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Abstract: Overweight and obesity are present in about three-quarters of the adult population in
Mexico. The inflammatory mechanisms subjacent to visceral white adipose tissue are accountable for
the initiation and development of cardiometabolic alterations, including type 2 diabetes. Lifestyle
changes are pillars within its therapeutics and, thus, current dietary modifications should include
not only hypocaloric prescriptions with balanced macronutrient intake, preferably by increasing
the amount of whole grains, fruits, vegetables, nuts and legumes, but in concomitance, bioactive
substances, such as anthocyanins, have been correlated with lower incidence of this disease.
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1. Introduction

The prevalence of overweight and obesity in the Mexican population is about 75.2%
in adults aged 20 years and older. As defined by the World Health Organization, obesity
is a chronic disease characterized by excess adiposity which has negative impacts on
health, as fat mass is metabolically active. This increases adipose tissue, particularly
denominated visceral fat that results in low-grade sustained inflammation which drives
the development of cardiometabolic and chronic degenerative disorders, such as diabetes,
with an implication for the quality of life of individuals, families, and society worldwide.
According to the statistics of the International Diabetes Federation from 2017, the global
prevalence of diabetes in the age group of 20 to 79 years is 8.8% [1], and is considered the
fifth leading cause of death worldwide. The number of patients with diabetes around the
world in 2014 was 422 million, and it is estimated that by 2035, it will be 592 million [2]. In
Mexico, it is considered a public health problem. A total of 14.4% of adults over 40 years
of age have this disease, and this percentage increases to 30% in those over 50 years of
age. According to data from the National Survey of Health and Nutrition (ENSANUT)
in 2016, the number of the people aged 20 and over with a previous medical diagnosis
of diabetes increased from 6.4 million adults living with diabetes in 2012 to 8.6 million in
2018. These data make up an alarming situation in which more efficient measures should
be focused on the prevention and treatment of diabetes. Current dietary intervention
strategies are based on lower caloric intake and a balanced diet, especially through the
intake of whole grains, fruits, vegetables, nuts, and legumes There is considerable evidence
that suggests the consumption of whole grains in the diet as a healthy alternative [3]. They
provide fiber, vitamins, minerals, and phytochemicals, such as polyphenols, carotenoids,
and phytosterols [4]. They reduce the risk of cardiovascular disease, diabetes mellitus,
obesity, and certain types of cancer [5]. The benefits associated with a healthy diet may be
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related to the presence of unsaturated fats, dietary fiber, and certain phytochemicals that are
contained in particular foods. However, other substances interact within the organisms in a
more pathway-specific way (e.g., iminosugars (miglitol, voglital) compete with saccharides
for the digestion site, thus decreasing its absorption. Other bioactive substances have been
reported to modulate other metabolic pathways regarding glucose homeostasis [6] For
example, anthocyanins (ANC) have been correlated with lower incidence of type 2 diabetes
in humans [7]. Herein we present a narrative review on this topic.

2. Phytochemicals

These are, etymologically, compounds produced by plants. They are synthesized as
secondary metabolites (i.e., they are not required for vital functions, such as growth, but
confer an advantage to the organism). For example, capsaicin helps chili peppers defend
themselves from frugivorous predators. Among these phytochemicals, polyphenols have
been of recent interest.

Polyphenols are a vast group of organic compounds that have one or two aromatic
rings with multiple hydroxyl groups. The most studied and known function of these
phenols is their antioxidant activity, as they deactivate oxygen, and are free radical hy-
drogen donors, providing a protective effect on cells against oxidative damage [8]. How-
ever, polyphenols are categorized into five groups: flavonoids, stilbenes, phenolic acids,
coumarins and tannins. Within the first group, we find anthocyanins: water-soluble
flavonoids which are responsible for the red, violet, and blue color in fruits, vegetables, and
cereal grains [9].

Structure, Classification, and Function of Anthocyanins

Anthocyanins belong to the group of flavonoids, and their basic structure is a flavone
nucleus, which consists of two aromatic rings linked by a three-carbon unit. Anthocyanins
are synthesized through the phenylpropanoid pathway, which initiates from phenylalanine
(and tyrosine in monocotyledonous plants). This amino acid is metabolized to cinnamic
acid, which is further used for chalcone production: chalcones are the precursors to all
flavonoids. The level of hydroxylation and methylation in the “B” ring of the molecule
determines the type of anthocyanidin. Anthocyanidin (aglycone form) is the central
structure of anthocyanins [10]. The addition of a sugar chain results in the glycosidic
form of the anthocyanidin molecule, called anthocyanin [9]. There are 23 anthocyanidins
and 500 anthocyanins isolated in plants. Their differences are mainly due to the degree
of methylation, which influences the stability of the molecule and the hue; that is, the
greater the methylation, the greater the red pigmentation and stability [10]. Anthocyanin
biosynthesis is shown in Figure 1. The degree of hydroxylation and the number and nature
of the chains attached to the sugar residues are also important in their classification, the most
common of which being glucose, ribose, xylose, and galactose [11]. As shown in Figure 2,
there are six main compounds of anthocyanidins in food: 50% of anthocyanins from fruits
and cereals (12%) are derived from cyanidin, followed by pelargonidin, delphinidin (12%),
peonidin (12%), petunidin (7%), and malvidin (7%) [10]. The stability of anthocyanin
molecules depends on factors, such as temperature, pH, exposure to light, oxygen, sulfites,
and ascorbic acid [12,13].

Plants use anthocyanins against extreme temperatures, so they are found in the outer
layers of the cell, the epidermis and the mesophyll, and most flowers and leaves, as well as
within the fruits.

Some foods high in anthocyanins are strawberries, blueberries, black currant, currants,
and raspberries, with a range of 100–700 mg/100 g. Other good sources of anthocyanins
can include blue corn, plums, pomegranate, eggplant, wine, grapes, and red or purple
vegetables, such as red cabbage, black carrot, and purple cauliflower [14].
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Figure 1. Biosynthesis pathway of anthocyanins in plants. PAL: Phenylalanine Ammonia Lyase, C4H:
Cinnamate 4-hydroxylase, CPR: cyto-chrome P450 reductase, 4-CL: 4-coumaroyl-CoA ligase, CHS:
Chalcone Synthase, CHI: Chalcone Isomerase, F3H: Flavanone-3-Hydroxylase, F3′H: flavonoid 3′-
hydroxylase, F3′5′H:Flavonoid 3′,5′-hydroxylase, DFR: Dihydroflavonol 4-reductase, ANS: Anthocya-
nidin Synthase, FGT: Flavonoid Glucosyltransferase, OMT: O-Methyltransferase, ACT: Anthocyanin
Acyltransferase.
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Anthocyanins in Pigmented Corn as an Example of Functional Food

Mexico is considered to be the place of the origin, domestication, and diversification
of corn, or maize. Zea mays, its scientific name, is an annual grass native to Mesoamerica.
Its domestication began approximately twelve thousand years ago in the neovolcanic
axis of Mexico, and it was introduced to Europe in the 16th century. There are between
59 and 64 types of corn in the Mexican territory. Cornstarch isolate is the most widely
used ingredient [15]. The type of corn and its subspecies depend on the amount and type
of starch in the grain [16]. There is a great genetic variety in the color of corn grains [17],
including black, blue, pink, red, purple, and brown. In purple corn, the anthocyanins are
found in the peri-layer; in blue corn, the anthocyanins are found in the aleurone layer. In
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blue, pink, and scarlet maize, 15 anthocyanins have been identified, and in red maize there
are 27 different anthocyanins. In general, the most identified anthocyanin is the 3-glucoside
cyanidin [18], but many aglycones have also been identified, including cyanidin, peonidin,
and pelargonidin. In general, the varieties of corn with color contain between 27 to 1439 mg
of anthocyanins/kg in dry grain [19], due to the fact that the mature grains are the ones
with the highest anthocyanin content (indicating that anthocyanins are formed in that
stage), and the degree of maturity during harvest impacts the anthocyanin content [20,21].

3. Mechanisms of Absorption, Metabolism, and Bioavailability of Polyphenols

The absorption and metabolism of polyphenols has been studied extensively. The
biochemical pathways, related to their bioavailability, are well understood in most classes
of polyphenols. In humans, however, this can be somewhat complicated due to the various
metabolic pathways and their interactions with the gut microbiota. Its absorption is also
influenced by factors, such as pH, enzymatic activity, or body temperature [22]. The
digestive process begins in the mouth when the anthocyanins come into contact with
saliva and are partially degraded (about 60%) under conditions of temperature (generally
37 ◦C) and pH (6.4) in approximately one hour. In ex vivo studies, glycosylated delphinidin
and petunidin have been shown to degrade more rapidly than cyanidin, pelargonidin,
malvidin, and peonidin under oral conditions. Conjugated anthocyanins are more stable
than monosaccharides, and less degradation has been observed when there are fewer
bacteria in the oral microbiota. Anthocyanins pass quickly through the oral cavity, so
their real degradation corresponds to less than 5% in this stage of digestion, allowing
anthocyanins to travel to the stomach [23]. In the gastric phase, the food is broken down into
smaller parts so that the nutrients are absorbed and metabolized. It has been suggested that
anthocyanins are rapidly absorbed in the stomach and intestine, reaching their maximum
concentration in the blood 1 h after ingestion. Its greater absorption in the stomach is due
to the stability it acquires in acidic pH (pH: 2) [24].

It is generally estimated that the absorption area of anthocyanins in the stomach is
approximately more than 20% [25]. In the gastric mucosa, anthocyanins bind to bile translo-
case (an organic anion transporter), and this protein favors its diffusion and absorption
in the circulatory system after passing through the liver [26]. Some structures have been
explained in vivo in detail, such as quercitin, hesperidin, and some phenolic acids. The
degree of absorption is also influenced by several factors, such as the chemical coupling of
the polyphenol [27], the solubility, and the process, as well as the fat content.

Peak concentrations of postprandial blood polyphenol are generally less than 1 µM,
while for intestinal catabolites, concentrations can exceed this figure and are usually 10 to
100 times higher than the original compounds. Most of the circulating metabolites both
in the original compound and in the intestine are in the form of glucuronides or sulfates,
and may also be methylated [28]. Classical bioavailability studies in mice show that the
consumption of epicatechin, its absorption and urinary excretion is 80% as shown in an
investigation from Otaviani JL in 2016. The concentration reached by some polyphenols in
the blood depends largely on the parent polyphenol administered, and the concentrations
of metabolites in the gut microbiota are likely to be higher than in plasma [29,30].

In the liver, polyphenols are metabolized by methylation and glucuronidation reac-
tions. The glycosylated anthocyanins that are absorbed continue to the small intestine,
the absorption capacity of which varies from 10.7%, for example, in malvidin 3-glucoside,
to 22.4% in cyanidin 3-glucoside. The small intestine is considered as a fast and efficient
absorption site, although it has been seen that the anthocyanins in this site reduce its
bio accessibility by 75% [31]. Two mechanisms have been proposed for the absorption
of anthocyanins in the intestine. One is by passive diffusion through the membrane of
epithelial cells, since the aglycones of anthocyanins have great hydrophobicity. It has also
been suggested that they may leak into the bloodstream as bioavailable anthocyanin prod-
ucts, such as hydroxybenzoic acids, derived from the B ring. Another process is from the
sodium–glucose cotransporter at the brush border of enterocytes. The enterocyte absorbs
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50% of the anthocyanins. Despite these proposals of absorption mechanisms, it is estimated
that only 1% of the anthocyanins will reach the blood circulation [26].

The detection of anthocyanin metabolites may be due to different reactions that conju-
gate flavonoids in the intestine and liver. The metabolites present in plasma may also be
due to the enterohepatic cycle, where they are absorbed and transported by hepatocytes and
subsequently excreted with bile. This can cause a second absorption of these compounds
to take place in the being [25].

In the large intestine, a large amount of anthocyanins pass, intact, to the colon and
are metabolized by colonic bacteria as phenolic compounds, which contributes to their
antioxidant activity. The microbiota provides a wide variety of enzymes that hydrolyze
phenolic compounds, forming bacterial metabolites.

4. Chemical Nature, Reported Mechanism of Action and Assigned Effects

The high consumption of polyphenols, such as anthocyanins, has been related to a
lower incidence of type 2 diabetes in humans [27]. The reduction in glucose absorption in
the intestine is desirable in patients with hyperglycemia and type 2 diabetes, since high
concentrations in the bloodstream are associated with greater comorbidities.

Recent studies (in vitro and in vivo) have revealed the beneficial glucose control
properties of anthocyanins [32]. Some extracts rich in anthocyanins from different sources,
such as black currant, red raspberries, purple rice, and black soybeans, have been shown
to have hypoglycemic abilities [31–36]. In particular, blackberry extract can suppress
hepatic gluconeogenesis and modulate glucose metabolism in human HepG2 cells [37].
However, there are few studies available related to the increase in insulin secretion induced
by anthocyanins through food sources [38].

Foods such as pigmented corn contain anthocyanins, especially purple corn, which
has shown promising antidiabetic activities [32]. Recent studies have shown that the
anthocyanin-rich extract from the peri-layer of purple corn decreases insulin resistance and
increases glucose uptake in 3T3-L1 adipocytes [39]. Among the mechanisms of action of
greatest scientific interest in glycemic control, the receptors stand out: FFAR1, also known
as GPR40 (free fatty acid receptor), and GK (glucokinase receptor) [40].

FFAR1 activation is associated with decreased fasting blood glucose and improved glu-
cose tolerance in diabetic rats [41]. The GK receptor is expressed on pancreatic β-cells and
hepatocytes. It plays a crucial role in glucose homeostasis. Studies in rodents with insulin
resistance or type 2 diabetes have lower hepatic expression of the GK receptor, suggesting
an alteration in the regulation of this biomarker [42]. Various studies have reported the
impact of polyphenols on these two receptors [43]. However, evidence has been lacking for
the interaction of anthocyanidins from dietary sources and their relationship with receptors
(FFAR1/GK) with insulin secretion and glucose absorption. The study conducted by Diego
A. Luna Vital et al. demonstrated that blue corn anthocyanins reduce epithelial glucose
transport, determining that the highest concentrations of pure anthocyanins (100 µM) were
sufficient to reduce glucose transport in epithelial cells with a reduction range from 15 to
27%. In this same study, it was observed that purple corn anthocyanin-enriched water
extract (PCW) abruptly reduced glucose transport concentration by 33% at a concentration
of 0.5 mg/mL. Another of the main mechanisms described in the reduction in glucose
transport through the effect of anthocyanins is the interaction with the glucose transporter
(GLUT2) and the sodium-glucose transporter 1 (SGLT1) [28].

Purple corn anthocyanins increase insulin secretion glucose-stimulated (GSIS) by
modulating FFAR1 in pancreatic β-cells. A study by Suantawee et al. reports that cyanidin
stimulates insulin secretion in iNS-1E cells by activating type 1 voltage-gated calcium
channels [44]. However, anthocyanidins must have different types of action since antho-
cyanidins and anthocyanins have different bioactivities [45].

Purple corn anthocyanidins modulate protein expression of the FFAR1 insulin secretion-
dependent pathway. PCW is the most efficient treatment, increasing FFAR1 expression by
100% compared to the untreated control group [39]. Purple corn anthocyanins increase
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glucose reuptake and activate the GK receptor on liver cells. PCW is the most effective
treatment by increasing glucose reuptake by approximately 45% of the pure anthocyanidins,
and D3G (delphinidin) and C3G-P (cyanidin) were the most effective in increasing glucose
reuptake, with 35% and 41%, respectively. The studies by Luna-Vital et al. open the
possibility that the use of anthocyanins from purple corn activate FFAR1 and GK, markers
that, when activated, decrease the complications of type 2 diabetes. For the first time it
has been reported that anthocyanins from purple corn increase insulin secretion in cells
β-pancreatic cells in vitro, potentially via FFAR1 activation [7].

In addition, purple corn anthocyanins increase hepatic glucose reuptake in vitro,
which may contribute to glucose homeostasis. In general, anthocyanin-enriched extracts
are more effective than pure anthocyanins. Purple corn anthocyanins are good candidates
to be incorporated into the diet of patients with type 2 diabetes in their treatment.

4.1. Reduction of Adipogenesis

Several purple maize genotypes regulate proinflammatory agents in vitro. Particu-
larly, these compounds reduce adipogenesis by regulating proinflammatory pathways and
inhibiting fatty acid activity. Phenolic compounds also play a role in decreasing insulin
resistance by inhibiting IRS-1 (inhibition of phosphorylation) and promoting the translo-
cation of glucose transporters in the adipocyte membrane. In vivo studies have shown
that extracts enriched with phenolic compounds prevent obesity in animal models by
suppressing adipogenesis, gluconeogenesis, and lipogenesis [46].

4.2. Antioxidant Properties

Several studies have shown the antioxidant capacity of purple corn, which correlates
in particular with the amount of the bioactive compound. Cevallos et al. concludes that
the antioxidant activities of purple corn through anthocyanins are superior compared to
other phenolic compounds by showing that purple corn phenolic compounds have a higher
antioxidant capacity compared to blueberry phenolic compounds, suggesting that purple
corn may have a greater activity of the hydroxyl groups and a more favorable configuration
to interact with free radicals [47]. The antioxidant capacity of purple corn remains after the
industrial process. The antioxidant properties of tortillas, chips, and grains of corn have
been investigated using ORAC methods. The loss of anthocyanins after nixtamalization
reduces the antioxidant capacity by approximately 28%, 37% in processed tortillas, and
55% in chips [48].

4.3. Anti-Inflammatory Activity

Purple corn pigments can weaken mesangial inflammation (induced by high glucose
concentrations), expansion, and hyperplasia by inhibiting the inflammatory action of IL-8.
Cells that receive the anthocyanin-enriched extract from purple corn decrease IL-8 secretion,
depending on the dose level. Cyanidin is the most abundant anthocyanin in purple corn,
and numerous studies have shown its anti-inflammatory properties. Cyanidin suppresses
the inflammatory response, so tumor necrosis markers were significantly suppressed by
cyanidin administration [49].

5. Discussion

As shown in the Table 1, several clinical studies have shown that anthocyanin sup-
plementation significantly reduces TC, TG, and LDL levels in patients with dyslipidemia,
and increases HDL cholesterol. In other systematic reviews and meta-analyses, they con-
clude with an improvement in glucose parameters, IL-6, as well as in the response of the
absorbance capacity of oxygen radicals, determined by the areas under the curve and post-
prandial concentrations. However, the doses of anthocyanins include a very wide range
(from 32 mg to 600 mg), and the form of consumption and the time of consumption is very
variable due to the vehicular presentation and food sources. Moreover, this phytochemical
consumption is not achieved within a normal daily basis, i.e., from diet, thus it is mandatory
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to provide bioactive substances in the form of nutraceuticals. This may have implications
for the bioactive properties of anthocyanins through chemical and physical interactions,
such as increased antioxidant capacity when anthocyanins are consumed in water or in
combination with high-sugar foods or fasting, which is related to delayed absorption. There
is no significant evidence that using higher doses of anthocyanins compared to lower doses
has a more effective result; this phenomenon, known as homeorhesis, has been described
elsewhere, but in brief, phytochemicals exhibit a bell-shaped dose–response effect. Thus,
increasing the amount of their consumption does not necessarily reflect greater clinical
benefits, and, rather, these may be lost. Most of these studies are based on the use of
red fruits, in which it is important to keep in mind that a portion of 100 g of blueberries
contains approximately 170 mg of anthocyanins, which can be easily implemented in a
dietary strategy; nevertheless, other food sources—such as ancestral maize, taro leaves,
purple banana, etc., should be studied, particularly in native environments, since their
cost is likely to be significantly lesser. It seems that the most robust scientific evidence is
found in animal studies, and that the evidence in humans is beginning to be attractive, but
that it should definitely be deepened with long-term studies. The proposed mechanism of
anthocyanins on diabetes mellitus type 2 and obesity are resumed in Figures 3 and 4.

Table 1. Analysis of studies and dosage and discussion of evaluated clinical studies.

Author Study Design Population Dosage Study Duration Main Findings

María S.
Hershey 2020

[50]

Cross-sectional
ECA

249 men
Age: 47 ± 7.6

Range from 6.05
to 120.8 mg/per

ration
2 years High intake of anthocyanins is

associated with > HDL.

Zhu, 2013
[51]

Randomized,
double-blind, parallel

73 participants, per
group

Age: 40–65
320 mg/day 24 weeks

Anthocyanin supplementation
decreased TC, TG, LDL compared to

placebo > HDL levels.

Soltani, 2014
(Soltani, [52]

Randomized,
double-blind, parallel

25 participants, per
group

Age: 48 ± 16
90 mg/per day 4 weeks

Anthocyanin supplementation
decreased TC, TG, LDL compared to

placebo. >HDL levels.

Kianbakht
2013
[53]

Randomized,
double-blind, parallel

40 participants, per
group

Age: 51.3 ± 15.27

259.68 mg/per
day 2 months

Anthocyanin supplementation
decreased TC, TG, LDL compared to

placebo. >HDL levels.

Schell
et al.,2019

[54]

Cross-sectional,
randomized,

controlled

25 participants (5
men, 20 women)

Age: 54 ± 4.2
Obese diabetic adults

225 mg 4 h.

Lower postprandial glucose levels
were reported at 2 and 4 h with the

anthocyanin group vs. control.
IL6/TNF α decreased at

postprandial 4 h.

Park et al.,
2016
[55]

Cross-sectional,
randomized,
controlled,

double-blind, 4
groups

21 participants (5
men 16 women) Age:

39.8 ± 13.8. Obese
adults with insulin

resistance

42, 88 and
155 mg 6 h.

The 6-hour postprandial insulin
concentration in the group with the
highest beverage concentration was

significantly reduced.

Richter et al.,
2016
[56]

Cross-sectional,
randomized,
controlled,

double-blind,

30 participants (17
men 13 women) Age:

28 ± 2
Healthy, overweight,

and obese adults

163 mg 4 h The intervention did not improve TG,
glucose, or insulin.

Abubakar
et al., 2019

[57]

Cross-sectional,
randomized,
controlled,

double-blind,

25 male participants.
Age: 49 ± 2

Adults: CVD 1–10%
in 10 years

150 mg 4 h.

Hibiscus extract improves
postprandial vascular function, useful
in reducing endothelial dysfunction

and cardiovascular risk.

Xiao et al.,
2019
[58]

Cross-sectional,
three-arm, single

blind randomized,
controlled trial

21 participants (12
men, 9 women) Age:

34 ± 12
With IR

73, 146 mg 24 h
Significant reduction at 2 h in the area

under the curve and a reduction in
peak insulin and glucose at 2 h.

Castro-Acosta
et al., 2017

[59]

Cross-sectional,
randomized,
controlled,

double-blind,

22 participants (13
men 9 women) Age:

45.4
Healthy

150, 300 and
600 mg 2 h

A reduction in postprandial blood
glucose, insulin, and incretin secretion

was observed.
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Figure 3. Anthocyanins effects on diabetes by regulation of incretin levels and dysbiosis, reduction
in hyperglycemia and inhibition of digestive enzymes (1); cytoprotecting of pancreatic cells and
regulation of insulin levels (2); and decreasing diabetes complications by reducing insulin resistance,
inflammation, and oxidative stress (3). Created with BioRender.com.
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Figure 4. Molecular mechanisms of anti-obesity effects of anthocyanins. (1) Various anthocyanins
are strong pancreatic lipase inhibitors; (2) These pigments can up-regulate AMPK expression which
increases the expression of PGC1α and UCP’s, and the excretion of adipocytokines; (3) Anthocyanins
inhibit fatty acid synthesis by down-regulating the expression of ACC, FAS, and SREBP’s and by
up-regulation of fatty acid oxidation by increasing the expression of PPAR´s and CPT-1; (4) Pigments,
such as anthocyanins, suppress food intake by reducing the expression of NPY, GABAB1R, PKA-α,
and p-CREB; (5) Anthocyanins can inhibit growth of Enterococcus spp. and Clostridium perfringens,
pathogens, and exert prebiotic effects enhancing the growth of beneficial strains, such as Lactobacillus
spp. and/or Bifidobacterium spp.; (6) These pigments can ameliorate oxidative stress by reducing
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ROS production, inhibit expression of NADPH oxidase and GPx, as well as reducing the expression
of CYP2E1, and also can resolve inflammation by decreasing levels of hs-CRP, MCP-1, TNF-α,
and IL6.

6. Conclusions

The consumption of fresh foods containing bioactive compounds should be promoted,
since they provide health benefits. Particularly, plant-based foods contain several bioactive
compounds, such as polyphenols, which modulate different pathways with antioxidant,
anti-inflammatory activity, which, in turn, modulates glucose regulation, as well as neuro-
protective activity. Among polyphenols, anthocyanins are an interesting group, from the
sensory characteristics of food (color) to their great potential as nutraceutical ingredients
for their health benefits, as they have been proven to attenuate body weight, glucose, and
triglycerides via AMPK and TLR pathways, thus reducing adipogenesis and inflammation
in adipocytes.

Adequate daily intake of anthocyanins promotes protection against chronic degen-
erative diseases. This can be promoted simply by frequent consumption of red fruits,
pigmented vegetables, pigmented corn, or products made from pigmented corn in our
daily diet. New formulations, such as encapsulated or nanoparticle anthocyanins, could
provide greater stability of anthocyanins for use in nutraceuticals. These formulations
could improve the bioavailability, improving the health benefits. However, the simplest
way is by consuming a higher plant-derived diet that can be easily implemented as a public
health strategy.
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