy investigations.
The developed method can be used to analyze real lake water and seawater samples.

2. Results and Discussion
2.1. Optimization of IL-DLLME Procedure

All parameters of IL-DLLME conditions were optimized using deionized water
(5.0 mL) spiked with antifouling biocides. Each data point was determined using the
mean of three separate extractions.
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2.1.1. Effect of Amount of IL

Because of its low water solubility, low volatility, and higher density than water,
[HMIm][PF6] has been widely used as an extraction solvent for pesticides [40], metal
ions [41], mycotoxins [24], and polycyclic aromatic hydrocarbons [42]. Quantities of 30 mg,
40 mg, 50 mg, 60 mg, 70 mg, 80 mg, 90 mg, and 100 mg of [HMIm][PF6] were analyzed in
deionized water that was spiked with 2 µg L−1 of Irgarol 1051 and 10 µg L−1 of Sea-Nine 211
at a constant volume of disperser solvent (0.4 mL) (Figure 1). As the amount of IL increased
from 30 to 60 mg, the recoveries exhibited a similar linear sign increase. However, when the
amount of IL exceeded 60 mg, the recoveries declined or remained nearly constant. Wang
et al. discovered that when [HMIm][PF6] exceeded 60 µL in their study on the analysis
of fungicides in fruit juice, the recoveries decreased [43]. The distribution coefficient and
recovery of analytes in IL may have been reduced as a result of the larger amounts of IL
being dissolved, which could have decreased the polarity of the aqueous phase [44]. The
optimal amount of IL was therefore determined to be 60 mg.

Molecules 2023, 28, x FOR PEER REVIEW 3 of 15 
 

 

2.1.1. Effect of amount of IL 
Because of its low water solubility, low volatility, and higher density than water, 

[HMIm][PF6] has been widely used as an extraction solvent for pesticides [40], metal ions 
[41], mycotoxins [24], and polycyclic aromatic hydrocarbons [42]. Quantities of 30 mg, 40 
mg, 50 mg, 60 mg, 70 mg, 80 mg, 90 mg, and 100 mg of [HMIm][PF6] were analyzed in 
deionized water that was spiked with 2 µg L−1 of Irgarol 1051 and 10 µg L−1 of Sea-Nine 
211 at a constant volume of disperser solvent (0.4 mL) (Figure 1). As the amount of IL 
increased from 30 to 60 mg, the recoveries exhibited a similar linear sign increase. How-
ever, when the amount of IL exceeded 60 mg, the recoveries declined or remained nearly 
constant. Wang et al. discovered that when [HMIm][PF6] exceeded 60 µL in their study 
on the analysis of fungicides in fruit juice, the recoveries decreased [43]. The distribution 
coefficient and recovery of analytes in IL may have been reduced as a result of the larger 
amounts of IL being dissolved, which could have decreased the polarity of the aqueous 
phase [44]. The optimal amount of IL was therefore determined to be 60 mg. 

 
Figure 1. Effect of amount of [HMIm][PF6] on extraction recovery. Extraction conditions: water sam-
ple, 5.0 mL; disperser solvent, ethyl acetate 0.4 mL; NaCl 0% (w/v).; pH 6; and cooling temperature 
20 °C. 

2.1.2. Selection of Disperser Solvent and Effect of Volume 
The disperser solvent must be miscible with the extraction solvent and the water sam-

ple, thereby increasing the contact area and interaction between the two phases to enhance 
the extraction efficiency. The selection of a disperser is crucial for achieving excellent pre-
concentration and extraction effects. Consequently, four potential disperser solvents, ace-
tone, methanol, acetonitrile, and ethyl acetate, were tested. The sample solutions for this, 
and the subsequent tests used 5 mL of deionized water spiked with 1 µg L−1 of Irgarol 1051 
and 5 µg L−1 of Sea-Nine 211. A series of sample solutions were analyzed using 0.5 mL of 
each disperser solvent containing 60 mg of [HMIm][PF6]. The results showed that Irgarol 
1051 (85.0%) and Sea-Nine 211 (86.0%) had higher recoveries when ethyl acetate was used 
as the dispersant than those of acetone (Irgarol 1051 33.6%, Sea-Nine 211 50.1%), methanol 
(Irgarol 1051 36.4%, Sea-Nine 211 45.8%), and acetonitrile (Irgarol 1051 61.9%, Sea-Nine 
211 62.8%). Kong et al. also examined vitamins and carotenoids in human serum using 
ethyl acetate as the disperser solvent [45]. The use of ethyl acetate as the disperser solvent 
resulted in good media miscibility and the best recoveries. As a result, ethyl acetate was 
selected for further investigation. 

The volume of the disperser affects the dispersion degree of the extraction phase in 
the aqueous phase, thereby influencing the extraction efficiency. When the disperser vol-
ume is small, the extraction solvent cannot be completely dispersed in the aqueous phase, 

Figure 1. Effect of amount of [HMIm][PF6] on extraction recovery. Extraction conditions: water sample,
5.0 mL; disperser solvent, ethyl acetate 0.4 mL; NaCl 0% (w/v).; pH 6; and cooling temperature 20 ◦C.

2.1.2. Selection of Disperser Solvent and Effect of Volume

The disperser solvent must be miscible with the extraction solvent and the water
sample, thereby increasing the contact area and interaction between the two phases to
enhance the extraction efficiency. The selection of a disperser is crucial for achieving
excellent preconcentration and extraction effects. Consequently, four potential disperser
solvents, acetone, methanol, acetonitrile, and ethyl acetate, were tested. The sample
solutions for this, and the subsequent tests used 5 mL of deionized water spiked with
1 µg L−1 of Irgarol 1051 and 5 µg L−1 of Sea-Nine 211. A series of sample solutions were
analyzed using 0.5 mL of each disperser solvent containing 60 mg of [HMIm][PF6]. The
results showed that Irgarol 1051 (85.0%) and Sea-Nine 211 (86.0%) had higher recoveries
when ethyl acetate was used as the dispersant than those of acetone (Irgarol 1051 33.6%, Sea-
Nine 211 50.1%), methanol (Irgarol 1051 36.4%, Sea-Nine 211 45.8%), and acetonitrile (Irgarol
1051 61.9%, Sea-Nine 211 62.8%). Kong et al. also examined vitamins and carotenoids in
human serum using ethyl acetate as the disperser solvent [45]. The use of ethyl acetate as
the disperser solvent resulted in good media miscibility and the best recoveries. As a result,
ethyl acetate was selected for further investigation.

The volume of the disperser affects the dispersion degree of the extraction phase in the
aqueous phase, thereby influencing the extraction efficiency. When the disperser volume
is small, the extraction solvent cannot be completely dispersed in the aqueous phase,
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preventing the formation of a good ternary cloudy solution of water/disperser/extraction
solvent, and lowering the extraction efficiency. In contrast, when the volume of the disperser
is increased, the distribution coefficient of analytes in the water rises, and the extraction
efficiency decreases. To assess the impact of the organic solvent on the yield of the IL-
DLLME process, various ethyl acetate volumes were tested. To determine the optimal
volume, experiments were conducted with varying volumes of ethyl acetate (0.30 mL,
0.40 mL, 0.50 mL, 0.55 mL, and 0.60 mL) mixed with 60 mg [HMIm][PF6]. Figure 2 shows
that, in contrast to the enrichment factor (EF), the recoveries increased initially and then
decreased as the volume of ethyl acetate increased. A total of 0.4 mL of ethyl acetate yielded
the highest recoveries for all analytes. Similar behavior was observed when parabens were
analyzed using IL-DLLME [46]. This can be explained by the possibility that if there is
insufficient dispersion solvent, the extraction solvent may not make good contact with the
analytes in the sample solution, which could lower the recovery. On the other hand, more
disperser solution resulted in a more settled phase, which decreased the EF. The results
showed that 0.4 mL was selected to achieve a high EF and a good extraction recovery (ER).
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2.1.3. Salt Effect

In general, an increase in ionic strength frequently results in better extraction per-
formance with salting out, which has an impact on the analyte partitioning coefficients
between the aqueous and organic phases. In contrast, the addition of salt increases the ionic
liquid’s solubility in water, resulting in low recovery [47]. Different NaCl concentrations
(0%, 2%, 4%, 8%, and 12%, w/v) were added to deionized water to assess the impact of the
ionic strength on the effectiveness of extraction and enrichment. As depicted in Figure 3,
the addition of salt had no discernible effect on either the EF or ER at concentrations of
NaCl less than 8%. With a higher concentration and an increase in ILs solubility in the
aqueous phase, the sediment volume decreased, resulting in a low ER and a high EF. In
the study that used 1-octyl-3-methylimidazolium hexafluorophosphate ([C8MIM][PF6]) to
extract pyrethroid pesticides, Zhang et al. also discovered that a high salt concentration
increased the viscosity of the water phase and improved the solubility of IL in water,
thereby reducing the extraction efficiency [48]. As a result, no NaCl was added to the water
samples, allowing the proposed method to be used for the preconcentration of Irgarol 1051
and Sea-Nine 211 in both fresh and salty water.
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2.1.4. Sample pH

The effect of various pH levels (4, 5, 6, 7, and 9) on IL-DLLME ER and EF was examined
by adding the appropriate amount of hydrochloric acid or sodium hydroxide solution
to water samples. The results are displayed in Figure 4, which shows that pH 5 or pH 6
provided the best analyte recovery. Similar behavior was observed in a prior study that
used IL-DLLME to identify organophosphorus pesticides [40]. The results indicated that
Irgarol 1051 (pKa 4.13 ± 0.10) and Sea-Nine 211 (pKa −6.09 ± 0.60) were relatively stable
and had a high IL distribution coefficient in neutral and weakly acidic media, and that they
could be decomposed in strong bases. A pH of 6 was selected due to the ease of operation.
Since the pH of the utilized deionized water was approximately 6, pH adjustments were
avoided throughout the entire optimization procedure. After being diluted with deionized
water, the real water samples were examined.
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2.1.5. Effect of Cooling Temperature

Temperature can influence analyte partition coefficients, IL solubility in water, and
phase separation [49]. The different cooling temperatures (10 ◦C, 15 ◦C, 20 ◦C, 25 ◦C,
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and 30 ◦C) in the water bath (defined as the temperature before centrifugation and after
extraction) were investigated at 30 ◦C of the extraction temperature. As shown in Figure 5,
as the temperature decreased from 30 ◦C, the recovery initially increased and then reduced.
In varying temperatures, the EF exhibited the same characteristics as the ER. Therefore,
it can be concluded that the partition coefficient of analytes between IL and water had a
significant impact on recovery and enrichment. The cooling temperature was found to
have the greatest contribution of all the optimized factors. The recovery of Irgarol 1051
increased from 75.8% to 94.9%, while the recovery of Sea-Nine 211 increased from 57.2%
to 96.4%, with a decrease in temperature from 30 ◦C to 20 ◦C. In the following method
validation studies, 20 ◦C was used.
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Extraction conditions: water sample, 5.0 mL; disperser solvent, ethyl acetate 0.4 mL; extraction
solvent [HMIm][PF6] 60 mg; NaCl 0% (w/v); and pH 6.

2.2. Method Validation

To validate the analytical approach, the series levels of spiked samples in deionized
water, lake water, and seawater were examined (Table 1). Linearities were determined
using deionized water spiked with five different concentrations of Irgarol 1051 (0.02 µg L−1,
0.2 µg L−1, 2 µg L−1, 20 µg L−1, and 100 µg L−1) and Sea-Nine 211 (0.1 µg L−1, 1 µg L−1,
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10 µg L−1, 100 µg L−1, and 500 µg L−1). Calibration curves exhibited the linear relationships
between analyte peak regions and concentrations. The equations for the calibration curves of
Irgarol 1051 and Sea-Nine 211 were y = 70,515,778x − 32,368 and y = 11,067,977x + 53,400,
respectively, and their respective correlation coefficients (R2) were 0.9995 and 0.9993. The
accuracy and precision of this method were validated using a recovery experiment. Ana-
lytes were spiked at three concentration levels in deionized water, lake water, and seawater
samples, respectively, and each concentration level was repeated in triplicate. The mean
recoveries ranged from 78.7% to 90.3%, and all relative standard deviations (RSDs) were
less than 7.5%. The accuracy and precision of this method met the requirements for reliable
analyte detection (recoveries were 70–120%, RSD < 20%) [50]. The limits of detection (LOD)
and quantification (LOQ) were determined as the analyte concentrations corresponding
to the instrument responses of 3 and 10 signal/noise, respectively, by injecting spiked
samples of deionized water, lake water, and seawater. This method had LODs and LOQs
of 0.01–0.1 µg L−1 and 0.02–0.5 µg L−1, respectively, with the EF ranging from 22 to 45.
Figure 6 depicts a typical chromatogram of antifouling biocides in a spiked water sample.

Table 1. Recoveries and RSDs of Irgarol 1051 and Sea-Nine 211 spiked in water samples (n = 3).

Sample Deionized Water Lake Water Seawater

Irgarol 1051 Spiked level (µg L−1) 0.02 0.1 1.0 0.02 0.1 1.0 0.1 1.0 5.0
Recovery (%) 87.0 80.3 85.7 85.7 90.2 81.0 79.1 82.4 85.2

RSD (%) 5.4 1.2 2.5 3.9 4.2 5.6 5.6 1.2 3.1
LOQ, LOD (µg L−1) 0.02, 0.01 0.02, 0.01 0.1, 0.05

Sea-Nine 211 Spiked level (µg L−1) 0.1 1.0 5.0 0.1 0.5 5.0 0.5 5.0 10.0
Recovery (%) 86.9 90.3 84.7 84.4 83.3 80.6 78.7 86.1 89.3

RSD (%) 7.5 4.5 2.7 5.0 4.1 3.1 1.7 6.7 4.6
LOQ, LOD (µg L−1) 0.06, 0.02 0.06, 0.02 0.5, 0.1

2.3. Real Water Samples Analysis

Finally, the developed analytical methodology was evaluated for its practical applica-
tion in extracting antifouling biocides from freshwater and seawater. The environmental
risk limit (ERL) is the concentration level at which pollutants pose a possible threat to the
environment. The previous literature revealed the 0.024 µg L−1 ERL for Irgarol 1051 in wa-
ter [51]. According to the European Union directive, the maximum allowable concentration
of environmental quality standards (EQS) for Irgarol was 0.016 µg L−1 in water [52]. The
limit standard for Sea-Nine 211 is still undefined. The suggested IL-DLLME technique has
LODs 0.01–0.1µg L−1. Therefore, this method typically achieved the criteria for detecting
antifouling biocides from real water samples. The freshwater was collected from the North
Sea Lake and Xiaoqing River in the city of Beijing, China, while the seawater was collected
from Qing Dao, China. The outcomes revealed that the examined water samples were
well below the LODs of the proposed method. Therefore, the antifouling biocides did not
represent a significant threat to the aquatic ecosystem described above.

2.4. Comparison of IL-DLLME with Other Sample Preparation Techniques

Table 2 represents the performance of the proposed IL-DLLME approach in compari-
son to existing reported extraction procedures for the determination of antifouling biocides
in water samples, such as LLE, SPE, SPME, SBSE, and LPME. Large sample volumes and
substantial enrichment are responsible for the drastically reduced LOD obtained using SPE
and LLE techniques. However, the enormous number of samples results in a prolonged
extraction time and considerable consumption of organic solvent. IL-DLLME only requires
a small amount of sample and organic solvent for extraction, and its recovery and RSD
values are comparable to those of SPE and LLE. The extraction solvent is not necessary for
LPME, SBSE, or SPME; however, these processes require a long time and requirements for
specialized equipment. With a lower LOD than the SPME approach, the simple operation
of the IL-DLLME procedure facilitates the whole sample treatment; just a few minutes
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are required before instrument analysis. All of these results indicate that the optimized
IL-DLLME procedure appears to be a reproducible, rapid, simple, and low-cost alternative
that can be used for the preconcentration of antifouling biocides such as Irgarol 1051 and
Sea-Nine 211 from water samples.
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Table 2. Comparison of the IL-DLLME method with other procedures for the determination of
antifouling biocides in water samples.

Method
Sample
Amount

(mL)

Extraction
Solvent

Solvent
Volume a

(mL)

Extraction
Time b

(min)

Extraction
Recovery (%)

LOD
(µg L−1) RSD%

SPE-GC-MS [53] 200 EA 15 46 42–95 0.0012–0.0015 <10
SPE-LC-MS/MS [54] 100 ACN 12 Not given 77–93 0.002 <8
SPME-GC-MS [55] 3 — — 60 Not given 0.05–0.2 <20

SPE-LC-MS/MS [56] 1000 MeOH, DCM 9 200 80–120 0.001 <18
SPE-LC-MS/MS [57] 250 MeOH, DCM 8 25 78–120 0.0003–0.0027 <13

SPE-LC-QTOF/MS [58] 200 MeOH, DCM 8 60 79.7–119.2 Not given 17.7–27.7
LLE-GC-MS [59] 2000 DCM 50 Not given 70–120 0.001 30
SPE-GC-MS [60] 2000 EA, AC 15 145 >90 0.001 <10

SPE-LC-MS [61] 500 10 mM HAc
MeOH 15 65 82.5–111 0.0002–0.001 3–5

SBSE-TD-GC-MS [20] 10 — — 90 72–125 0.005–0.9 7–15

LLE-GC-MS [62] 1000 Toluene 1 60 73.55–120.28 0.00177–
0.01242 1.64–4.87

MF-LPME-HPLC-UV [21] 300 Toluene 0.4 90 Not given 0.001–0.0048 <12
IL-DLLME method 5 [HMIm][PF6] 0.046 1 80–90 0.01–0.1 <8

a Solvent consumption only in the extraction stage; solvent consumption in solvent exchanges not included.
b Time employed in the extraction stage; any other operations were not included. GC-MS, gas chromatography-
mass spectrometry; LC-MS/MS, liquid chromatography-tandem mass spectrometry; LC-QTOF/MS, liquid
chromatography-quadrupole time-of-flight mass spectrometry; EA, ethyl acetate; ACN, acetonitrile; MeOH,
methanol; DCM, dichloromethane; AC, acetone; and HAc, acetic acid.

3. Materials and Methods
3.1. Reagents and Chemicals

Analytical standards for Irgarol 1051 were supplied by Dr. Ehrenstorfer (Augsburg,
Germany), and Sea-Nine 211 was supplied by Pure Chemistry Scientific Inc. (Newton,
MA, USA). The basic information about analytes is detailed in Table 3. The standard stock
solution of 1 mg mL−1 was prepared in acetonitrile. The stock solution was diluted with
acetonitrile to provide a working standard solution of 10 µg mL−1. Both standard stock
solutions and working solutions were stored at −20 ◦C. HPLC-grade acetonitrile, methanol,
and ethyl acetate (Fisher Scientific, Waltham, MA, USA) were used. IL [HMIm][PF6] was
acquired from the Lanzhou Institute of Chemical Physics of Chinese Academy of Sciences
(Lanzhou, China). Sodium chloride (NaCl, AR) was purchased from Sinopharm Beijing
Chemical and Reagent Ltd. (Beijing, China). Deionized water (18 M/cm) was prepared
by a MILI-Q Pure treatment system (Millipore, St. Louis, MO, USA). The freshwater was
collected from the North Sea Lake, an artificial lake in the city of Beijing. The seawater was
collected from the Yellow Sea.

Table 3. Basic information and chromatographic parameters of the analytes.

Analyte Chemical Structure Molecular Weight Retention Time
(min)

Mass Ions
(m/z)

Fragmentor
Voltage

(V)

Irgarol 1051
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3.2. Apparatus

The analytes were separated from the extracts using the Agilent 1260 series HPLC
(Agilent Technologies, Palo Alto, CA, USA). A ZORBAX SB-C18 column (150 mm × 4.6 mm
i.d., 3.5 µm; Agilent Technologies, Palo Alto, CA, USA) was employed. The mobile phase
was comprised of methanol (A) and 0.1% formic acid in water (B). The gradient program
was as follows: 0–5 min, 55–85% A; 5–7 min, 85% A; 7–10 min, 85–95% A; 10–13 min, 95%
A; 13–15 min, 95–55% A; and 15–19 min, 55% A. The flow rate was 0.6 mL min−1 and the
injection volume was 10 µL. The column temperature was maintained at 30 ◦C.

The HPLC system was coupled to an Agilent 6130 Single Quadrupole mass spec-
trometer equipped with an electrospray source in positive ionization mode. The opera-
tional parameters were as follows: drying gas flow 10.0 L min−1, drying gas temperature
350 ◦C, nebulizer gas pressure 35 psi., and capillary voltage 3000 V. Flow injection analysis
(FIA) was used to optimize the fragmentor, and analytes were quantified in the selected ion
monitoring mode (SIM). The chromatographic parameters of the analytes are presented
in Table 3.

3.3. IL-DLLME Procedure

The environmental samples, including lake water and seawater, were filtered with
0.45 µm water phase membrane prior to analysis. After that, the seawater had to be diluted
fourfold with deionized water. In a 15 mL conical-bottomed centrifuge tube, 5.0 mL of
water samples were placed. The aqueous phase was then rapidly injected with 60 mg of
the [HMIm][PF6] and 0.4 mL of ethyl acetate as extraction and disperser solvents, followed
by 1 min of manual shaking. After cooling the cloudy solution in a 20 ◦C water bath and
centrifuging at 3800× g rpm for 5 min, the IL phase settled at the bottom of the tube. The
IL phase was collected and diluted with acetonitrile to a final volume of 150 µL after the
upper aqueous phase had been removed using a syringe.

4. Conclusions

This research used an IL-DLLME methodology coupled with LC-MS to identify
two types of commonly used booster biocides in water samples. The quantity of the
IL ([HMIm][PF6]) utilized as an extraction solvent for Irgarol 1051 and Sea-Nine 211 was
first optimized. Furthermore, the type and volume of the disperser solvent, the amount of
salt, the pH, and the cooling temperature were studied to determine the optimal extraction
conditions. A systematic validation demonstrated that the proposed method has acceptable
linearity (R2 > 0.999), recovery (78.7–90.3%), and repeatability (RSD ≤ 7.5%). The LOD and
LOQ of this method were found to be 0.01–0.1 µg L−1 and 0.02–0.5 µg L−1, respectively.
The successful utilization of lake water and seawater samples revealed that the method
is acceptable for determining antifouling biocides in real water samples. Furthermore,
the use of IL provides a simple, quick, less toxic, and ecologically favorable technique for
determining the booster biocides in water samples.
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