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Abstract: Developing models able to predict interactions between drugs and enzymes is a primary
goal in computational biology since these models may be used for predicting both new active drugs
and the interactions between known drugs on untested targets. With the compilation of a large
dataset of drug–enzyme pairs (62,524), we recognized a unique opportunity to attempt to build a
novel multi-target machine learning (MTML) quantitative structure-activity relationship (QSAR)
model for probing interactions among different drugs and enzyme targets. To this end, this paper
presents an MTML-QSAR model based on using the features of topological drugs together with the
artificial neural network (ANN) multi-layer perceptron (MLP). Validation of the final best model
found was carried out by internal cross-validation statistics and other relevant diagnostic statistical
parameters. The overall accuracy of the derived model was found to be higher than 96%. Finally,
to maximize the diffusion of this model, a public and accessible tool has been developed to allow
users to perform their own predictions. The developed web-based tool is public accessible and can
be downloaded as free open-source software.

Keywords: drug–enzyme interaction; QSAR; machine learning; artificial neural network; drug;
enzyme; QSAR tool

1. Introduction

Enzymes are critical components in our lives since they are responsible for catalyzing
almost all the chemical reactions in our bodies and cells. Enzymes are primarily proteins
and one of their most important features is the high selectivity and specificity against their
substrates [1]. For this reason, and the fact that they regulate several fundamental reactions
in our body, enzymes are excellent drug targets and are increasingly attracting the attention
of scientists involved in the drug development process. In fact, dysregulation of enzymes is
involved in severe disease. For instance, the enzyme family 1.1, alcohol dehydrogenase, is
involved in breast neoplasms, Alzheimer’s and carcinoma, amongst others [2–4]. Aldehyde
dehydrogenase, enzyme class (EC) 1.2, is also associated with Alzheimer’s and breast
neoplasms [5]. Phosphotransferases, EC 2.7, are involved with head and neck neoplasms,
osteoarthritis and stomach neoplasms [6–8].

Consequently, an accurate prediction of drug–target interaction is clearly essential.
Computational approaches have demonstrated their robustness in this field. One of

the most common approaches is the docking simulations which have proven their ability
to reveal binding mechanisms and binding sites [9–12]. However, this approach has some
drawbacks. In fact, one key requisite for docking simulation is the availability of a 3D
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structure of the enzyme. In addition, these studies may be very time-consuming and testing
a large number of candidates could be challenging.

Another reliable in silico approach comprises, for example, quantitative structure-
activity relationship (QSAR) modelling techniques, as they are much less complicated and
time-demanding. This methodology has been used since 1962 when Hansch published
the first QSAR study [13]. This approach may predict different properties such as toxicity,
physical properties, drug activity, enzyme function, or even the toxicity or properties of
nanoparticles [14–23] using specific features of the molecules, also called molecular descrip-
tors (MD). QSAR methodology has been used together with docking in the development of
new drugs. QSAR has been widely used to predict drug activity against specific enzyme
targets [24–30]. However, the vast majority of these models are not implemented in a web
server or a free-to-use software and cannot be easily used. In addition, these models are
usually developed to predict a single drug–enzyme interaction. In this context, a great step
forward was performed by Min et al. [31] who developed a sequence-based predictor called
iEzy-Drug to predict drug–target interactions using 258 MD for drugs plus the pseudo
amino acid composition for enzymes. The model was built using a total of 2719 interactive
enzyme–drug pairs and 5438 noninteractive enzyme drugs collected from Kyoto of Genes
and Genomes (KEGG) [32]. The overall accuracy reported by the authors was 91%. That
model was finally integrated into a web-server, which needs the enzyme sequence and the
drug Simplified Molecular Input Line Entry Specification (SMILES) code to predict the spe-
cific interactions between both. SMILES is a universal and state-of-the-art textual notation
to represent the chemical connectivity of chemical species [33,34]. However, some of the
enzymes included in the interactive enzymes–drug pairs may belong to the same enzyme
class (EC) and, in some cases, are isoforms of the same enzyme which may result in an
overfitted model. In addition, this approach can predict only one specific interaction at the
same time. Moreover, Bleakley et al. developed a drug–target interaction supervised model
to predict unknown drug–target interactions. Reaching an accuracy above 90%, this model
was developed to predict only four classes of drug–target interaction networks involving
enzymes, ion channels, G protein-coupled receptors (GPCRs) and nuclear receptors in
humans [35]. In light of what has been referred to so far, this work developed a multi-target
machine learning model (MT-ML) based on the artificial neural network (ANN) multi-layer
perceptron (MLP) algorithm to predict the interaction between drugs and EC families. This
model is able to simultaneously predict the likely or unlikely interaction of drugs against
23 different enzyme classes.

2. Results and Discussion
2.1. ANN Multi-Target Model

In order to find the best models and the best ANN topology, a broad set of 350 ANN
models were run. Although several models with neurons in the hidden layer between
20 and 70 were developed, the best models were found to have a range of neurons in the
hidden layer between 40 and 50. Since no substantial improvement was found with the
higher number of neurons, models with more than 50 neurons in the hidden layer were
discarded. Against those 350, the 10 best models were selected are reported in Table 1. It is
important to remark that each model is trained and tested with different subsets.

Table 1. The 10 best ANN models.

Model Topology Inactive * Active * Overall

MLP 39-50-2 Total 35,438 27,086 62,524

Correct 34,247 25,938 60,185

Incorrect 1191 1148 2339
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Table 1. Cont.

Model Topology Inactive * Active * Overall

Correct (%) 96.64 95.76 96.26

Incorrect (%) 3.36 4.24 3.74

MLP 39-43-2 Total 35,438 27,086 62,524

Correct 34,188 25,829 60,017

Incorrect 1250 1257 2507

Correct (%) 96.47 95.36 95.99

Incorrect (%) 3.53 4.64 4.01

MLP 39-50-2 Total 35,438 27,086 62,524

Correct 34,170 25,888 60,058

Incorrect 1268 1198 2466

Correct (%) 96.42 95.58 96.06

Incorrect (%) 3.58 4.42 3.94

MLP 39-48-2 Total 35,438 27,086 62,524

Correct 34,157 25,820 59,977

Incorrect 1281 1266 2547

Correct (%) 96.39 95.33 95.93

Incorrect (%) 3.61 4.67 4.07

MLP 39-49-2 Total 35,438 27,086 62,524

Correct 34,118 25,839 59,957

Incorrect 1320 1247 2567

Correct (%) 96.28 95.40 95.89

Incorrect (%) 3.72 4.60 4.11

MLP 39-41-2 Total 35,438 27,086 62,524

Correct 34,167 25,839 60,006

Incorrect 1271 1247 2518

Correct (%) 96.41 95.40 95.97

Incorrect (%) 3.59 4.60 4.03

MLP 39-48-2 Total 35,438 27,086 62,524

Correct 34,242 25,854 60,096

Incorrect 1196 1232 2428

Correct (%) 96.63 95.45 96.12

Incorrect (%) 3.37 4.55 3.88

MLP 39-43-2 Total 35,438 27,086 62,524

Correct 34,160 25,842 60,002

Incorrect 1278 1244 2522

Correct (%) 96.39 95.41 95.97

Incorrect (%) 3.61 4.59 4.03
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Table 1. Cont.

Model Topology Inactive * Active * Overall

MLP 39-49-2 Total 35,438 27,086 62,524

Correct 34,148 25,762 59,910

Incorrect 1290 1324 2614

Correct (%) 96.36 95.11 95.82

Incorrect (%) 3.64 4.89 4.18

MLP 39-41-2 Total 35,438 27,086 62,524

Correct 34,167 25,839 60,006

Incorrect 1271 1247 2518

Correct (%) 96.41 95.40 95.97

Incorrect (%) 3.59 4.60 4.03

* Inactive, drugs inactive against enzymes; Active, drugs active against enzymes.

For each model, the Statistica software randomly splits the dataset into training (70%)
and validation (30%) for each model. If more models can be found using this approach,
it suggests that the approach is robust and the models are not overfitted. Moreover, the
models with the same topology are not the same model since the weights of each neuron in
the hidden layer are not the same. In fact, each time a neural network starts to be trained a
random weight is assigned to each neuron and from there the algorithm starts the fit of the
function. Amongst the 10 best models evaluated in Table 1, the first model in Table 1 was
selected to be integrated into the MOZART online platform, MLP 39-50-2. The topology
of the model indicates that the model uses the 39 MD selected with the forward stepwise
process, 50 layers in the hidden layer and has 2 outputs, interacting and non-interacting
drugs against enzymes.

The model shows an overall accuracy of 96.26% and is able to correctly classify
60,185 pairs out of 62,524. More specifically, the model was able to correctly classify 42,369
out of 43,767 (96.81%) pairs and a total of 17,816 out of 18,757 (94.98%) in the training and
validation sets, respectively. These statistics are reported in full in Table 2. In addition,
Supplemental Material 1 (SM1) also reports for all the cases their respective classification,
whether they belong to the training or to the validation set, MD values, CHEMBL ID, and
so forth. It is important to remark that each model is trained and tested with different
subsets as reported in SM1.

Table 2. Statistics for the best ANN model.

Overall

Sensitivity Specificity Overall
Total 35,656 28,168 63,824

Correct 34,438 26,907 61,345
Incorrect 1218 1261 2479

Correct (%) 96.58 95.52 96.12
Incorrect (%) 3.42 4.48 3.88

Training

Total 25,339 19,338 44,677
Correct 24,538 18,537 43,075

Incorrect 801 801 1602
Correct (%) 96.84 95.86 96.41

Incorrect (%) 3.16 4.14 3.59
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Table 2. Cont.

Validation

Total 10,317 8830 19,147
Correct 9900 8370 18,270

Incorrect 417 460 877
Correct (%) 95.96 94.79 95.42

Incorrect (%) 4.04 5.21 4.58

The Matthews correlation coefficient (MCC) was also calculated, which, for our best
model, was 0.92 [36]. Note that the closer the MCC is to one, the better the classifying
ability of the model. A better threshold for evaluating the a priori classification probability
can be inferred by means of the ROC curve. Considering this curve describes a relationship
between the TPR versus FPR, higher values of the area under the curve show a high
performance of the model. As Figure 1 shows, one can rely on the fact that the present
MTML-QSAR model is not a random classifier, but instead a truly statistically significant
classifier, since the area under the ROC curve is significantly higher (=0.96) than the area
under the random classifier curve (=0.5). The curve for good, moderate and worse models
was also reported.
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Moreover, this model is able to predict the interaction of a specific drug against one
or multiple enzyme family targets. To do so, we calculated the accuracy of the model
predicting the interaction against the 23 enzyme families included in the model. Table 3
reports the model performance over the family subclasses. Please note that interacting
pairs are those pairs where the drug is interacting with the enzyme.
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Table 3. Accuracy of the model for each subclass.

EC Enzyme Subclass Name Total Entries Interacting Pairs % No Interacting Pairs %

1.1 Acting on the CH-OH group of donors 2917 0.944289694 0.996090696
1.11 Acting on a peroxide as an acceptor 887 0.819548872 0.966843501
1.17 Acting on CH or CH2 groups 400 0.964912281 0.962099125
1.2 Acting on the aldehyde or oxo group of donors 27,517 0.989814307 0.82320442
1.3 Acting on the CH-CH group of donors 794 0.985765125 0.990253411
1.4 Acting on the CH-NH2 group of donors 2222 0.981687014 0.938095238
1.5 Acting on the CH-NH group of donors 1291 0.833333333 0.999210734
1.8 Acting on a sulfur group of donors 157 0.914634146 0.866666667
2.1 Transferring one-carbon groups 633 0.983451537 0.980952381
2.3 Acyltransferases 328 0.962962963 0.991902834
2.5 Transferring alkyl or aryl groups, other than methyl groups 183 0.842105263 1
2.6 Transferring nitrogenous groups 67 1 0.8
2.7 Transferring phosphorus-containing groups 2036 0.982942431 0.989981785
3.1 Acting on ester bonds 3639 0.979591837 0.999435188
3.2 Glycosylases 12,598 0.82436189 0.928249045
3.3 Acting on ether bonds 602 0.935897436 0.992366412
3.4 Acting on peptide bonds (peptidases) 723 0.918367347 0.992
3.5 Acting on carbon-nitrogen bonds, other than peptide bonds 58 0.6875 0.976190476
4.2 Carbon-oxygen lyases 3678 0.897035881 0.985841291
4.6 Phosphorus-oxygen lyases 105 0.966666667 1
5.3 Intramolecular isomerases 120 0.983870968 0.965517241
5.6 Isomerases altering the macromolecular conformation 1530 0.961145194 0.986551393
7.2 Catalysing the translocation of inorganic cations 283 0.986013986 0.55

As seen in Table 3, the model was able to achieve a very high rate of accuracy in each
subclass, except in the case of the specificity of the EC 7.2 in the inactive cases and 1.11, 1.5
2.5 and 3.2. In any case, for these subsets, the overall accuracy is still very high.

2.2. Web-Based Tool

A web-based tool was implemented using the Spring-Boot JAVA framework (https:
//spring.io/projects/spring-boot) in conjunction with the Bootstrap 4 library (https://
getbootstrap.com/) to allow easy access to execute the developed model. This section
provides a step-by-step tutorial to guide the user and illustrate how easy it is to use the
developed model and obtain predictions about the interactions between drugs and enzymes.
Figure 2 resumes the different platform steps to obtain the generated model predictions.
These are as follows:

Step 0. Online test or download and execution. The developed web-based tool is public
and available at http://sing-group.org/mozart. However, the software and source code
are also available for their private use as free open-source software. In this sense, to
execute the MOZART (coMpOund enZyme interAction pRedicTor) web-based tool on
a desktop or server, it is necessary to download and compile the Java code from https:
//github.com/mpperez3/MOZART or download the runnable java JAR from https://
zenodo.org/record/7410843. The user should ensure that Java 8 or higher is installed in
their system (run the java-version command to confirm). Finally, the Mozart platform
should be executed with the command java -jar MOZART-1.0-SNAPSHOT.jar.

Step 1. Use a web browser to access the public version of MOZART platform at
http://sing-group.org/mozart or an installed private version at http://localhost:8080. A
drop file area will be seen at the top of the web page to upload a file with multiple SMILES
and an input box to insert a unique chemical SMILES. To obtain the model predictions,
there are two possibilities:

https://spring.io/projects/spring-boot
https://spring.io/projects/spring-boot
https://getbootstrap.com/
https://getbootstrap.com/
http://sing-group.org/mozart
https://github.com/mpperez3/MOZART
https://github.com/mpperez3/MOZART
https://zenodo.org/record/7410843
https://zenodo.org/record/7410843
http://sing-group.org/mozart
http://localhost:8080
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Figure 2. Workflow illustration of the MOZART platform execution. Panel (A) depicts the input
platform panel, where the user could upload a TSV file or write SMILES in the input box to evaluate
their interaction. Panel (B) presents the result platform table with the predicted interaction confidence
of each SMILES compound against each enzyme family (EC). The background red row depicts
an unprocessable SMILES, whereas the green background column depicts each positive predicted
interaction against each EC.

Step 2A. Perform a batch analysis. The developed platform allows users to upload a file
with multiple chemical SMILES to obtain a prediction for each of them. The uploaded file
must meet the following requirements: (i) the uploaded file needs to have the .txt or the
.tsv extension. (ii) The uploaded file must contain one SMILES per line, and (iii) it must
contain less than 100 SMILES (otherwise, only the first 100 lines will be analyzed). To help
the user understand the input file format, there is a dummy example file available to the
visitor at http://sing-group.org/mozart/file/exampleSmiles.tsv. The tabular (tab “\t”)
separated file, must contain at least two well-identified columns. One column with an
“id” and another column “SMILE” with the chemical compound. The first column “id”
must contain a free-text descriptor to identify the specified input compound in the final
result table (e.g., “has:7173”) and the second column “SMILE” must contain the chemical
descriptor of the compound to evaluate.

Step 2B performs a unique SMILES analysis. MOZART platform allows users to perform
a fast SMILES prediction by inserting the chemical SMILES at the textual input form, similar
to web search engines. Once the user has written the text into the textual input, they must
press the enter key or the brain button to submit the SMILES and start the analysis.

http://sing-group.org/mozart/file/exampleSmiles.tsv
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Step 3. Once all SMILES are submitted, the system shows the current state of prediction
analysis to help the visitor check the process is running smoothly.

Step 4. Once the model predicts the interaction between drugs and EC families, the
platform outputs the data in a heatmap table, showing the visitor the model confidence
for each family. In the event that the uploaded SMILES was malformed, the platform
indicates it to the user, showing an error message in the specific SMILES row. In this
sense, the output platform table (or any of the output files) will contain one row for each
SMILES uploaded to the platform, one column with the textual identifier specified in
the previous step and one column with the predicted confidence interaction (from 0 to
1) of the specific drug against each enzyme family of the model. Figure 2 shows the
predicted confidence for the dummy example file. As can be seen, one compound has an
incorrect SMILES (red background), which exemplifies the potential of the platform to
identify and warn the visitor of incorrect or unprocessable SMILES. On the other hand,
three uploaded compounds have a positive predicted interaction against one or multiple
EC. These are all columns with a green background and confidence greater than zero.
For example, the MOZART model has predicted that the compound “hsa:7173” (with the
“CC(CN(CN(C)C)CN1c2ccccccc2CCc2ccccccc21” SMILE) has a positive interaction with the
EC family 1.1 and 1.5 with a confidence of 1. To allow the user to save the model results, the
web-based tool supports the downloading of the output table in standard file formats such
as CSV (Comma-separated values), PDF (portable document format) or XSL (Spreadsheet
office format). Furthermore, to navigate among results, the platform allows sorting the
resulting table by each family, searching for a specific SMILES, and filtering the visible
columns.

3. Materials and Methods
3.1. Dataset

The initial dataset used in this work was retrieved from the literature [37–39] and
was updated using the Kyoto Encyclopedia Of Genes and Genomes (KEGG) [40–42] and
CHEMBL [43] to retrieve all the known drug–enzymes pairs. The final dataset consists of
a total of 62,524 entries, of which 27,086 represent enzyme–drug interacting pairs, while
35,438 are non-interacting pairs. The complete list of the drugs is given in SM1. All the
details for enzymes and drugs used can be found in the KEGG and Chembl databases. A
specific data curation process was performed to avoid duplicated entries or incoherent
data. By so doing, alternative forms of the same compound and duplicates interacting
with the same enzyme sub-class were removed from the dataset. Since this is a multi-
target model, the same compound interacting with a different enzyme sub-class should
not be removed from the dataset. In any case, the complete dataset is reported in the SM1
(https://zenodo.org/record/7410843).

3.2. Molecular Descriptors

For each drug, hundreds of molecular descriptors were calculated. The SMILES
code was used as input for the chemistry development kit (CDK) library [42]. This is
a freely available open-source Java library that provides methods for many common
computational chemistry tasks. This library is able to calculate different types of MD, such
as hybrid, constitutional, topological, electronic and geometrical; however, this work used
only topological descriptors since drug activity is strictly related to their physicochemical
properties, which can be encoded by this kind of descriptors [44]. In any case, before
building the models, a specific feature selection process was performed in order to identify
the more relevant MD to be used in the model. In so doing, the forward stepwise procedure
carried out enables the selection of an optimal set of thirteen descriptors from an initial
pool of more than two hundred fifty. The forward stepwise method employs a combination
of the procedures used in the forward entry and backward removal methods. In Step 1,
the procedures for forward entry are performed. At any subsequent step where 2 or more
effects have been selected for entry into the model, forward entry is performed if possible,

https://zenodo.org/record/7410843
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and backward removal is performed if possible, until neither procedure can be performed
and stepping is terminated. Stepping is also terminated if the maximum number of steps is
reached. This procedure is a specific feature of the STATISTICA software. Since this is a
multi-target model, it also calculates the mean value for each descriptor and each enzyme
subclass and the difference between the value of the MD and the mean value of the enzyme
subclasses. These descriptors are reported as <MD> and DMD, respectively, in the SM1.
The complete dataset with the drugs used and descriptors with their respective values is
reported in the supplementary material SM1.

3.3. Artificial Neural Network Models

The ANN models were developed using the neural network tool implemented in
the software STATISTICA. To develop a model able to predict multiple endpoints using
binary classification, the Box–Jenkins moving average was used, which has already been
applied in various fields [15,16,27,45–49]. As a result of using a multi-target approach to
perform multiple predictions between enzymes and drugs, this model predicts whether a
drug may interact with one or more enzyme sub-family targets. To identify the best ANN
topology, a broad set of more than 100 models with various topologies were run with a
range of 20 to 60 neurons in the hidden layer between. This step, together with the feature
selection, is crucial to avoid a problem, albeit unlikely, of overfitting. MLP networks were
examined since they usually perform better than other algorithms. The discriminatory
power of the model was assessed using the x-fold-validation method, Matthews correlation
coefficient and receiver operating characteristics (ROC) curve. This indicator describes
a relationship between the model’s sensitivity (the true-positive rate or TPR) versus its
specificity (described with respect to the false-positive rate: 1-FPR). The TPR, known as
the sensitivity of the model, is the ratio of correct classifications of the “positive” class,
while the FPR is the ratio between false positives and all the negative classes. Regarding
the cross-validation test, the evaluation was implemented using the STATISTICA software.
In so doing, the software in each model automatically splits the entries between training
(70%) and validation set (30%). The model is first trained using the training subset and
then validated using the validation subset. It is important to highlight that the software
randomly assigns entries to train, or validation sets, for each model built. This means that
each model is built with a selected number of examples (i.e., training set) and validated
with no overlapped selected examples (i.e., validation set). The entries of the validation set
are not used while training the model and thus, the validation set could be considered an
external test set. Figure 3 depicts the scheme of the training and validation process. As a
result, if several models with similar accuracy are built, the overfitted problem is avoided.
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4. Conclusions

Predicting drug–enzyme interactions is a key step in the development of new drugs
and also for drug retargeting. Classical wet methods can be both money- and time-
consuming. Due to this, computational approaches should be used in view of the 3R
(replacement, reduction and refinement) policy that aims to avoid animal testing as much
as possible. This manuscript presents a machine learning multi-target model to predict
the interaction of drugs with up to 23 different enzyme sub-classes. The developed model
achieved an overall accuracy higher than 96%. This model has been implemented in
a web-based tool freely available at http://sing-group.org/mozart and can be down-
loaded as free open-source software at https://github.com/mpperez3/MOZART or in
their java-compiled version at https://zenodo.org/record/7410843. This model with the
corresponding web-based tool may represent a great step forward in this field compared
with the actual state of the art. In fact, this model has been developed using a very large
dataset compared to the published models and is able to make robust and accurate predic-
tions for most of the drug–enzyme pairs. To date, no other models are able to achieve the
accuracy of MOZART to multiple predictions.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28031182/s1.
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