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Abstract: Due to the large versatility in organic semiconductors, selecting a suitable (organic semi-
conductor) material for photodetectors is a challenging task. Integrating computer science and
artificial intelligence with conventional methods in optimization and material synthesis can guide
experimental researchers to develop, design, predict and discover high-performance materials for
photodetectors. To find high-performance organic semiconductor materials for photodetectors, it is
crucial to establish a relationship between photovoltaic properties and chemical structures before
performing synthetic procedures in laboratories. Moreover, the fast prediction of energy levels is
desirable for designing better organic semiconductor photodetectors. Herein, we first collected large
sets of data containing photovoltaic properties of organic semiconductor photodetectors reported in
the literature. In addition, molecular descriptors that make it easy and fast to predict the required
properties were used to train machine learning models. Power conversion efficiency and energy
levels were also predicted. Multiple models were trained using experimental data. The light gradient
boosting machine (LGBM) regression model and Hist gradient booting regression model are the
best models. The best models were further tuned to achieve better prediction ability. The reliability
of our designed approach was further verified by mining the photovoltaic database to search for
new building units. The results revealed that good consistency is obtained between experimental
outcomes and model predictions, indicating that machine learning is a powerful approach to predict
the properties of photodetectors, which can facilitate their rapid development in various fields.

Keywords: machine learning; energy levels prediction; semiconductor photodetectors; regression
models; pearson correlations

1. Introduction

The world is a place of discovery and billions of devices containing multiple sensors
have been commercialized. Photodetectors or photosensors primarily work as optical
receivers for the conversion of light into electrical signals. The photodetector has become a
vital part of modern devices with a broad range of applications, including environmental
monitoring, optical communication, health monitoring, image sensing, defense system
and for safety purposes in industries [1]. In the modern age, silicon (Si), germanium (Ge),
and indium gallium arsenide (InGaAs)-based inorganic photodetectors (PDs) have been
popular in the market due to their stable performance, high quantum efficiency, high
sensitivity/detectivity, response speed or responsivity. Despite having several advantages,
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inorganic photodetectors have limitations that cannot be ignored, such as complex fabrica-
tion procedures, manufacturing cost (e.g., requirement of high vacuum environment, high
processing temperature and complex growth) and brittleness [2,3]. Moreover, inorganic
photodetectors are rigid in nature, which limits their utilization in flexible environments or
applications [4,5].

In recent years, organic photodetectors have emerged as a promising alternative for
inorganic photodetectors [6]. These show various superiorities, including operation with a
cooling-free effect, compatibility with flexible devices, detectable spectral response, and
easy processing, which makes them potential candidates in wearable electronics. The
spectral response can be achieved by altering the material used for organic semiconductors
in the case of organic photodetectors (OPDs) [7,8]. In comparison, to inorganic semicon-
ductors, organic semiconductors are composed of carbon-based molecules, which makes
the organic photodetectors more environmentally friendly and biocompatible. In addition,
various polymers and small molecules have been used for organic semiconductors [9,10].
These compounds generate a positive impact on electronic and optoelectronic devices [11].
Much progress has been made in recent years in the development of organic semiconductor
devices [12].

A narrow bandgap is required for high-performance organic semiconductor photode-
tectors [13–15]. For decades, semiconductors with a large bandgap have been utilized.
When the light of high energy falls on the target material, the excitons generated in donor
front layers are unable to separate into free charges properly. Only low-energy photons
with the power of long penetration depth can reach the donor-acceptor interface and then
successfully generate the free charge. Therefore, it is an area of ongoing interest to predict
energy levels of organic semiconductors for photodetectors and mining of the photovoltaic
database to search for new building units. Traditionally, new designs can be achieved by
utilizing the knowledge gained from laborious and multistep synthesis procedures, expen-
sive device optimization and characterization. However, these trial-and-error methods do
not guarantee success in the end. Moreover, it is hard to predict the performance of the
materials before performing expensive experimental work. To this end, computer-aided
material designing, discovery, and screening are of utmost importance.

Computational science is a popular field of science, which can be effectively applied
to solve the complex problems of various systems and to finally find the solutions for
such scientific problems [16–18]. Computational methods can analyze, screen, and predict
data through mathematical algorithms. These methods can be applied to various fields
of science [19–22]. During the past decade, researchers have been focusing on developing
predictive computer models. These models can help them to analyze challenging prob-
lems [23]. Machine learning is a modern research tool [24]. Machine learning analysis
(MLA) is based on pattern recognition by reducing the size of data and those parameters
which can be learned by the computer. In machine learning, the results can be obtained by
analyzing previously reported studies [25]. Moreover, several properties can be studied
without understanding the chemistry or physics behind these properties [26]. The recent
advancement in MLA includes the successful prediction of properties of the materials,
materials discovery, drug development and material designing. Molecular fingerprinting
and similarity analysis is now a common feature. Various algorithms can be used to train
the models to obtain good accuracy. Machine learning can be used to predict the values of
the highest-occupied molecular orbital (HOMO) and lowest-unoccupied molecular orbital
(LUMO and power conversion efficiency (PCE) with accuracy. In recent studies, MLA has
been used to design efficient molecules for organic photovoltaic (OPV) applications, and
the structures of these molecules pass through subsequent successful experimental testing.
Efficient organic semiconductor materials have been designed by using this approach,
which accelerates the developing process in a time-saving manner [27].

Herein, a machine learning-based approach was applied to predict the energy level
of organic semiconductors for photodetectors. Multiple models were trained, and their
respective parameters were adjusted. As a result, the models with the highest accuracy
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were chosen for conducting further analyses. Moreover, detailed data about energy levels
(HOMO and LUMO) were visualized to show the trend (hidden pattern) in the data. The
parameter’s feature importance was also evaluated for training machine learning models.
In addition, Pearson correlation and Shapiro ranking was applied to demonstrate the
correlation between different parameters. A similarity analysis was performed to find the
similarities between reference structure and structure in the database. Furthermore, mining
of the photovoltaic database was used to search for new building units.

2. Results and Discussions

The performance of varied materials depends on their chemistry [28–30]. Chemical
data can help to understand their behavior [31,32]. The hidden pattern of data can provide
much useful information [33].

2.1. Molecular Descriptors

Molecular descriptors are the mathematical representation of the molecules used to
train the models based on machine learning (Table 1) [34–36]. Molecular descriptors can be
generated with the help of different algorithms. These can be derived from the chemical
structure of the molecules. Physical and chemical properties or information can be described
quantitatively with the help of the numerical value of molecular descriptors [37,38]. Almost
thousands of molecular descriptors were calculated. Then, these were shortlisted in several
unique ways. Molecular descriptors are based on independent properties. They can help
researchers to perform similarity tests by using different models such as RDkit in molecular
libraries. Based on the similarities present in the descriptor values, the molecules with the
same physical and chemical properties can be evaluated.

Table 1. Molecular descriptors with respective categories and descriptions.

No Molecular Descriptor Category Description

1 SM5_X 2D matrix-based descriptors Spectral moment of order 5 from chi
matrix

2 RCI Ring descriptors Ring complexity index
3 nR05 Ring descriptors Number of 5-membered rings
4 RFD Ring descriptors Ring fusion density
5 NNRS Ring descriptors Normalized number of ring systems
6 DECC Topological indice Eccentric
7 ETA-D-AlphaB Eta delta alpha b index
8 SdssC Atom-type E-state indices Sum of dssC E-states

9 SpAD_AEA(dm) Edge adjacency indices
Spectral absolute deviation from
augmented edge adjacency mat.
weighted by the dipole moment

10 TI2-LN 2D matrix-based descriptors Second Mohar index from Laplace matrix

2.2. Regression Analysis

The performance of machine learning is strongly dependent on algorithms [39]. To
identify which kind of variable has a strong effect on the topic of interest, these methods are
effectively reliable. The regression analysis provides information on the way these factors
influence each other, how to determine the factors that are of most importance, and which
factors can be ignored. Regression analysis uses various algorithms of machine learning.
The data can be integrated into two parts: the testing set and the training set. These data
are of different ratios, 70% 30%, 60% 40%. The best one is training: test ratio. Afterwards,
by analyzing the values of predicted PCE and experimental PCE, the correlation between
these two was calculated. The obtained results are plotted in the form of a graph.
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2.3. Pearson Ranking Correlation

In machine learning algorithms, Pearson correlation is the most widely used corre-
lation for numerical variables. To effectively measure the degree of relationship (linear
association or correlation) between two different variables, this correlation can be used.
It shows how far the data points are from the line of best fit. For this method to work
effectively, the variables should be normally distributed. The direction and strength of two
variables can be measured by the number between 1 and −1, where −1 indicates negative
correlation, 1 represents positive correlation, and 0 indicates no correlation.

2.4. HOMO Prediction

The value from 1 to 0 shows a positive correlation between the HOMO and other
molecular descriptors. The value from 0 to −1 shows the negative correlation between
HOMO and other molecular descriptors. The 0 value shows no correlation between the
variables. The red color indicates a positive correlation, while blue color indicates a negative
correlation. As shown in Figure 1, DEEC, SdssC, NNRS, Nr05, ti2-L, and SM5-X all are
red in color, these molecular descriptors show a positive correlation with the HOMO lies
on the x-axis. In contrast, SPMAD-AEAdm, RFD, RCI and Eta-D-AlphaB show a negative
correlation with the HOMO of the x-axis. In addition, TI2-L shows a strong positive
correlation with the HOMO lying on the y-axis.
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For model training, calculated molecular descriptors are used as a source of input.
The chemistry of donor molecules is represented by the help of molecular descriptors. The
numerical form is used for presenting the chemical structure of materials in the numerical
form presented by the molecular descriptors. Figure 2 shows that the Eta-D-AlphaB, RCI,
RFD, and SPMAD-AEAdm show the negative dependent Pearson correlation. On the other
hand, other molecular descriptors such as DECC, SdssC, NNRS, Nr05, TI2-L, and SM5-X
show that they are positively dependent features.
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2.5. Shapiro Ranking

The Shapiro ranking test is also known as the Shapiro–Wilk test. This test is usually
performed to test the normality in statistics. Martin Wilk and Samuel Sanford Shapiro
published this in 1965. This ranking uses the Shapiro–Wilk algorithm, which is generated by
the Yellowbrick Python package. This is a one-dimensional feature ranking. To assess the
normality of distribution, it considers a single feature at a time. The results are shown in the
form of a bar plot, which shows the features with the maximum score on the one side and
the features using the average score on the other side. Figure 3 shows that Eta-D-AlphaB
shows the least amount of distribution according to this ranking.
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All the molecular descriptors are not able to give the performance value equally during
the time of model training [40,41]. Consequently, to evaluate the performance ability of
each feature or molecular descriptor, it is important to calculate the relative importance
of all the molecular descriptors used. The feature present with a high value of relative
importance shows that it can contribute most to the algorithm used in machine learning.
Moreover, the feature of high relative importance shows that these are considered helpful
for predicting machine learning models. Figure 4 indicates that the molecular descriptor
RCI shows the least value of relative importance and its contribution to the algorithms
is extremely low. In contrast, ETA-D-AlphaB shows a high value of relative importance,
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and its contribution is greater than all the other features for the prediction of the machine
learning models. The variety of the features shows different relative importance.
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Different models are tested for their predictive capability (Table 2). The light gradient
boosting model (LGBM) and Hist gradient boosting are used for further analysis. A residual
plot helps to identify problems associated with regression analysis. In the residual plot, the
target variable is present on the x-axis and the residuals are on the y-axis. The deviation of
the predicted value from the actual value is indicated by the residual values. If the data
point is away from the zero line, the prediction value will differ from the actual values. The
residual plot for the LGBM regression model is shown in Figure 5. The residual plot for
the Hist gradient boosting model is shown in Figure 6. The behavior of LGBM regression
models is like that of the Hist gradient boosting regression model. R2 is the coefficient
of determination for the test and trained value. R2 for the test and train residues is not
remarkably high: near zero, which is considered accurate. So, the results of both models
are good. Dependence on expensive experimental techniques can be decreased by finding
accurate results by machine learning models. The more similarities in the predicted and
experimental values show that the model or method used was precise and accurate. The
easy and fast prediction of results can speed up the design process of new structures of
donor materials.

Table 2. R2, mean absolute error (MAE) and root mean square error (RMSE) values of various models
for HOMO prediction.

Model Train R2 Test R2 Train MAE
(eV)

Test MAE
(eV)

Train RMSE
(eV)

Test RMSE
(eV)

Hist Gradient Boosting Regressor 0.912 0.820 0.136 0.146 0.163 0.176

LGBM Regressor 0.906 0.863 0.137 0.142 0.165 0.172

Random Forest Regressor 0.853 0.801 0.144 0.148 0.174 0.180

Decision Tree Regressor 0.752 0.683 0.150 0.155 0.183 0.193

Extra Trees Regressor 0.723 0.652 0.152 0.159 0.189 0.194

AdaBoost Regressor 0.623 0.560 0.161 0.172 0.1950 0.239

K-Neighbors Regressor 0.620 0.564 0.161 0.171 0.1950 0.237

Linear Regression 0.610 0.550 0.162 0.173 0.1960 0.243
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A scattered plot between the experimental value and expected value of HOMO using
the LGBM Regression model and Hist gradient regression model is shown in Figure 7 and
Figure 8, respectively. The scatter plot is drawn between the residuals for models and
the experimental or predicted value. The majority of values are in the low range, close
to zero, which is a clear indication of accurate results. The values for train residues and
the values for the test residues are also close to zero. The results show that both LGBM
Regression model and the Hist Gradient Boosting Regression model are the best models
for regression analysis.
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2.6. LUMO Prediction

In Pearson ranking, a correlation between the LUMO and molecular descriptors is
determined (Figure 9). The value of the Pearson ranking shows that the value from 0 to
+1 shows a positive correlation. The molecular descriptors that fall in the value of 0 to +1
are indicated by red color. There is no correlation at zero point. The molecular descriptors
having a blue appearance indicate a negative correlation. The negative correlation ranges
from 0 to −1.
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Figure 9. Correlation between LUMO and molecular descriptors.

GATS1s is the molecular descriptor (Table 3) presented on the y-axis. It indicates a
positive correlation with LUMO lying on the x-axis, while the other molecular descrip-
tors present on the y-axis show a negative correlation because their blue color indicates
that the values of these molecular descriptors must lie between 0 and −1. In contrast,
SPMAD-AEAdm, Eig04_EA(dm), EE_B(s), SM4_B(s), SM5_B(s), SM6_B(s), SHED-AL and
Eig08_EA(dm) are the molecular descriptors present on the x-axis. These indicate a positive
correlation with the LUMO present on the y-axis (red in color).

Table 3. Molecular descriptors with respective categories and descriptions.

No Molecular Descriptor Category Description

1 SpAD_AEA(dm) Edge adjacency indices Spectral absolute deviation from augmented
edge mat. weighted by dipole moment

2 GATS1s 2D autocorrelations Geary autocorrelation of lag 1 weighted by
I-state

3 Eig04_EA(dm) Edge adjacency indices Eigenvalue n. 4 from edge adjacency mat.
weighted by dipole Moment

4 EE_B(s) 2D matrix-based descriptor Estrada-like index (log function) from
Burden matrix weighted by I-State

5 SM4_B(s) 2D matrix-based descriptors Spectral moment of order 4 from Burden
matrix by I-State

6 SM5_B(s) 2D matrix-based descriptors Spectral moment of order 5 from Burden
matrix by I-State

7 SM6_B(s) 2D matrix-based descriptors Spectral moment of order 6 from Burden
matrix by I-State

8 Eig08_EA(dm) Edge adjacency indices Eigenvalue n. 8 from edge adjacency mat.
weighted by dipole Moment

9 SHED-AL SHED Acceptor Lipophilic



Molecules 2023, 28, 1240 10 of 19

A source of input is considered a calculated molecular descriptor for the model training.
The chemistry of donor molecules is represented by the help of molecular descriptors.
Figure 10 shows that molecular descriptors such as SPMAD-AEAdm, Eig04_EA(dm),
EE_B(s), SM4_B(s), SM5_B(s), Eig08_EA(dm), SM6_B(s), and Eig08_EA(dm) indicate the
negative dependent Pearson correlation. This negative correlation is determined by noting
that these molecular descriptors lie between 0 and _1. In LUMO’s case, only one molecular
descriptor, GATS1s, shows a positive dependent correlation, with a value from 0 to +1.
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To find the normality of the distribution of molecular descriptors, Shapiro ranking
deals with a single molecular descriptor one at a time. In Figure 11, GATS1s shows the
least normality according to Shapiro ranking. On the other hand, SPMAD-AEAdm and
SM4-BS show the greatest normality according to this ranking.
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The relative importance of features tells us about the performing ability of different
molecular descriptors. During the training of the model, all the molecular descriptors
present are not able to perform at an equal level. It is important to calculate the relative
importance of all the molecular descriptors to check the performance ability of each. So,
the relative importance of features helps to evaluate the performing ability of different
molecular descriptors. The molecular descriptor whose relative importance is high shows
that it can be used mostly for the prediction of results. Additionally, the feature with
the highest value of relative performance among all the features is considered helpful
in training algorithms used in machine learning. Figure 12 shows that the molecular
descriptor SM5-Bs shows the least value of relative importance and its contribution to
the algorithms is extremely low. On the other hand, the molecular descriptors GATS1s,
SPMAD-AEAdm, Eigo4-AEAdm and SHED-AL show high values of relative importance.
The variety of features shows different relative importance.
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A variety of regression models are used for the prediction of results [42]. R2 values
are given in Table 4. LGBM and Hist gradient boosting models consider the best working
models for the prediction of LUMO. An analysis of different molecular descriptors is carried
out by using these regression models. A residual plot is used to identify problems with
regression analysis. In the residual plot, the relationship between the test value and the
train value is predicted. The target variable is present on the x-axis, and the residuals are on
the y-axis. If the value of train data is near the value of test data, then the chances of accurate
results increase. If the values of the test and train data are not near each other or near the
zero line, it indicates that the prediction value will differ further from the actual values. The
residual plot for the LGBM regression model is shown in Figure 13. The residual plot for
the Hist gradient boosting model is shown in Figure 14. The obtained results show that the
behavior of LGBM regression models is like that of the Hist Gradient Boosting regression
model. The coefficient of determination for the test and trained value is indicated by the
symbol R2. These regression models show that the value of R2 is near zero. So, the results
of both models are considered good enough. By using machine learning models, accurate
results can be achieved. This is helpful to avoid expensive experimental techniques.
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Table 4. R2, mean absolute error (MAE) and root mean square error (RMSE) values for LUMO prediction.

Model Train R2 Test R2 Train MAE
(eV)

Test MAE
(eV)

Train RMSE
(eV)

Test RMSE
(eV)

Hist Gradient Boosting Regressor 0.843 0.667 0.070 0.074 0.084 0.089

LGBM Regressor 0.831 0.602 0.071 0.075 0.085 0.090

Random Forest Regressor 0.820 0.601 0.072 0.076 0.087 0.092

Decision Tree Regressor 0.732 0.583 0.075 0.078 0.093 0.097

Extra Trees Regressor 0.723 0.570 0.076 0.080 0.095 0.097

AdaBoost Regressor 0.652 0.540 0.081 0.086 0.098 0.120

Linear Regression 0.612 0.504 0.082 0.087 0.099 0.121

K-Neighbors Regressor 0.610 0.520 0.081 0.087 0.098 0.122
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A scattered plot between the experimental value and expected value of LUMO using
the LGBM regression model and Hist gradient regression model is shown in Figure 15 and
Figure 16, respectively. The scatter plot is drawn between the residuals for the models and
the experimentally predicted value. It is mostly used to find problems with regression
models. For data points above the line, residuals are positive. For the data points below
the line, the residuals are negative. The closer the value of the data points to 0, the more
accurate it is for results. The scatter plot of LGBM and Hist gradient regression models
shows that most of the values lie in the low range, near the value of zero, indicating
accurate results.
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2.7. Database Mining

The Clean Energy Project (CEP) is a database that contains thousands of organic
molecules. These molecules can be used for various photovoltaics applications [43,44].
A similarity analysis is performed to find suitable building units. O4TIC is a low-band
gap molecule. O4TIC contains a carbon–oxygen bridged-type ladder with strong electron-
donating capability with the oxygen atoms conjugation effect. The further band gap of
the molecule is decreased with the attachment of a more electron-rich group instead of the
central phenyl group, which increases the donating capability of the molecule [43,45]. The
linear side increases the crystallinity, which in turn increases the mobility of the electrons.
The top search hits for O4TIC references are given in Figure 17. The building blocks found
are not overly similar to O4TIC; however, most are suitable for the design of polymers for
organic solar cells. The top search hits for middle O4TIC are given in Figure 18. All the
structures are unique and possible to synthesize.
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The top search hits for Y5 are given in Figure 19. Many groups can be used for polymer
designing. After a minor structural modification, other groups can also be useful candidates.
The top search hits for Y5 middle are given in Figure 20. Molecular core of Y5 is used as
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an electron deficient group. Y5 core structure is considered as high performance (NFA)
non-fullerene acceptor. Y5 can be applied to both inverted and conventional OPV devices
because of versatility of Y5. OSCs based on NFA can achieve longer device life-time with
greater photochemical and thermal stability [46]. The combination of Y5 electron deficient
with five different donor polymers could lead to enhanced efficiency [47].
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The organic building units are varied because various positions are available to add
or connect plenty of heteroatoms [48–51]. This is carried out to produce or synthesize
countless organic molecules that are better in their characteristics than the previous ones.
To design new polymers or organic semiconductors for organic photodetectors, electron-
deficient and electron-rich groups can be used. Hundreds of building blocks can be selected
based on the addition of terminal groups and the availability of the position for alkyl chains.
Many organic semiconductor materials can be designed by connecting new building units.
A suitable combination of electron-rich and electron-deficient results in the formation of an
electron hole, which leads to an increase in conjugation [52–55].
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3. Methodology
3.1. Dataset

The data for machine learning were collected from research papers. The volume of
data was enough for good machine learning models. The data are based on energy levels
and photovoltaic parameters. The performance of the machine learning model strongly
depends on the quality and quantity of the data [56].

3.2. Molecular Descriptor Calculation

Several types of molecular descriptors of molecules were calculated using Dragon
software [57]. About 4000 descriptors were generated. The best descriptors were short-
listed using univariate regression. These descriptors were used for training machine
learning models.

3.3. Training the Model

We have imported the necessary packages of Python such as Scikit-learn, Pandas, Scipy,
Numpy, Seaborn, and Matplotlib. These packages are necessary for data visualization and
analysis. The calculated descriptors and target properties in comma-separated value (CSV)
files were imported with the help of the Pandas module.

3.4. Similarity Analysis

A similarity analysis was performed using RDKit [58]. The similarity analysis is a
straightforward method to find the similarities between reference structure and structure
in the database. For this purpose, pharmacophores, distances, fingerprints, etc., can be
used. In our work, Tanimoto similarity was used. For this purpose, ECFP4 fingerprints
were selected.

4. Conclusions

In summary, data on large photovoltaic properties were collected from already re-
ported experimental studies and subsequently utilized to train machine learning models.
Among the multiple trained models, the LGBM regression model and Hist gradient boot-
ing regression model demonstrated the best predictive capability. Moreover, HOMO and
LUMO energy levels were successfully predicted. The results revealed that good consis-
tency was obtained between experimental outcomes and model predictions. In addition,
Pearson correlation and Shapiro ranking was applied to demonstrate the correlation be-
tween different parameters. Furthermore, a similarity analysis was performed to find the
similarities between reference structure and structure in the database. The reliability of our
designed approach was also verified by mining the photovoltaic database to search for new
building units. This indicates that machine learning is a powerful approach to predict the
properties of photodetectors, which can facilitate their rapid development in various fields.
Fast screening or searching of new building units with minimal computational costs could
significantly reduce experimentation (trial and error methods) costs by narrowing down
the search for potential candidates.
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