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Abstract: Novel 13α-estrone derivatives have been synthesized via direct arylation of the phenolic
hydroxy function. Chan–Lam couplings of arylboronic acids with 13α-estrone as a nucleophilic partner
were carried out under copper catalysis. The antiproliferative activities of the newly synthesized diaryl
ethers against a panel of human cancer cell lines (A2780, MCF-7, MDA-MB 231, HeLa, SiHa) were
investigated by means of MTT assays. The quinoline derivative displayed substantial antiproliferative
activity against MCF-7 and HeLa cell lines with low micromolar IC50 values. Disturbance of tubulin
polymerization has been confirmed by microplate-based photometric assay. Computational calculations
reveal significant interactions of the quinoline derivative with the taxoid binding site of tubulin.

Keywords: Chan–Lam reaction; diaryl ether; 13α-estrone; antiproliferative effect; tubulin polymerization;
molecular dynamics

1. Introduction

The development of highly efficient, environmentally friendly catalytic synthetic
methods is one of the major goals of modern organic chemistry [1]. Carbon–heteroatom
(C–X) bond formation is often a key challenge for organic chemists [2–8]. It is still desirable
to develop mild but effective methods, which allow the construction of the C–X bond
with high functional group tolerance. The Ullmann reaction is a traditional method using
aryl halides and nucleophiles under transition metal catalysis [9,10]. Nevertheless, owing
to its harsh reaction conditions, it is not applicable in certain cases. At the turn of the
Millennium, Chan, Evans and Lam published the coupling reactions of arylboronic acids
with nucleophiles under the copper salt catalysis, which were later called Chan–Lam
coupling reactions [11–13]. These transformations are characterized by mild reaction
conditions, low toxicity and appropriate stability. The extensions of Chan–Lam couplings
allow the establishment of various C–X bonds. The proposed mechanism of the C–O
coupling is depicted in Figure 1. After the coordination and transmetalation step (I.),
disproportionation (II.) between a CuY2 and a CuII(Ar)Y occurs. A reductive elimination
(III.) step provides the C–O coupled product. The terminal oxidant is responsible for the
oxidation of Cu(I) salts. Application of such methodologies in selective transformations of
biologically active compounds might allow feasible syntheses of drug candidates.

The literature describes certain copper-catalyzed methodologies for the synthesis of
diphenyl ethers (DEs) [14]. The copper(II)-promoted coupling might even efficiently be
carried out at room temperature using an organic or inorganic base in varied solvents. DE
represents a compound group bearing two aromatic rings connected via a flexible oxygen
bridge. The latter is an essential pharmacophore owing to its substantial hydrophobic-
ity, good lipid solubility, cell membrane penetration and metabolic stability [15,16]. Both
synthetic pharmaceuticals [17–20] and several biologically active natural products [21–24]
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contain the DE subunit. DEs, among others, possess anticancer [18–21], antiviral [25,26],
anti-inflammatory [23], antibacterial [27], antiparasitic [28], fungicidal [29], herbicidal [30]
or insecticidal [29] activities. Furthermore, the literature reports new efficient DE-based
compounds for the therapeutic applications of devastating diseases affecting the central
nervous or the cardiovascular system worldwide [14]. Figure 2 shows certain pharmacolog-
ically important DE-containing drugs, pesticides and natural products (1–4). Ibrutinib [17]
and sorafenib [18] as small-molecule inhibitors of certain kinase enzymes belong to anti-
cancer agents; however, nimesulide [20] is a nonsteroidal anti-inflammatory drug. Isoliensi-
nine [21] displays a variety of biological activities, including anti-cancer, antioxidant and
anti-HIV effects.
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Figure 2. Structures of synthetic or natural DE-based drugs 1‒4 (the diphenyl ether moiety is high-
lighted in blue). 
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of novel anticancer agents. Suppression of cell growth might be achieved by drugs that 
stabilize or destabilize microtubules (MTs) [33,34]. MT destabilizing agents (MDAs) pre-
vent the polymerization of tubulin and they promote depolymerization, whereas MT sta-
bilizing agents (MSAs) promote the polymerization of tubulin and they stabilize the pol-
ymer, preventing depolymerization. Six binding sites have been identified on tubulin 
[35,36]; however, MSAs generally bind reversibly to the taxoid binding site. Antimitotic 
drugs approved by FDA might be classified based on their binding site or their further 
modification (encapsulation or conjugation strategies) [32]. Vincristine sulfate (Oncovin), 
vinblastine sulfate (Velban) and vinorelbine (Navelbine) belong to the vinca alkaloid site 
binding drugs; however, colchicine binds to the site with the same name. Marquibo, as a 
vincristine sulfate liposome injection was developed to improve the pharmacodynamic 
properties of vincristine. T-DM1 is a maytansine derivative conjugated to trastuzumab 
applied in a second line breast cancer therapy. It can be stated that antitubulin agents bear 
a characteristic structure generally. It has two aryl rings and an ethylene, triazole or oxy-
gen bridge, which determine the relative orientation of the rings [36,37]. The latter struc-
tural element, the diaryl ether scaffold, is present in certain potent antitubulin agents [15] 
including substituted or condensed variations (compounds 5‒8, Figure 3). Nevertheless, 
the development of antitubulin compounds possessing improved potency and selectivity 
is still a leading challenge. 
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Cancer still remains the leading cause of death around the world. The development of
new, highly effective anticancer agents with high selectivity is still one of the major goals of
medicinal chemistry. Antitubulin compounds are considered to be the most effective tools
for cancer chemotherapy nowadays [31]. Certain antitubulin agents have already been
approved by the Food and Drug Administration (FDA) [32], but their efficacy might be
limited by the development of multidrug-resistant (MDR) cancer cells. Due to their crucial
role in cell division, α- and β-tubulin are essential targets for the development of novel
anticancer agents. Suppression of cell growth might be achieved by drugs that stabilize or
destabilize microtubules (MTs) [33,34]. MT destabilizing agents (MDAs) prevent the poly-
merization of tubulin and they promote depolymerization, whereas MT stabilizing agents
(MSAs) promote the polymerization of tubulin and they stabilize the polymer, preventing
depolymerization. Six binding sites have been identified on tubulin [35,36]; however, MSAs
generally bind reversibly to the taxoid binding site. Antimitotic drugs approved by FDA
might be classified based on their binding site or their further modification (encapsulation
or conjugation strategies) [32]. Vincristine sulfate (Oncovin), vinblastine sulfate (Velban)
and vinorelbine (Navelbine) belong to the vinca alkaloid site binding drugs; however,
colchicine binds to the site with the same name. Marquibo, as a vincristine sulfate liposome
injection was developed to improve the pharmacodynamic properties of vincristine. T-DM1
is a maytansine derivative conjugated to trastuzumab applied in a second line breast cancer
therapy. It can be stated that antitubulin agents bear a characteristic structure generally. It
has two aryl rings and an ethylene, triazole or oxygen bridge, which determine the relative
orientation of the rings [36,37]. The latter structural element, the diaryl ether scaffold, is
present in certain potent antitubulin agents [15] including substituted or condensed varia-
tions (compounds 5–8, Figure 3). Nevertheless, the development of antitubulin compounds
possessing improved potency and selectivity is still a leading challenge.
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We recently published the syntheses and biochemical investigation of certain biolog-
ically active derivatives of the core-modified synthetic 13α-estrone 9. Inversion of the
C-13 in natural estrone derivatives substantially reduces their estrogenic activity [38–41].
The group of 13α-estrone derivatives proved to be promising concerning their enzyme
inhibitory and/or antiproliferative properties. However, their biological activity greatly
depends on their structure [33,42–48]. We have observed that the substitution pattern of
ring A influences bioactivity markedly. The introduction of an apolar benzyl group onto the
phenolic hydroxy function usually improves the cell growth-inhibitory action of 17-keto
or 17-hydroxy 13α-estrone derivatives [42]. Accordingly, the presence of the apolar ether
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moiety at C-3 seemed to be advantageous. The low micromolar antiproliferative action of
benzyl ethers could further be enhanced by inserting a polar triazole ring between the 3-OH
and the benzylic moiety [42,48]. Compound 11a displayed submicromolar IC50 values on
HeLa, A2780, A431 and MCF-7 cancer cell lines. Introduction of a bromo substituent to
the C-4 ortho position led to a compound (11b) with improved tumor selectivity, being
most potent on A2780 cell line (Figure 4) [48]. Mechanistic investigations suggest that
compound 11b exerts a direct effect on microtubule formation. Molecular dynamics (MD,
MMGBSA methods) were performed in order to calculate binding energy at an advanced
level. Computational calculations revealed strong interactions of compound 11b with both
colchicine (CBS) and taxoid binding sites (TBS) of tubulin with a stronger interaction at
the TBS. Consequently, triazole derivative 11b might be considered as an MSA agent with
remarkable tumor selectivity concerning the cell lines investigated. More recently we have
shown that 3-deoxy-3-phenyl-13α-estra-1,3,5(10)-triene (12) displays weak antiproliferative
action [47]. This observation suggests that direct phenylation at C-3 by the simultaneous re-
moval of the hydroxy group is detrimental regarding the antiproliferative action. It follows
that the oxygen-containing moiety at C-3 should be retained and its etherification with
apolar benzyl or more polar triazolylbenzyl moieties might be highly beneficial. Our results
indicate that the hormonally inactive 13α-estrane core with certain ring A modifications
might be a suitable scaffold in the design of potent MT targeting agents.
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With these considerations in mind, here we aimed to perform the direct arylation of
13α-estrone at C-3-O via Chan–Lam coupling using arylboronic acids as reagents. The
set of boronic acid coupling partners included not only substituted phenyl but heteroaryl
derivatives too. The evaluation of antiproliferative action of the newly synthesized com-
pounds against five human cancer cell lines was also planned. Mechanistic investigations
concerning the direct effect of the most potent compound on microtubule formation were
also intended. To gain insight into the interaction of the selected potent compound with
the taxoid binding site of tubulin, computational calculations were performed.

2. Results and Discussion
2.1. Chemistry

First, the etherification of 13α-estrone 9 with phenylboronic acid 13a was carried out.
Arylboronic acids are outstanding coupling partners in several metal-catalyzed reactions,
owing to their broad availability, low toxicity, high stability and extensive functional
group tolerance. Based on literature data [12], a copper-promoted C(sp2)–O coupling was
performed, using 1 equiv. of Cu(OAc)2 as the catalyst in dichloromethane solvent. K2CO3,
trimethylamine (NEt3) and diisopropylethylamine (DIPEA) were tested as bases but NEt3
proved to be the best option based on yields. The protocol was extended to couplings
of different arylboronic acids (13a–l) with 13α-estrone (9) (Scheme 1). In order to get
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important structure–activity information, substituted phenyl (13a–h) or condensed carbo
or heterocyclic derivatives (13i–l) were chosen as reagents. C(sp2)–O couplings proceeded
with high isolated yields (Scheme 1).

The structures of the newly synthesized diaryl ethers (14a–l) were deduced from 1H
and 13C NMR spectra.
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2.2. Pharmacology

Here we investigated the in vitro cell growth-inhibitory properties of the newly syn-
thesized diaryl ethers (14a–l) by the MTT assay [49] on a panel of human adherent cancer
cell lines. The panel included different cervical (HeLa and SiHa), breast (MCF-7 and MDA-
MB-231) and ovarian (A2780) cancer cell lines [50–56]. The cervical and breast cancer cell
line pairs were selected on the basis of their different HPV or receptorial status. NIH/3T3
mouse fibroblast cell line was used for the determination of cancer selectivity.

We have recently described the antiproliferative properties of 13α-estrone-3-benzyl
ether (10, Figure 4) and its triazolyl derivatives (11a,b) against HeLa, MCF-7 and A2780
cell lines [42,48]. The etherified compounds (10; 11a,b) inhibited the growth of cells more
effectively than their 3-OH counterpart (9). In both compound types (10; 11a,b), the
carbo or the heteroaromatic ring was connected to C-3-O via a methylene linker. Here
we were interested in the investigation of the antiproliferative properties of 13α-estrone
derivatives arylated directly at the C-3-O function. Although compound structures 14a and
10 (IC50 > 30 µM, HeLa [42]) differ only in a single methylene group, their antiproliferative
action varies substantially (Table 1). Compound 14a is more active, especially on the
HPV-18 positive HeLa cervical cell line, displaying a low micromolar IC50 value (5.53 µM,
Table 1). In addition, the estrogen receptor positive breast cancer cell line MCF-7 proved
to be sensitive to 14a but the IC50 value was twice as high as that mentioned previously.
Interestingly, 14a behaved differently on the pairs of breast and cervical cell lines.
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Table 1. Antiproliferative activities of newly synthesized diaryl ethers (14a–l).

Antiproliferative Activities of Newly Synthesized Diaryl Ethers (14a–l)

Compd. Conc. (µM)
Inhibition (%) ± SEM (Calculated IC50 Value; µM)

MCF-7 MDA-MB-231 HeLa SiHa A2780 NIH/3T3

14a
10 37.52 ± 2.46 – * 60.24 ± 0.58 – 23.00 ± 1.32 -

30 81.42 ± 1.50
(10.12) 25.30 ± 1.82 92.02 ± 1.38

(5.53) – 58.48 ± 1.03
(23.81) 38.75 ± 1.21

14b
10 – – 56.69 ± 1.29 – 39.64 ± 1.84 –

30 29.28 ± 1.26 33.34 ± 1.75 83.29 ± 1.34
(7.99) – 62.15 ± 1.15

(16.67) 43.34 ± 2.17

14c
10 43.99 ± 1.77 – 62.38 ± 1.19 27.24 ± 2.60 – –

30 58.64 ± 1.08
(16.44) 33.16 ± 0.95 88.14 ± 0.79

(5.13) 43.55 ± 0.86 45.08 ± 1.75 21.99 ± 2.03

14d
10 24.75 ± 0.74 - 65.28 ± 1.02 - 30.84 ± 2.24 –

30 30.77 ± 1.67 32.93 ± 1.88 77.06 ± 0.93
(7.11) 41.14 ± 2.38 56.98 ± 1.07

(23.65) 24.07 ± 1.67

14e
10 49.02 ± 0.85 – 30.14 ± 3.05 – – –

30 60.22 ± 1.68
(13.28) – 37.78 ± 3.86 – 46.50 ± 2.43 –

14f
10 - - 60.72 ± 1.24 – 34.93 ± 2.85 –

30 37.51 ± 1.44 30.28 ± 2.24 75.40 ± 1.42
(5.78) 38.91 ± 1.69 51.48 ± 1.93

(26.17) –

14g
10 48.82 ± 2.18 – 65.97 ± 0.61 20.31 ± 3.10 – –

30 59.91 ± 1.73
(11.98) 28.28 ± 1.39 80.70 ± 0.76

(5.21) 38.42 ± 1.30 39.58 ± 2.60 30.92 ± 2.15

14h
10 35.08 ± 0.69 27.06 ± 2.93 67.46 ± 0.46 31.80 ± 2.77 36.13 ± 1.39 –

30 45.42 ± 3.30 39.67 ± 2.39 80.74 ± 0.58
(6.90) 45.55 ± 2.63 52.60 ± 1.00

(23.47) 45.47 ± 0.28
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Table 1. Cont.

Antiproliferative Activities of Newly Synthesized Diaryl Ethers (14a–l)

Compd. Conc. (µM)
Inhibition (%) ± SEM (Calculated IC50 Value; µM)

MCF-7 MDA-MB-231 HeLa SiHa A2780 NIH/3T3

14i
10 49.68 ± 2.46 24.07 ± 2.47 76.18 ± 1.49 22.46 ± 2.36 48.66 ± 1.90 35.48 ± 1.33

30 74.67 ± 0.51
(8.52)

58.28 ± 1.39
(22.95)

90.11 ± 0.80
(3.98) 48.33 ± 1.27 71.21 ± 1.35

(11.54) 49.87 ± 0.89

14j
10 – – 50.99 ± 2.21 – – –

30 42.25 ± 1.33 – 71.63 ± 1.45
(9.60) – 28.02 ± 3.57 –

14k
10 – 29.61 ± 3.01 73.86 ± 1.48 28.80 ± 2.10 42.23 ± 0.71 –

30 43.11 ± 2.035 41.87 ± 0.85 77.08 ± 1.34
(5.52)

54.33 ± 0.83
(23.90)

51.25 ± 1.43
(25.25) 24.15 ± 0.60

14l
10 29.08 ± 1.88 20.72 ± 1.33 61.30 ± 0.98 20.79 ± 3.34 48.44 ± 0.49 –

30 63.02 ± 1.09
(18.91) 24.10 ± 3.15 74.01 ± 0.80

(9.16) 38.58 ± 2.61 69.17 ± 0.50
(11.47)

46.16 ± 2.11
–

cisplatin
10 53.03 ± 2.29 20.75 ± 0.81 42.61 ± 2.33 60.98 ± 0.92 83.57 ± 1.21 76.74 ± 1.26

30 86.90 ± 1.24
(5.78)

74.47 ± 1.20
(19.13)

99.93 ± 0.26
(12.43)

88.95 ± 0.53
(4.29)

95.02 ± 0.28
(1.30)

96.90 ± 0.25
(4.73)

*: The inhibition value is less than 20% and not given numerically.



Molecules 2023, 28, 1196 8 of 17

All test compounds seemed to be active against the HeLa cell line with IC50 values
ranging from 5 to 10 µM with the exception of the 4-fluorophenyl derivative 14e (Table 1).
Substitution of a hydrogen with its fluorine bioisostere usually leads to unique biological
activity of the fluorinated derivative. The highest electronegativity and the small van der
Waals radius make fluorine derivatives generally more active than their unsubstituted
counterparts. Nevertheless, in the case of 14e the presence of fluorine seems to be disad-
vantageous. If we analyze the results obtained for para-tolyl (14b) and para-trifluoromethyl
(14h) compounds, only slight differences appear. Accordingly, the effect of fluorine is more
pronounced if it is connected directly to the phenyl group.

Introduction of a condensed bicyclic moiety onto the C-3-O site resulted in unique
structure–activity results. The naphthyl derivative (14k) displayed growth-inhibitory
actions similar to its phenyl counterpart (14a), except on cell lines MCF-7 and SiHa with
SiHa being more sensitive to compound 14k. The presence of a nitrogen heteroatom in the
introduced moiety (compound 14i) resulted in a significant improvement in the biological
action. This compound should be highlighted as the most potent derivative on all cell
lines investigated (except for SiHa). In contrast, the benzo-1,4-dioxane derivative (14l)
seemed to be less potent than 14i on four cancer cell lines. The ovarian cell line A2780
could not distinguish between the two heterocyclic compounds 14i and 14l. The other
nitrogen-containing heterocyclic derivative (14j) was less effective than 14i.

It should be emphasized that certain newly synthesized derivatives displayed more
pronounced cell growth-inhibitory action than the reference compound cisplatin, especially
on the HeLa cancer cell line.

In order to get information on the tumor selectivity of the antiproliferative action, the
more promising derivatives were investigated on the mouse fibroblast cell line NIH/3T3.
None of the compounds exerted inhibition above 50% even at a higher, 30 µM test concen-
tration. In this regard, the reference agent cisplatin proved to be less selective.

It is particularly promising that slight structural modifications generated significant
differences in inhibitory activities. This might be indicative of a cell type-dependent action.
The broad toxic character of the test compounds might be excluded. On this basis, the
compound group investigated might substantially contribute to lead-finding projects based
on estrone derivatives. Nevertheless, the mechanistic investigation of antiproliferative
action is necessary. The determination of the mechanism of action was inspired by our
recent result [48]. We found earlier that certain 13α-estrone derivatives etherified on their
phenolic hydroxy function might affect the microtubule formation. On this basis, here we
performed an in vitro tubulin polymerization assay with the most potent compound 14i in
two different concentrations (125 and 250 µM). Paclitaxel, a clinically applied anticancer
agent was used as a reference compound.

The obtained absorbance values indicate that 14i disturbs the polymerization of
tubulin by increasing the maximum rate of the procedure. This property was concentration-
dependent and statistically significant even at the lower concentration range. The effect of
14i at 250 µM was lower than that of the reference agent. Based on these in vitro results it
can be concluded that the antiproliferative action of 14i is elicited through the disturbance
of tubulin polymerization (Figure 5).

2.3. Computational Investigations

Having a picture at the atomic level concerning the possible binding character of the
14i ligand, MD calculations have been performed. To sample the conformational space
of the ligand binding to the taxoid binding site, five independent simulations were run
providing a 2.5 µs-long trajectory in total. The resulting protein–ligand interaction diagrams
of all five trajectories are presented in Supplementary Materials (Figures S1–S5). According
to the simulations, a significant hydrogen-bonding interaction was formed between the
ligand and two amino acids (Gln-282 and Thr-276). In one of the trajectories, the Thr-276
amino acid shows extra stabilization with the 17-keto function of the sterane skeleton when
the modified steroid finds a deeper position in the taxoid binding site. Both amino acids
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are located in a flexible loop region near to the taxoid binding pocket and the motion of
the loop can affect the binding of the modified steroid. Interestingly, despite that two Gln
amino acids located next to each other in position 281 and 282, the ligand had frequent
interaction mainly with the second one in the simulations.

Finally, demonstrating the relative position of those amino acids, which had significant
interaction with the protein or the guanosine diphosphate (GDP) co-factor, we present a
representative ligand–protein complex in Figure 6.

It is worth to mention that the above-mentioned special hydrogen bonds with Gln-282
and Thr-276 always formed between one of the oxygen atoms of the ligand and never
with the nitrogen of the quinoline skeleton. Concerning other secondary interactions of
the ligand, the analysis showed two further connection types, namely water bridges and
hydrophobic interactions. Interestingly, the nitrogen atom in the quinoline ring does not
show any specific binding to the tubulin protein.

Finally, we would like to point out that the ligand remained in the binder pocket all
along the trajectories, while the GDP left its binding pocket in a number of cases.
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Figure 5. Effects of 14i and 10 µM paclitaxel on the calculated maximum reaction rate (Vmax) of
in vitro microtubule formation. (A) Representative kinetic curves; (B) Calculated results. Control:
untreated samples. The experiment was performed in two parallels and the measurements were
repeated twice. Each bar denotes the mean± SEM; *, ** and *** indicate p < 0.05, p < 0.01 and p < 0.001,
respectively, compared with the control values.
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3. Materials and Methods
3.1. Chemistry

Melting points (Mp) were determined with a Kofler hot-stage apparatus. Perkin-Elmer
CHN analyzer 2400 was used for the elemental analyses. Thin-layer chromatography was
performed on silica gel 60 F254 (layer thickness 0.2 mm, Merck); eluent (ss): 30% ethyl
acetate/70% hexanes. The spots were detected with I2 or UV (365 nm) after spraying with
5% phosphomolybdic acid in 50% aqueous phosphoric acid and heating at 100–120 ◦C for
10 min. Flash chromatography was performed on silica gel 60, 40–63 µm (Merck). 1H NMR
spectra were recorded in DMSO-d6 or CDCl3 solution with a Bruker DRX-500 instrument
at 500 MHz. 13C NMR spectra were recorded with the same instrument at 125 MHz under
the same conditions. Full scan mass spectra of the newly synthesized compounds were
acquired in the range of 50 to 1000 m/z with a Finnigan TSQ-7000 triple quadrupole mass
spectrometer (Finnigan-MAT, San Jose, CA, USA) equipped with a Finnigan electrospray
ionization source. Analyses were achieved in positive ion mode applying flow injection
mass spectrometry with a mobile phase of 50% aqueous acetonitrile containing 0.1 v/v%
formic acid (flow rate: 0.3 mL/min). Five µL aliquot of the samples were loaded into the
flow. The ESI capillary was adjusted to 4.5 kV and N2 was used as a nebulizer gas.

3.2. General Procedure for the Synthesis of 3-aryloxy-13α-estra-1,3,5(10)-triene-17-ones

13α-Estrone 9 (50 mg, 0.185 mmol), Cu(OAc)2 (33 mg, 1 equiv.), arylboronic acid (1 eq.)
were dissolved in dichloromethane (5 mL) then triethylamine (125 µL, 5 equiv. mmol)
was added. The reaction mixture was stirred at rt for 12–24 h, quenched with water
(15 mL) and extracted with dichloromethane (3 × 15 mL). The organic phase was dried
over anhydrous Na2SO4, concentrated in vacuum and the resulting residue was purified
by column chromatography. Hexanes were used for crystallization if needed.
3-Phenoxy-13α-estra-1,3,5(10)-triene-17-one (14a). Reaction time: 16 h. The residue was
purified by flash chromatography with hexanes/EtOAc = 6:1 (v/v) as eluent. Compound
14a was isolated as a white solid (92%). Mp.: 118.5–119.5 ◦C; Rf: 0.38; Mr: 346.2; Anal.
Calcd. for C24H26O2: C, 83.20; H, 7.56. Found: C, 83.29; H, 7.52. 1H NMR (500 MHz,
DMSO-d6) δ ppm: 0.98 (s, 3H, 13-CH3); 2.75 (m, 2H, 6-H2); 6.69 (d, 1H, J = 2.5 Hz, 4-H);
6.75 (dd, 1H, J = 8.5 Hz, J = 2.6 Hz, 2-H); 6.95 (d, 2H, J = 7.7 Hz, 2′- and 6′-H); 7.10 (t, 1H,
J = 7.7 Hz, 4′-H); 7.28 (d, 1H, J = 8.6 Hz, 1-H); 7.36 (d, 2H, J = 7.7 Hz, J = 2.0 Hz, 3′- and
5′-H). 13C NMR (DMSO-d6) δ ppm: 20.4 (CH2); 24.4 (C-18); 27.5 (CH2); 27.8(CH2); 29.4
(CH2); 31.5 (CH2); 32.8 (CH2); 40.5 (CH); 40.8 (CH); 48.4 (CH); 49.3 (C-13); 116.1 (CH); 118.2
(2C, 2×CH); 118.3 (CH); 122.9 (CH); 127.3 (CH); 129.8 (2C, 2×CH); 134.8 (C-10); 138.6 (C-5);
154.1 (C); 156.9 (C); 220.5 (C=O). MS m/z (%) 347 (100, [M + H]+).
3-(4-Tolyloxy)-13α-estra-1,3,5(10)-triene-17-one (14b). Reaction time: 20 h. The residue was
purified by flash chromatography with hexanes/EtOAc = 6:1 (v/v) as eluent. Compound
14b was isolated as a white solid (82%). Mp.: 147.9–148.7 ◦C; Rf: 0.40; Mr: 360.2; Anal.
Calcd. for C25H28O2: C, 83.29; H, 7.83. Found: C, 83.38; H, 7.79. 1H NMR (500 MHz,
DMSO-d6) δ ppm: 0.97 (s, 3H, 13-CH3); 2.27 (s, 3H, 4′-CH3); 2.73 (m, 2H, 6-H2); 6.63 (d,
1H, J = 2.5 Hz, 4-H); 6.70 (dd, 1H, J = 8.5 Hz, J = 2.5 Hz, 2-H); 6.85 and 7.15 (2×d, 2×2H,
J = 8.5 Hz, 2′-, 3′-, 5′- and 6′-H); 7.24 (d, 1H, J = 8.6 Hz, 1-H). 13C NMR (DMSO-d6) δ ppm:
20.1 (CH3); 20.4 (CH2); 24.4 (C-18); 27.5 (CH2); 27.8 (CH2); 29.4 (CH2); 31.5 (CH2); 32.8
(CH2); 40.5 (CH); 40.7 (CH); 48.4 (CH); 49.3 (C-13); 115.6 (CH); 117.7 (CH); 118.5 (2C, 2×CH);
127.2 (CH); 130.2 (2C, 2×CH); 132.1 (C); 134.3 (C); 138.4 (C); 154.4 (C); 154.7 (C); 220.5 (C=O).
MS m/z (%) 361 (100, [M + H]+).
3-(4-Ethylphenoxy)-13α-estra-1,3,5(10)-triene-17-one (14c). Reaction time: 20 h. The residue
was purified by flash chromatography with hexanes/EtOAc = 6:1 (v/v) as eluent. Com-
pound 14c was isolated as a white solid (85%). Mp.: 131.7–132.7 ◦C; Rf: 0.43; Mr: 374.2;
Anal. Calcd. for C26H30O2: C, 83.38; H, 8.07. Found: C, 83.45; H, 8.01. 1H NMR (500 MHz,
DMSO-d6) δ ppm: 0.99 (s, 3H, 13-CH3); 1.18 (t, 3H, J = 7.6 Hz, -CH2-CH3); 2.58 (q, 2H,
J = 7.6 Hz, -CH2-CH3); 2.75 (m, 2H, 6-H2); 6.66 (d, 1H, J = 2.5 Hz, 4-H); 6.72 (dd, 1H,
J = 8.6 Hz, J = 2.5 Hz, 2-H); 6.88 and 7.19 (2×d, 2×2H, J = 8.4 Hz, 2′-, 3′-, 5′- and 6′-H); 7.25
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(d, 1H, J = 8.6 Hz, 1-H). 13C NMR (DMSO-d6) δ ppm: 15.4 (-CH2-CH3); 20.3 (CH2); 24.4
(C-18); 27.2 (CH2); 27.4 (CH2); 27.7 (CH2); 29.3 (CH2); 31.4 (CH2); 32.7 (CH2); 40.4 (CH);
40.7 (CH); 48.4 (CH); 49.2 (C-13); 115.6 (CH); 117.8 (CH); 118.3 (2C, 2×CH); 127.0 (CH);
128.8 (2C, 2×CH); 134.3 (C); 138.4 (2C, 2×C); 154.5 (C); 154.6 (C); 220.3 (C=O). MS m/z (%)
375 (100, [M + H]+).
3-(4-tert-Butylphenoxy)-13α-estra-1,3,5(10)-triene-17-one (14d). Reaction time: 20 h. The
residue was purified by flash chromatography with hexanes/EtOAc = 6:1 (v/v) as eluent.
Compound 14d was isolated as a white solid (88%). Mp.: 129.8–130.8 ◦C; Rf: 0.43; Mr: 402.3;
Anal. Calcd. for C28H34O2: C, 83.54; H, 8.51. Found: C, 83.63; H, 8.45. 1H NMR (500 MHz,
DMSO-d6) δ ppm: 0.98 (s, 3H, 13-CH3); 1.27 (s, 9H, t-Bu-CH3); 2.75 (m, 2H, 6-H2); 6.68 (d,
1H, J = 2.5 Hz, 4-H); 6.71 (dd, 1H, J = 8.5 Hz, J = 2.5 Hz, 2-H); 6.88 and 7.36 (2×d, 2×2H,
J = 8.4 Hz, 2′-, 3′-, 5′- and 6′-H); 7.25 (d, 2H, J = 8.5 Hz, 1-H). 13C NMR (DMSO-d6) δ ppm:
20.3 (CH2); 24.4 (C-18); 27.4 (CH2); 27.7 (CH2); 29.3 (CH2); 31.1 (C(CH3)3); 31.4 (CH2); 32.7
(CH2); 33.8 (C(CH3)3); 40.4 (CH); 40.7 (CH); 48.4 (CH); 49.2 (C-13); 115.8 (CH); 117.7 (2C,
2×CH); 118.0 (CH); 126.3 (2C, 2×CH); 127.0 (CH); 134.4 (C); 138.4 (C); 145.2 (C); 154.3 (C);
154.4 (C); 220.3 (C=O). MS m/z (%) 403 (100, [M + H]+).
3-(4-Fluorophenoxy)-13α-estra-1,3,5(10)-triene-17-one (14e). Reaction time: 12 h. The residue
was purified by flash chromatography with hexanes/EtOAc = 6:1 (v/v) as eluent. Com-
pound 14e was isolated as a white solid (80%). Mp.: 115.3–116.3 ◦C; Rf: 0.41; Mr: 364.2;
Anal. Calcd. for C24H25FO2: C, 79.09; H, 6.91. Found: C, 79.16; H, 6.86. 1H NMR (500
MHz, DMSO-d6) δ ppm: 0.98 (s, 3H, 13-CH3); 2.75 (m, 2H, 6-H2); 6.67 (d, 1H, J = 2.5 Hz,
4-H); 6.72 (dd, 1H, J = 8.5 Hz, J = 2.5 Hz, 2-H); 7.00 (overlapping doublets, 2H, J = 8.7 Hz,
2′- and 6′-H); 7.19 (t, 2H, J = 8.7 Hz, 3′- and 5′-H); 7.27 (d, 1H, J = 8.6 H, 1-Hz). 13C NMR
(DMSO-d6) δ ppm: 20.4 (CH2); 24.4 (CH3); 27.5 (CH2); 27.8 (CH2); 29.4 (CH2); 31.5 (CH2);
32.8 (CH2); 40.5 (CH); 40.7 (CH); 48.4 (CH); 49.3 (C); 115.6 (CH); 116.2 (CH); 116.4 (CH);
117.8 (CH); 120.1 (CH); 120.2 (CH); 127.3 (CH); 134.7 (C); 138.6 (C); 152.9 (C); 154.6 (C); 158.8
(C); 220.5 (C=O). MS m/z (%) 365 (100, [M + H]+).
3-(4-Chlorophenoxy)-13α-estra-1,3,5(10)-triene-17-one (14f). Reaction time: 12 h. The residue
was purified by flash chromatography with hexanes/EtOAc = 6:1 (v/v) as eluent. Com-
pound 14f was isolated as a white solid (81%). Mp.: 120.7–121.7 ◦C; Rf: 0.38; Mr: 380.2; Anal.
Calcd. for C24H25ClO2: C, 75.68; H, 6.62. Found: C, 75.77; H, 6.57. 1H NMR (500 MHz,
DMSO-d6) δ ppm: 0.98 (s, 3H, 13-CH3); 2.76 (m, 2H, 6-H2); 6.72 (d, 1H, J = 2.5 Hz, 4-H); 6.78
(dd, 1H, J = 8.5 Hz, J = 2.5 Hz, 2-H); 6.97 (d, 2H, J = 8.9 Hz) and 7.39 (d, 2H, J = 8.9 Hz): 2′-,
3′-, 5′- and 6′-H; 7.29 (d, 1H, J = 8.6 Hz, 1-H). 13C NMR (CDCl3) δ ppm: 20.4 (CH2); 24.4
(C-18); 27.4 (CH2); 27.8 (CH2); 29.4 (CH2); 31.5 (CH2); 32.8 (CH2); 40.4 (CH); 40.8 (CH); 48.4
(CH); 49.3 (C-13); 116.3 (CH); 118.6 (CH); 119.7 (2C, 2×CH); 126.6 (C-4′); 127.4 (C-1); 129.6
(2C, 2xCH); 135.3 (C-10); 138.8 (C-5); 153.7 (C); 156.0 (C); 220.5 (C=O). MS m/z (%) 381 (100,
[M + H]+).
3-(4-Bromophenoxy)-13α-estra-1,3,5(10)-triene-17-one (14g). Reaction time: 13 h. The residue
was purified by flash chromatography with hexanes/EtOAc = 6:1 (v/v) as eluent. Com-
pound 14g was isolated as a white solid (78%). Mp.: 121.3–122.3 ◦C; Rf: 0.39; Mr: 424.1; Anal.
Calcd. for C24H25BrO2: C, 67.77; H, 5.92. Found: C, 67.85; H, 5.88. 1H NMR (500 MHz,
DMSO-d6) δ ppm: 0.98 (s, 3H, 13-CH3); 2.76 (m, 2H, 6-H2); 6.73 (d, 1H, J = 2.5 Hz, 4-H);
6.78 (dd, 1H, J = 8.6 Hz, J = 2.5 Hz, 2-H); 6.91 (d, 2H, J = 8.9 Hz) and 7.51 (d, 2H, J = 8.9 Hz):
2′-, 3′-, 5′- and 6′-H; 7.29 (d, 1H, J = 8.6 Hz, 1-H). 13C NMR (DMSO-d6) δ ppm: 20.3 (CH2);
24.3 (C-18); 27.4 (CH2); 27.7 (CH2); 29.3 (CH2); 31.4 (CH2); 32.7 (CH2); 40.4 (CH); 40.7 (CH);
48.4 (CH); 49.2 (C-13); 114.3 (C-4′); 116.2 (CH); 118.5 (CH); 120.0 (2C, 2×CH);127.3 (C-1);
132.4 (2C, 2xCH); 135.3 (C-10); 138.7 (C-5); 153.5 (C); 156.4 (C); 220.3 (C=O). MS m/z (%)
425 (100, [M + H]+).
3-(4-Trifluoromethylphenoxy)-13α-estra-1,3,5(10)-triene-17-one (14h). Reaction time: 14 h. The
residue was purified by flash chromatography with hexanes/EtOAc = 6:1 (v/v) as eluent.
Compound 14h was isolated as a white solid (82%). Mp.: 123.7–124.7 ◦C; Rf: 0.37; Mr:
414.2; Anal. Calcd. for C25H25F3O2: C, 72.45; H, 6.08. Found: C, 72.52; H, 6.01. 1H NMR
(500 MHz, DMSO-d6) δ ppm: 0.99 (s, 3H, 13-CH3); 2.80 (m, 2H, 6-H2); 6.82 (d, 1H, J = 2.5 Hz,
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4-H); 6.86 (dd, 1H, J = 8.5 Hz, J = 2.5 Hz, 2-H); 7.09 (d, 2H, J = 8.7 Hz) and 7.69 (d, 2H,
J = 8.7 Hz): 2′-, 3′-, 5′- and 6′-H; 7.34 (d, 1H, J = 8.5 Hz, 1-H). 13C NMR (DMSO-d6) δ ppm:
20.3 (CH2); 24.4 (C-18); 27.4 (CH2); 27.7 (CH2); 29.3 (CH2); 31.4 (CH2); 32.7 (CH2); 40.4
(CH); 40.7 (CH); 48.4 (CH); 49.2 (C-13); 117.1 (CH); 117.4 (2C, 2xCH); 119.4 (CH); 122.8 (q,
J = 32.4 Hz, C); 124.1 (q, J = 271.4 Hz, C); 127.1 (q, 2C, J = 3.7 Hz, 2×CH); 127.4 (CH); 136.1
(C); 139.0 (C); 152.4 (C); 160.5 (C); 220.3 (C=O). MS m/z (%) 415 (100, [M + H]+).
3-(Quinolinyl-3-oxy)-13α-estra-1,3,5(10)-triene-17-one (14i). Reaction time: 24 h. The residue
was purified by flash chromatography with hexanes/EtOAc = 7:1 (v/v) as eluent. Com-
pound 14i was isolated as a white solid (88%). Mp.: 153.2–154.2 ◦C; Rf: 0.12; Mr: 397.2; Anal.
Calcd. for C27H27NO2: C, 81.58; H, 6.85. Found: C, 81.67; H, 6.79. 1H NMR (500 MHz,
DMSO-d6) δ ppm: 1.00 (s, 3H, 13-CH3); 2.80 (m, 2H, 6-H2); 6.86 (d, 1H, J = 2.6 Hz, 4-H); 6.91
(dd, 1H, J = 8.6 Hz, J = 2.6 Hz, 2-H); 7.35 (d, 1H, J = 8.6 Hz, 1-H); 7.57 (t, 1H, J = 8.0 Hz); 7.67
(dt, 1H, J = 8.0 Hz, J = 1.2 Hz); 7.74 (d, 1H, J = 2.7 Hz); 7.90 (d, 1H, J = 8.0 Hz); 8.01 (d, 1H,
J = 8.0 Hz); 8.77 (d, 1H, J = 2.7 Hz). 13C NMR (DMSO-d6) δ ppm: 20.3 (CH2); 24.3 (C-18);
27.4 (CH2); 27.7 (CH2); 29.3 (CH2); 31.4 (CH2); 32.7 (CH2); 40.4 (CH); 40.7 (CH); 48.4 (CH);
49.2 (C-13); 116.2 (CH); 118.5 (CH); 119.6 (CH); 127.0 (CH); 127.2 (CH); 127.4 (CH); 127.6
(CH); 128.1 (C); 128.4 (CH); 135.6 (C); 138.9 (C); 143.9 (C); 144.6 (CH); 150.6 (C); 153.4 (C);
220.3 (C=O). MS m/z (%) 398 (100, [M + H]+).
3-(1H-Indol-5-yloxy)-13α-estra-1,3,5(10)-triene-17-one (14j). Reaction time: 24 h. The residue
was purified by flash chromatography with hexanes/EtOAc = 7:1 (v/v) as eluent. Com-
pound 14j was isolated as a white solid (85%). Mp.: 205.3–206.3 ◦C; Rf: 0.09; Mr: 385.2;
Anal. Calcd. for C26H27NO2: C, 81.01; H, 7.06. Found: C, 81.10; H, 7.01. 1H NMR
(500 MHz, DMSO-d6) δ ppm: 0.97 (s, 3H, 13-CH3); 2.71 (m, 2H, 6-H2); 6.36 (s, 1H); 6.57 (d,
1H, J = 2.5 Hz); 6.66 (dd, 1H, J = 8.6, J = 2.6 Hz); 6.78 (dd, 1H, J = 8.6 Hz, J = 2.6 Hz); 7.13
(d, 1H, J = 2.5 Hz); 7.19 (d, 1H, J = 8.6 Hz); 7.35 (t, 1H, J = 5.4 Hz); 7.37 (d, 1H, J = 8.6 Hz);
11.05 (s, 1H, NH). 13C NMR (CDCl3) δ ppm: 20.3 (CH2); 24.4 (C-18); 27.5 (CH2); 27.8 (CH2);
29.4 (CH2); 31.4 (CH2); 32.7 (CH2); 40.5 (CH); 40.6 (CH); 48.4 (CH); 49.2 (C); 100.9 (CH);
109.8 (CH); 112.1 (CH); 114.1 (CH); 114.5 (CH); 116.5 (CH); 126.3 (CH); 126.8 (CH); 128.0
(C); 132.6 (C); 133.1 (C); 138.0 (C); 149.0 (C); 156.5 (C); 220.3 (C=O). MS m/z (%) 386 (100,
[M + H]+).
3-(Naphthyl-2-oxy)-13α-estra-1,3,5(10)-triene-17-one (14k). Reaction time: 24 h. The residue
was purified by flash chromatography with hexanes/EtOAc = 6:1 (v/v) as eluent. Com-
pound 14k was isolated as a white solid (82%). Mp.: 167.8–168.8 ◦C; Rf: 0.35; Mr: 396.2;
Anal. Calcd. for C28H28O2: C, 84.81; H, 7.12. Found: C, 84.88; H, 7.08. 1H NMR (500 MHz,
DMSO-d6) δ ppm: 0.98 (s, 3H, 13-CH3); 2.76 (m, 2H, 6-H2); 6.76 (d, 1H, J = 2.6 Hz, 4-H);
6.82 (dd, 1H, J = 8.6 Hz, J = 2.6 Hz, 2-H); 7.24 (dd, 1H, J = 8.6 Hz, J = 2.6 Hz); 7.31 (d, 1H,
J = 8.6 Hz); 7.33 (d, 1H, J = 2.6 Hz); 7.42 (t, 1H, J = 7.1 Hz); 7.47 (t, 1H, J = 7.1 Hz); 7.79 (d,
1H, J = 8.1 Hz); 7.89 (d, 1H, J = 8.1 Hz); 7.93 (d, 1H, J = 8.9 Hz). 13C NMR (DMSO-d6) δ
ppm: 20.4 (CH2); 24.4 (C-18); 27.5 (CH2); 27.8 (CH2); 29.5 (CH2); 31.5 (CH2); 32.8 (CH2);
40.5 (CH); 40.8 (CH); 48.4 (CH); 49.4 (C-13); 113.1 (CH); 116.3 (CH); 118.5 (CH); 119.5 (CH);
124.6 (CH); 126.5 (CH); 126.9 (CH); 127.3 (CH); 127.5 (CH); 129.5 (C); 129.9 (CH); 133.8 (C);
135.0 (C); 138.7 (C); 154.1 (C); 154.8 (C); 220.5 (C=O). MS m/z (%) 397 (100, [M + H]+).
3-(2,3-Dihydro-benzo[1,4]dioxin-6-yloxy)-13α-estra-1,3,5(10)-triene-17-one (14l). Reaction time:
24 h. The residue was purified by flash chromatography with hexanes/EtOAc = 6:1 (v/v)
as eluent. Compound 14l was isolated as a white solid (88%). Mp.: 177.2–178.0 ◦C; Rf: 0.26;
Mr: 404.2; Anal. Calcd. for C26H28O4: C, 77.20; H, 6.98. Found: C, 77.28; H, 6.93. 1H NMR
(500 MHz, DMSO-d6) δ ppm: 0.98 (s, 3H, 13-CH3); 2.74 (m, 2H, 6-H2); 4.22 (m, 4H, 2′- and
3′-H2); 6.45 (dd, 1H, J = 8.7 Hz, J = 2.8 Hz); 6.48 (d, 1H, J = 2.7 Hz); 6.63 (d, 1H, J = 2.4 Hz);
6.68 (dd, 1H, J = 8.5 Hz, J = 2.5 Hz); 6.83 (d, 1H, J = 8.7 Hz); 7.23 (d, 1H, J = 8.6 Hz). 13C
NMR (DMSO-d6) δ ppm: 20.3 (CH2); 24.4 (C-18); 27.4 (CH2); 27.7 (CH2); 29.4 (CH2); 31.4
(CH2); 32.7 (CH2); 40.4 (CH); 40.6 (CH); 48.4 (CH); 49.2 (C-13); 63.6 (CH2); 64.0 (CH2); 107.7
(CH); 111.6 (CH); 115.1 (CH); 117.3 (CH); 117.4 (CH); 126.9 (CH); 134.1 (C); 138.3 (C); 139.4
(C); 143.6 (C); 150.2 (C); 155.0 (C); 220.3 (C=O). MS m/z (%) 405 (100, [M + H]+).
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4. Determination of Antiproliferative Activities

The antiproliferative activities of the currently presented molecules 14a–l were de-
termined against human adherent cancer cell lines of gynecological origin. MCF-7 and
MDA-MB-231 cells were isolated from breast cancers, while A2780 is an ovarian cancer
cell line. In addition, Hela and SiHa cells were isolated from cervical cancers containing
HPV-18 and HPV-16, respectively. The tumor selectivity of molecules was determined
using nonmalignant mouse embryo fibroblast cells (NIH/3T3). All cell lines were obtained
from the European Collection of Cell Cultures (ECCAC, Salisbury, UK) except for SiHa
(American Tissue Culture Collection, Manassas, VA, USA). Cells were maintained in mini-
mal essential medium (MEM) completed with 10% fetal calf serum, 1% nonessential amino
acids, and an antibiotic–antimycotic mixture. All media and supplements were purchased
from Lonza Group Ltd., Basel, Switzerland. Near-confluent tumor and fibroblast cells were
plated onto a 96-well microplate at 5000 cells/well density.

After overnight preincubation, a 200 µL new medium containing the tested com-
pounds (at 10 or 30 µM) was added. After incubation (72 h, 37 ◦C, humidified air, 5%
CO2), the viable cells were determined by the addition of 3-(4,5-dimethylthiazol-2-yl)-
2,5-diphenyltetrazolium bromide (MTT) solution (5 mg/mL, 20 µL). The reagent was
metabolized by active mitochondrial reductase and precipitated as purple formazan during
a 4 h contact period. Then the medium was discarded, and the crystals were solubilized
in 100 µL of DMSO during a 60 min period of shaking at 37 ◦C. Finally, the produced
formazan was assayed at 545 nm, using a microplate reader (SPECTROStar Nano, BMG
Labtech, Offenburg, Germany), utilizing untreated cells as control [49]. In the case of the
compounds eliciting higher than 50% growth inhibition at 30 µM, the assays were repeated
with a set of dilutions and IC50 values were calculated from the determined data (sigmoidal
curve, GraphPad Prism 5.01, GraphPad Software, San Diego, CA, USA). All experiments
were performed on two microplates with at least five parallel conditions. Stock solutions of
10 mM were prepared from the investigated items in DMSO and the highest concentration
of the solvent in the medium (0.3%) did not elicit any considerable action on cell growth.
Cisplatin (Ebewe Pharma GmbH, Unterach, Austria) was included as a reference agent.

5. Tubulin Polymerization Assay

The effect of 14i on tubulin polymerization was determined by means of a commer-
cially available assay kit as described previously [48]. Briefly, 10 µL of a 125 or 250 µM
solution of the tested analog was placed on a prewarmed (37 ◦C), UV-transparent mi-
croplate. Paclitaxel and general tubulin buffer were used as positive and negative control,
respectively. A total volume of 100 µL of 3.0 mg/mL tubulin in 80 mM PIPES with 2 mM
MgCl2, 0.5 mM EGTA with 1 mM GTP at pH 6.9, was added to the samples to initiate
the polymerization. A 60 min kinetic measurement protocol was used to describe the
absorbance of the reaction mixture per minute at 340 nm (SpectoStarNano, BMG Labtech,
Ortenberg, Germany). The maximum reaction rate (Vmax: ∆absorbance/min) was de-
termined by calculating the moving averages of absorbances at three consecutive time
points. The highest difference between two succeeding moving averages was considered
as the Vmax of the tested molecule. Each sample was prepared in two parallels and the
measurements were repeated twice. For statistical evaluation, Vmax data were analysed by
the one-way ANOVA test with the Newmann–Keuls post-test by using Prism 5.01 software
(GraphPad Software, San Diego, CA, USA).

6. Computational Simulations

For molecular dynamics (MD) simulations, a taxol-stabilized microtubule complex
(PDB entry: 5SYF) was selected [57]. The original PDB structure was prepared for further
calculations using the Protein Preparation Wizard module of the Schrodinger Maestro
program [58,59]. It consists of the addition of missing hydrogen atoms under physiological
pH condition as well as the missing loops or side chains. The prepared pdb structure was
relaxed by a short (5 ns) MD simulation and the last frame of the relaxation running was
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selected as the target protein for the docking calculations. Docking was performed with
the Glide package of the Schrödinger suite [60], using the extra-precision docking protocol.
To sample the conformational space, 5 independent MD simulations of 500 ns length were
run in a cubic box with a 10 Å buffer size and 0.15 M salt concentration by the Desmond
package [61]. The initial structure of the production MD run was selected as the outcome
of the docking calculation with the best docking score. In all MD runs, the OPLS4 force
field and a simple point charge (SPC) water model were applied [62].

7. Conclusions

Antitubulin compounds represent the most effective class of anticancer agents. The
more we understand about the structure–activity relationship of these compounds, the
better options we have in utilizing them in fight against cancer. The literature reveals
characteristic structural elements responsible for antitubulin effect, including the diaryl
ether scaffold. In order to develop novel potential antitubulin compounds, we synthesized
13α-estrone 3-O-aryl derivatives via Chan–Lam coupling reactions. The copper-catalyzed
etherification of the steroidal phenolic hydroxy function was achieved using arylboronic
acids as coupling partners. Carbo or heterocyclic rings, bearing different substituents were
introduced. The antitumoral properties of the newly synthesized 13α-estrone derivatives
were investigated in vitro on a panel of human adherent cancer cell lines (A2780, MCF-7,
MDA-MB 231, HeLa and SiHa). Certain compounds exerted more pronounced antiprolif-
erative action than the reference agent cisplatin. The HeLa cancer cell line seemed to be
the most sensitive to test compounds. The quinoline derivative 14i should be highlighted
as the most potent steroid against MCF-7 and HeLa cell lines. The tumor selectivity of
the test compounds proved to be higher than that of the reference agent cisplatin. Com-
pound 14i might be regarded as a MT stabilizing agent, since it exerted its antiproliferative
effect through the disturbance of tubulin polymerization. Significant interactions of the
14i derivative with the taxoid binding site of tubulin were identified by computational
simulations. Our results might contribute to the development of more potent antitubulin
agents with high selectivity.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28031196/s1, Table S1: Antiproliferative activities of
compounds 14a–l. Figure S1: Presence of secondary interactions between the protein amino acids and
14i ligand along the 1st trajectory. Figure S2: Presence of secondary interactions between the protein
amino acids and 14i ligand along the 2nd trajectory. Figure S3: Presence of secondary interactions
between the protein amino acids and 14i ligand along the 3rd trajectory. Figure S4: Presence of
secondary interactions between the protein amino acids and 14i ligand along the 4th trajectory.
Figure S5: Presence of secondary interactions between the protein amino acids and 14i ligand along
the 5th trajectory. 1H and 13C NMR spectra of the newly synthesized compounds.
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