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Abstract: TiO2 thin films were deposited on quartz substrates by metal–organic chemical vapor
deposition (MOCVD) at temperatures of 250, 350, and 450 ◦C. X-ray diffraction (XRD) data revealed
the production of a pure anatase phase, a decrease in crystallite size, and a textural change as deposi-
tion temperature increased. Atomic force microscopy (AFM) was used to study the morphological
properties and confirm XRD results. UV-Vis.-NIR spectroscopy was used to investigate the optical
properties of the samples. The effect of deposition temperature on wettability was investigated
using contact angle measurements. Sunlight photocatalytic properties increased with the increase in
deposition temperature for methyl orange and methylene blue. Films were post-annealed at 500 ◦C
for 2 h. The effect of annealing on all the above-mentioned properties was explored. The kinetic
analysis demonstrated superb agreement with the kinetic pseudo-first-order model. The rate of
photocatalytic degradation of MB was ~8, 13, and 12 times that of MO using 250, 350, and 450 ◦C
deposited films, respectively. Photodegradation was found to depend on the specific surface area,
type of pollutant, and annealing temperature.

Keywords: anatase TiO2; photocatalytic dye removal; surface wettability; reusability; kinetics; specific
surface area

1. Introduction

Thin films are preferable for photocatalysis over powders because they can be reused [1].
Titanium dioxide, TiO2, is a common candidate for many solar applications because of
its availability and compatibility [1,2]. Many factors influence the photocatalytic activ-
ity of thin films, for example, crystallite size, crystallinity, orientation, crystalline phase,
grain size, roughness, porosity, transparency, and thickness [3–10]. It has been settled that
photocatalysis is a synergetic process. However, this did not stop the attempts to study
the effect of each parameter independently, which is not an easy task because parameters
are cross-linked. For example, Gerbaci et al. [7] tried to study the thickness effect on the
photocatalytic activity of TiO2 anatase deposited via MOCVD at 400 ◦C on a soda-lime
glass substrate. They observed that beyond 600 nm of thickness, there is a shift in texture
and saturation of roughness and crystallite size. Miquelot et al. [8] fixed the thickness
and found that specific surface area is the main influencing variable for films deposited
via cold-wall MOCVD. Singh et al. [6] found that changing film thickness followed by
annealing for RF magnetron sputtered TiO2 films resulted in structural and morphological
changes with a relatively small optimal film thickness.

Hydrogen production by water splitting, photodecomposition of organic pollutants,
and CO2 reduction in fuel cells are three main photocatalytic reactions [8–11]. Adsorption
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of H2O molecules on the surface of the photocatalyst is a prerequisite for these reactions.
Adsorption can be molecular or dissociative. Selloni reported that the adsorption type
depends on the crystallographic orientation of single crystals [12]. While the high reac-
tive surface (001) shows dissociative adsorption, the lower reactive surface (101) shows
molecular adsorption. The (101) facet of anatase has lower surface energy compared to the
(001) facet [13,13]. The descending order of TiO2 faces according to their surface energy has
been reported in many studies [13,13–15]. High reactivity is in line with surface energy [12].
However, Pan et al. claimed that the clean facet (101) is more reactive than the (001)
facet [16]. Roy et al. [17] reported that the existence of the two facets led to an improved
photocatalytic activity as compared to when only one of them was present because facet
reduction takes place at (101) and oxidation takes place at (001) due to efficient charge
separation. These results are in line with those previously reported by Ohno et al. [18].
Moreover, by modifying the chemistry of preparation, they found that the (112) facet
replaced the (001) facet, despite their coexistence [19].

The wettability of a thin film is due to its roughness and/or surface energy. Roughness
results from deposition conditions or post-deposition treatment [6–10,20]. According to the
Wenzel equation, roughness modifies the degree but not the type of wettability [20]. Surface
energy can be triggered because it depends on the chemistry of the surface. For example,
UV irradiation increases the number of surface oxygen vacancies, hydroxyl groups, and
dangling bonds on the surface of TiO2 thin films, which in turn tunes the interfacial energy
between the solid surface and the liquid. As a result, the dissociative adsorption of water
molecules increases, which raises hydrophilicity [21]. Simultaneously, photons will trigger
electron–hole pair formation to reduce or oxidize adsorbents directly or indirectly [10].

Changing substrate temperature to investigate deposition conditions, or annealing, is a
common procedure in studying thin films [6–10,22]. In a previous study, we used soda-lime
glass substrates and studied the effect of deposition temperature on photodegradation
under UV illumination [10]. The photocatalytic activity was found to decrease with the
increase in deposition temperature. In this work, we employed quartz substrates to investi-
gate that impact as well as the effects of annealing and pollutant type on photocatalytic
activity in daylight.

2. Results and Discussion

The structure of the films was explored using XRD. Figure 1 shows the diffractograms
at different deposition temperatures. The nature and the limiting parameters of the growth
have been studied before [10,23,24]. The obtained crystallite sizes from the (101) peak,
which has been considered the most stable face of anatase, were 44 nm and 40 nm for the
films deposited at 250 ◦C and 350 ◦C, respectively. The texture of the film deposited at
450 ◦C changed to the less stable face (112). After annealing, films maintained the anatase
phase up to 800 ◦C. Results are not shown here. Texture change with the same Miller
indices has been reported for films deposited in a cold MOCVD system as a function of
deposition temperature [8]. Other changes in facets have been found for the anatase phase
in different MOCVD systems [7,9]. At a constant temperature, texturing developed in the
(100) and (211) directions as thickness increases.

The morphology of the films was monitored using AFM. Figure 2 represents the
3D pictures before and after annealing at 500 ◦C. This figure shows that as deposition
temperature increased, grain size reduced and porosity increased for as-deposited and
annealed films. The average surface roughness was observed to decrease as deposition
temperature rose. The related values are shown in Table 1. Similar results employing SEM
imaging have previously been published, indicating that films’ structure changes from
dense to porous [10]. Porosity has been found to increase with the increase in deposition
temperature from optical measurements [23].
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Table 1. Roughness and contact angle for the deposited and annealed samples.

Projected Area (µm2)
Average Roughness (Ra) (nm)

250 ◦C 350 ◦C 450 ◦C

As deposited 16 27.15 8.94 3.92

Annealed at 500 ◦C 25 26.11 9.54 6.59

Contact angle measurements
For as-deposited films 39◦ ± 5◦ 41◦ ± 5◦ 51◦ ± 5◦

Optical properties were investigated through transmittance and reflectance. Annealing
does not lead to a noticeable change in the transmitted light. It can be said that all films
were transparent. The thickness was found to equal 215 nm and 203 nm for films deposited
at 350 and 450 ◦C, respectively, using the envelope method [23]. The sample deposited at
250 ◦C was supposed to have a smaller thickness compared to that of the sample deposited
at 350 ◦C, which has been reported for samples deposited under the same conditions [24].
From the following relation,

α =
1
d

lnln
(1 − R)

T
(1)
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the absorption coefficient, α, was calculated, where d is the thickness, R is the reflectance,
and T is the transmittance of the film [25]. It should be noticed that this relation neglects
the interference effect, which was used in the envelope method. The optical band gap can
be calculated by using the formula [25]

(αh
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is the frequency of incident light [10]. The absorption
edge of the film deposited at 250 ◦C had a close wavelength value to that of the two other
films. Therefore, the obtained band gap converged to nearly the same value (3.2 eV), as
shown in Figure 3.
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Contact angle measurements are shown in Figure 4 and the corresponding values are
listed in Table 1. It has been reported that contact angle is controlled by surface roughness
and surface energy (surface chemistry) [20]. Borras and Gonzalez-Elipe correlated the
contact angle and the cross-section morphology, plane morphology, texturing, and surface
roughness for microwave-plasma-enhanced CVD TiO2 films deposited at 250 ◦C as a
function of temperature for different times [20]. They obtained a direct proportionality
between contact angle and surface roughness as a result of increased hydrophobicity.
However, they did not attribute it to the Wenzel formula,

cosθ = r cosθo (3)

where θ is the measured contact angle, r is the surface roughness, and θo is Young’s
contact angle [20]. Instead, they reported that the Miwa–Hashimoto formula gave a nearly
constant ideal-surface contact angle. They suggested 25 µm2 as a minimum area to measure
roughness using AFM. Despite this, their findings support the Wenzel formula since
roughness improves hydrophobicity.
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Generally, roughness increases with low porosity [26]. However, they took different
directions in this study. The increase in roughness in the Wenzel equation raised the degree
of hydrophilicity. Higher porosity allows water capillary trapping inside pores, which
increases hydrophilicity. Therefore, one can say that surface roughness determined the
degree of the contact angle in this study [27]. A correlation between contact angle and
texture has been suggested before for films deposited via pulsed pressure CVD [9].

Photocatalytic activity increases with the increase in deposition temperature for both
methyl orange and methylene blue, as shown in Figure 5. Reusability after annealing at
500 ◦C reduced the photocatalytic activity for the three samples, as shown in Figure 6. In a
previous study, we obtained different results [10]. A comparison between the two studies
can be conducted as follows. Considering the light source, a UV source was used in the
previous study, while sunlight was used in this study. Sunlight contains elements affecting
photocatalysis of TiO2, such as UV and visible light. UV light reduces the contact angle
by tuning surface energy, which enhances photocatalysis and produces e–h pairs that
oxidize and reduce undesired molecules directly or indirectly [10,21,27]. In this study,
however, the reduction in the contact angle is compensated for at least to some extent
by the effect of the visible region, which has been found to recover contact angles with
different degrees [20,21,27]. As deposition temperature rises, surface roughness decreases,
reducing hydrophilicity. This is anticipated to reduce photocatalytic activity as deposition
temperature rises. This is not valid for the two studies because they showed the same trend.
Thickness growth is expected to boost photocatalytic activity up to a certain point before
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saturating or doing the reverse [3,7,9]. This limit varies from one case to the other. It seems
that thickness played no role in the two studies because they exhibited the same trend
and the saturation limit may not have been reached. For various types of CVD systems,
for example, this limit ranges from 395 nm to 900 nm [3,7]. Transparency is important as
well. The thickness of a material has a direct impact on its transparency. For thick films,
transparency decreases [9]. Thick films with decreased transparency and an insignificant
absorption edge exhibit a similar trend to our data [9].
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XRD provides us with three contributions that should be discussed: orientation,
degree of crystallinity, and crystallite size. Texture change has been assumed to decrease
photocatalytic activity when the highest peak intensity changes from (101) to (100) [7]. This
has been ascribed to the lower surface energy of the system. This explanation does not agree
with the literature, since the (100) surface has higher surface energy, which guarantees
enhanced photoreactivity [12,13,13–15]. In the study carried out by Miquelot et al. [8],
surface energy discussions do not take place despite the texture intensity switching between
the (101) and (211) faces. According to Krumdieck et al. [9], planes (101), (200), and (215)
diminish as deposition temperature increases. Simultaneously, plane (220) intensifies with
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the increase in deposition temperature, while other planes, namely (004), (211), and (204),
exist at all deposition temperatures. They did not include texturing impact on photocatalytic
activity, although they did in explaining hydrophilicity. Stefanov et al. [28,29] quantified the
relationship between the ratio of orientation {001}/{101} and the extent of photodegradation
for films prepared by reactive DC magnetron sputtering. They estimated a quadratic
proportionality between the exposed area of (001) facets and the photodegradation rate as
a dependent parameter. Li et al. [30] found enhanced eradication of bacteria and antibiotics
by high-activity {001} facets TiO2 mounted onto TiO2 photoanode. Texture switching from
plane (101) for the film deposited at 350 ◦C to plane (211) of the film deposited at 450 ◦C
is assumed to increase photodegradation because (211) is supposed to be more reactive
because of its higher surface energy [15]. Because of the high degree of crystallinity, bulk
recombination is reduced, which is expected to increase catalytic activity. Because such
surfaces resemble single crystals, a high degree of texturing indicates high crystallinity [27].
Another consideration is the size of the crystallites. As the deposition temperature rises, so
does the grain size. This enhances photocatalysis by increasing the surface-to-volume ratio.
In other words, when the deposition temperature rises, the specific area increases, which is
consistent with the literature [8].

Another parameter that may decrease the photocatalytic activity of films deposited on
soda-lime glass substrates is the increase in Na ion diffusion with the increase in deposition
temperature [7,31].

The dependence of photocatalytic activity on the type of dye is shown in Figure 5.
The photocatalytic activity of the as-deposited films toward MB was higher than that of
MO. Photocatalysis takes place in two steps: adsorption on the surface of the metal oxide
followed by photodegradation. Adsorption can be due to direct bonding or electrostatic
interaction [32]. Direct bonding has been suggested between MO and TiO2. This may be
due to the sulfonic group, –SO3

−, which can attach to surface Ti(IV) centers through the
two sulfonic oxygens [33]. Moreover, it is an electron-withdrawing group that is supposed
to decrease photocatalysis [34]. The electrostatic adsorption effect appears upon varying pH
values. MB is a cationic dye that is well adsorbed by neutral and basic media. On the other
hand, MO is an anionic dye that is well adsorbed by acidic media [33]. Photodegradation
involves discoloration and mineralization. In other words, intermediate products play
an essential role. For example, Nguyen et al. [35] ascribed the superiority of MB over
MO to the increased number of intermediates in the first. In addition, they proved that
the intermediates containing the (-N=N-) azo bond are durable and cannot be cleaved
easily. Trandafilovi’c et al. [36] compared the photocatalytic degradation between MB and
MO on the surface of pure and doped ZnO. Their results agree with this study and that
carried out by Nguyen et al. [35]. They used scavengers to study the effect of holes and
hydroxyl radicals in photodegradation. They found that both holes and OH radicals play
an important role in the case of MB, while in the case of MO holes are the controllers. Five
trials were conducted to test the reusability of the films for the removal of 10 ppm MB dye
for 100 min each. Before reuse, the samples were washed and dried at 150 ◦C for 10 min.
Figure 6a depicts the retained performance as a function of the number of runs. The results
show that after five reusability cycles, the maintained efficiency for 250 ◦C and 350 ◦C TiO2
films was 52.4% and 74.4%, respectively. The shield generated by dissolved MB molecules
on the TiO2 surface may reduce the MB removal percentage and therefore the retention
efficiency [37]. Figure 6b illustrates the reusability of the samples for the photodegradation
of MB after annealing. All samples were annealed at 500 ◦C for 2 h. The performance of the
samples was reduced by almost 25% within 3 h. This demonstrates the acceptable stability
of the samples.

Several articles indicate that a pseudo-first-order kinetic model is suitable for the reac-
tion kinetic rates of catalytic photodegradation of several dyes [38–43]. The rate of reaction,
kR, can be obtained from the slope of the linear fitting of the plots, ln(A0/A) vs. exposure
time, in Figure 7, based on Equation (4) [43]:

lnln (A0/A) = −kR t (4)
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In addition, the statistical parameters, standard deviation, and correlation coefficient
(R2) were obtained. All the obtained values are reported in Table 2 using the samples
before and after annealing. Most of the parameters obtained R2 ≥ 0.99, which reflects
the superb fitting between the experimental results and this model. Additionally, it can
be noticed that there are two values for the reaction rate constant of MO and almost
one value for MB in Figure 7A,B and Table 2. The MO photodegradation started with
a relatively fast rate change from (220 ± 7) × 10−5 to (27 ± 4) × 10−4 min−1 after the
deposition temperature was increased from 250 to 450 ◦C. This may be ascribed to the
direct bonding between MO and TiO2, the availability of the active sites, and the anionic
nature of MO [32]. In the second stage, t ≥ 60 min, the photodegradation rate was strongly
reduced to reach (37 ± 2) × 10−5 min−1 at 250 ◦C, and increased to (87± 6) × 10−5 min−1

at 450 ◦C. This strong reduction may be ascribed to the reduction in the density of active
sites and saturation of the adsorption sites. The value of kR increased from (18 ± 2) × 10−3

to (33 ± 1) × 10−3 min−1 after increasing the deposition temperature from 250 to 450 ◦C.
The rate of photodegradation of MB was ~ 8-, 13-, and 12-fold that of MO at 250, 350, and
450 ◦C, respectively. This is ascribed to the increase in the number of intermediates, which
plays an important role in the photodegradation of MB [41]. Both holes and OH radicals
are the main players in the photodegradation of MB, whereas holes are the only main
player in the case of MO. The values of kR when using the samples before annealing were
almost 3.0-, 4.0-, and 4.5-fold what was obtained using the annealed samples (Figure 7B,C).
Note that from Figure 7B, the value of kR = (69 ± 2) × 10−5 with R2 = 0.9959 for blank
MB. Thus, the TiO2 films before annealing had the highest catalytic photoactivity and
the fastest photodegradation rates for MB dye under sunlight exposure. To represent the
errors regarding the fit in a more precise manner, the corresponding parity plots of the
experimental values and predicted values are shown in Figure 7D–J for 250 ◦C, Figure 7E–K
for 350 ◦C, and Figure 7F–L for 450 ◦C.

Table 2. Kinetic rate constants and statistical parameters of photodegradation of MB and MO using
MOCVD TiO2 films before and after annealing at 500 ◦C for 2 h.

Sample MO
Before Annealing

MB

Before Annealing After Annealing

Parameters kR (min−1) R2 kR (min−1) R2 kR (min−1) R2

250 ◦C
(220 ± 7) × 10−5 0.9990

(18 ± 2) × 10−3 0.9437 (67 ± 3) × 10−4 0.9933
(37 ± 2) × 10−5 0.9934

350 ◦C
(23 ± 2) × 10−4 0.9900

(303 ± 9) × 10−4 0.9943 (78 ± 4) × 10−4 0.9940
(30 ± 5) × 10−5 0.9495

450 ◦C
(27 ± 4) × 10−4 0.9831

(33 ± 1) × 10−3 0.9919 (77 ± 5) × 10−4 0.9901
(87± 6) × 10−5 0.9901

Table 3 shows a comparison between the photocatalytic performance of our opti-
mized films and the previously reported TiO2-based films in the literature [44–54]. The
morphologies and synthesis technique along with the used light source for dye removal
are also shown in this table. Our optimized film prepared at 450 ◦C showed the highest
photocatalytic degradation efficiency (97.5%) within only 2 h, although we used sunlight
instead of UV light for most of the reported catalysts in Table 3.
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and the corresponding parity plots of experimental values and predicted values at (D–J) 250 ◦C,
(E–K) 350 ◦C, and (F–L) 450 ◦C.
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Table 3. Comparison of the photocatalytic performance of our optimized photoelectrode with TiO2-
based catalytic electrodes of different nanomorphologies applied for dye removal in the literature.

Catalyst Morphology Synthesize
Technique Dye/Light Source Removal% Ref

TiO2 sheets TiO2 nanotubes Electrochemical
anodization

180 min UVA
irradiation and
4 µM initial dye
concentration

74.14% (indigo
carmine)

65.71% reactive
black 5 (RB5)

[44]

ZnO/TiO2
TiO2/ZnO

TiO2

Nanostructured
thin film of

agglomerated
nanoparticles

(20 nm)

Sol–gel
spin-coating

technique

methylene blue
(MB) and

octadecanoic acid;
UV light (6 W)

0.012 min−1

(94%)
0.008 min−1

(87%)
0.007 min−1

(82%)

[45]

TiO2/CuO
(120 nm/90 nm)

Heterojunction
nano-thin films

Magnetron
sputtering
technology

Rhodamine B
(RhB) within

120 min
300 W

high-pressure
mercury lamp

92.94% [46]

Tetra(4-
carboxyphenyl)porphyrin

/Cu
Polyoxometalate/TiO2

Thin films Doctor blade
technique

100 mL of a
10 mg/L MB,
two tubular

visible-light lamps,
5 h

49% [47]

CrMo6/TiO2. Thin films Doctor blade
technique

MB dye
UV tubular lamp

(7 W, 15 µW/cm2),
5 h

83% [48]

Nb-doped TiO2
Thin films of
nanoparticles

Sol–gel
spin-coating

3 h of visible-light
irradiation, 10 ppm

of MB
76% [49]

undoped and P-doped
TiO2

Films Spin-coating
technique

degradation of MB
dye in aqueous

solution under UV
light (365 nm),

7.1 h

84% [50]

Pure and TiO2,
10%Cu2+-doped TiO2

Granular structure
thin films

Sol–gel dip-coating
technique

MB, 180 min,
UV-light exposure

92%
(0.015 min−1)

16%
(0.001 min−1)

[51]

Ag-loaded TiO2-ZnO

Thin films
(aggregated

nanoparticles of
size 20–25 nm)

Dip-coating
sol–gel process methylene blue 80% after 2 h [52]

cerium oxide-doped rutile
TiO2

Films Spray pyrolysis methyl orange
(MO) 0.006 min−1 [53]

Ni-doped TiO2

Nano-structured
thin films (particle

size ~92 nm)

Chemical bath
deposition method

Ponceau S dye,
UV light, and

sunlight
~85% [54]

Pure TiO2
Nanotextures of
TiO2 thin films MOCVD at 450 ◦C Sunlight 97.5% after 2 h Current work
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3. Materials and Methods

A hot-wall MOCVD system was used to prepare the TiO2 thin films at 250, 350,
and 450 ◦C. Its specifications have been reported before [24]. XRD measurements of
the films were carried out by X-ray diffraction (XRD). θ–2θ scans were recorded using
Cu Kα radiation in a Rigaku D-Max B diffractometer (Rigaku D/Max–B, Rigaku, Tokyo,
Japan) equipped with a graphite crystal monochromator. AFM characterizations were
carried out using an atomic force microscope in the non-contact mode (Park, XE-100E, Park
systems, Suwon, South Korea). UV-Vis-NIR spectra were recorded using a 3700 Shimazu
double-beam spectrophotometer (Shimazu, Kyoto, Japan). The transmittance spectra were
recorded versus air. The static water contact angle measurements were carried out through
the sessile drop method in ambient conditions. Approximately 5 mL drop of distilled water
was positioned on the surface with a micro-syringe. A CCD camera lens optical system
(Canon, Tokyo, Japan) was used to capture digital images of the droplet profile from a
location parallel to the films. The photocatalytic activity was measured in sunlight. A
total of 10 ppm of methyl orange and methylene blue solutions was used. Absorbance
was recorded using a single-beam spectrophotometer (Jenway 7315 UV/Visible, Fisher
Scientific, Leicestershire, UK) at 464 nm and 644 nm, respectively. Films were annealed in
the air for 2 h.

4. Conclusions

Effects of deposition and annealing temperatures were studied for TiO2 thin films
prepared via MOCVD at 250, 350, and 450 ◦C on quartz substrates. The pure anatase phase
was identified. The crystalline and grain sizes were found to decrease with the increase in
the deposition temperature. Photocatalysis is a synergic process. In this study, crystallite
and grain sizes played a major role in the process. Texture change may contribute to the
enhancement of photocatalysis. The photodegradation of MB was higher and faster than
that of MO. Annealing at 500 ◦C for 2 h reduced photodegradation. The kinetic study
showed superb fitting between the experimental results and the pseudo-first-order kinetic
model. The rate of photodegradation of MB was ~8-, 13-, and 12-fold that of MO using the
deposited films at 250, 350, and 450 ◦C, respectively.
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