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Abstract: Transmembrane transport of small organic and inorganic molecules is one of the corner-
stones of cellular metabolism. Among transmembrane transporters, solute carrier (SLC) proteins
form the largest, albeit very diverse, superfamily with over 400 members. It was recognized early on
that xenobiotics can directly interact with SLCs and that this interaction can fundamentally determine
their efficacy, including bioavailability and intertissue distribution. Apart from the well-established
prodrug strategy, the chemical ligation of transporter substrates to nanoparticles of various chemical
compositions has recently been used as a means to enhance their targeting and absorption. In this
review, we summarize efforts in drug design exploiting interactions with specific SLC transporters to
optimize their therapeutic effects. Furthermore, we describe current and future challenges as well as
new directions for the advanced development of therapeutics that target SLC transporters.

Keywords: membrane transporter; SLC; solute carrier; drug design; pharmacokinetics; prodrug;
nanoparticle; bile acids

1. Introduction

In this review, we focus on the delivery of drugs via transmembrane transporters,
especially those from the solute carrier (SLC) superfamily, through the cellular plasma
membrane and various intracellular membranes. SLC solute carriers include all transmem-
brane proteins that enable the translocation of solutes such as nutrients, metabolites, ions
and xenobiotics across the membrane in a facilitative or secondary active manner. Together
with the ATP-dependent ABC (ATP-binding cassette) transporters (see below), transporter
proteins form an essential protein machinery for the regulation of the cellular and systemic
homeostasis of all solutes in our body, as well as for the maintenance of the necessary
ion gradients, such as the inwardly directed Na+ gradient at the intestinal brush border
membrane of enterocytes, to drive uptake of solutes in a Na+-coupled secondary active
manner, as is the case for the intestinal uptake of glucose via SGLT1/SLC5A1 [1].

Transport proteins are often categorized by their mechanism of transport. ATP-binding
cassette (ABC) transporters are primary active transporters that, in higher organisms, use
ATP hydrolysis to drive the transport of solutes across the membrane and typically out
of cells [2,3]. Secondary active transporters couple solute translocation to the cotransport
or counter-transport of either inorganic ions or other solutes; in the latter case, they are
often called exchangers. Facilitative transporters translocate solutes across the membrane
according to their electrochemical gradient. As indicated earlier, secondary and facilitative
transporters in both human and higher organisms are represented by the SLC solute carrier
superfamily of proteins, a diverse, heterogenous group of proteins likely of polyphyletic
origin [4,5].

The ABC and SLC transporter superfamilies in humans consist of 48 and over 400 proteins,
respectively, out of which ~11 ABC transporters [6,7] and ~26 SLC transporters [6] are thought
to be directly involved in drug translocation. Many of these transporters are present in the
plasma membrane of liver and kidney cells, as well as in the cells of biological barriers, and thus
profoundly shape the pharmacokinetics of small molecule drugs in the body [6]. Apart from
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exploring the interactions of existing drugs with transporters, approaches have been developed
to exploit the unique cellular localization and transport activity of transporters as gateways
for the delivery of therapeutics to specific organs and across specific biological barriers. In this
review, we summarize such approaches and subsequently speculate on potential new directions
and applications.

There are several factors that motivate the targeting of transporters expressed in spe-
cific tissues. For some medications, crossing certain barriers is vital for their action, e.g.,
central nervous system (CNS) drugs need to cross the blood–brain barrier (BBB). For others,
it provides an advantage for therapeutic delivery, e.g., switching from intravenous to oral
administration of chemotherapeutics across the intestinal barrier. In yet other cases, it can
be beneficial for targeting drugs to specific cell types, e.g., targeting chemotherapeutics
to tumor cells while sparing healthy cells. The unique and/or highly abundant expres-
sion of certain membrane transporters, such as bile acid transporters (SLC10A1/NTCP,
SLC10A2/ASBT) and amino acid transporters (SLC7A5/LAT1, SLC6A14/ATB0,+), in spe-
cific cell types makes them good candidates for such efforts. Furthermore, unlike receptors,
many transporters have a relatively promiscuous binding site for their ligands, making
them more suitable for interaction with a broader range of small molecules [8], even though
binding-site promiscuity can also lead to unwanted off-target effects [9]. Nevertheless, the
substrates of transporters are usually small molecules that are stable, readily modifiable
and non-immunogenic, whereas cell surface receptors are often tailored to interact with
large molecules (e.g., low-density lipoprotein and transferrin) [8]. These aspects point to the
particular advantage of using transporters instead of receptors for targeted drug delivery.

Knowledge of the distribution of transporter proteins in various human tissues is
critical for understanding their role in drug metabolism and their usefulness as drug
delivery targets. Because their importance in pharmacokinetics was recognized long ago,
intensive studies have been conducted to determine the presence of transporters in the
intestine, liver and kidney, the major organs that determine the ADMET (absorption,
distribution, metabolism, excretion and toxicity) of drugs [6], as well as in the BBB, which
determines the access of CNS drugs to the brain. For all oral formulations, the drugs
must be able to cross the intestinal barrier after ingestion to be successfully absorbed into
the body. The intestinal brush border membrane and mucus layer form the intestinal
barrier [10], which is lined with numerous transporters for nutrient absorption [11,12].
After successful passage across the enterocytes, the absorbed drugs either enter the hepatic
portal veins for direct delivery into the liver or, if they are lipophilic, enter the lymphatic
system, thus avoiding the hepatic first-pass effect. The liver has a variety of promiscuous
transporters capable of taking up a wide range of xenobiotics [6,11], whereupon they are
metabolized by hepatocytes into less toxic and more water-soluble compounds [13]. The
drug metabolites are then excreted back into the bloodstream or the bile via different
transporters [13,14]. Polar drug metabolites are cleared from the body by the renal route,
unless a specific transport mechanism exists in the renal proximal tubule cells for their
reabsorption [15].

Certain organs (e.g., brain/CNS, retina and testes) are protected by a layer of endothe-
lial cells that form barriers with regulated permeability through tight junctions between the
blood and the underlying organ tissues. Drugs that act in these organs, particularly those
that act in the CNS, must cross these barriers. It is well known that some of them utilize
nutrient transporters present on the endothelial cell membranes [16,17] and it is estimated
that 10–15% of all proteins in the neurovascular unit are membrane transporters [18]. In
certain cases, it is necessary to prevent a drug that does not act in the CNS from reaching
the brain. Therefore, knowledge of the presence of transporters at such barriers is of utmost
importance, both for drug targeting and for avoiding undesirable off-target effects of drugs.

2. Strategies for Utilizing Transporters for Drug Delivery

In this section, we summarize several approaches to exploit transporters present in
specific tissues for targeted drug delivery and more efficient drug absorption.
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A number of currently developed drugs have structural features in their molecular
design that can be recognized by unique transporters expressed in specific tissues to
improve their pharmacokinetic properties and minimize off-target effects [11]. A prodrug
strategy is often followed, in which a known substrate molecule of an uptake transporter
is chemically conjugated to the drug molecule of interest [12,19,20]. Recognition of the
substrate moiety by the transporter then triggers uptake of the entire molecule into the
cell. Once in the cytoplasm, the prodrug is designed to be cleaved and processed by
active enzymes to release the active drug molecule (Figure 1). A review of prodrugs with
targeted SLC-mediated absorption can be found in [12]. Numerous prodrug strategies
have been developed targeting nutrient transporters to cross the intestinal or the blood–
brain barrier. These transporters include transporters of amino acids (e.g., SLC7A5/LAT1),
oligopeptides (SLC15A1/PEPT1), vitamins (SLC23A1/SVCT1, SLC5A6/SMVT), sugars
(e.g., SLC5A1/SGLT1), bile acids (SLC10A2/ASBT) and carnitine (SLC22A5/OCTN2).
Examples and recent developments of prodrugs utilizing these transporters are discussed
in the next chapter.
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cal barriers to reduce off-target side effects. For example, first generation H1 histamine 

Figure 1. Illustration of the prodrug and functionalized nanoparticle strategies. In the prodrug strat-
egy, the deliverable drug of interest is chemically linked to a known substrate of the target transporter.
After uptake through the transporter, the chemical link is cleaved by intracellular enzymes, thus
freeing the active drug molecule and an inert substrate. In the nanoparticle strategy, known substrates
of the target transporter are chemically linked to the nanoparticle, which encapsulates the active drug
molecules. Due to the size of the particle, binding to the transporter typically triggers endocytosis.
Endosomal escape must occur after cellular uptake to release the content of the nanoparticles, the
active drug, into the cytoplasm (see text). Created with BioRender.com.

It is often desirable that a drug is not transported into specific cells or across biological
barriers to reduce off-target side effects. For example, first generation H1 histamine receptor
antagonists, such as diphenhydramine, chlorpheniramine and cyproheptadine, are cationic
drugs that exhibit sedative side-effects in the CNS because they can effectively enter the
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brain [21]. In contrast, second generation H1 antagonists, such as fexofenadine, cetirizine
and ebastine, do not exhibit sedative side-effects. Fexofenadine and cetirizine have been
shown to be substrates for ABCB1/P-gp, a key drug efflux transporter at the blood–brain
interface, limiting drug availability in the brain [22–24]. Ebastine is rapidly converted
to carebastine, which is also pharmaceutically active [25]. However, unlike ebastine,
carebastine is also a good substrate for ABCB1/P-gp, while it is a poor substrate for the
uptake transporters in brain capillary endothelial cells (BCECs), thereby likely contributing
to reduced CNS side-effects [25]. These examples illustrate that, in certain cases, it may be
advantageous to design drugs to be good substrates for drug efflux transporters to avoid
their permeation across biological barriers.

A more recently developed and highly promising strategy for drug delivery is based
on the production of nanoparticles, generally smaller than one micrometer, that can en-
capsulate drug molecules and release them under certain conditions. The purpose of
encapsulation is either to increase the solubility of the drug molecule or to protect it from
oxidizing conditions in the gastrointestinal tract. In this regard, it is important to note that
there are physiological limitations to the size of the nanoparticles that can be used. Very
small particles (<10 nm) are filtered in the renal glomerulus [26], while ~25 nm diameter is
the enthalpic limit for the initiation of endocytic processes on the cellular surface according
to kinetic models [27]. On the other hand, oversized particles (>200 nm) could activate
the complement system, resulting in accumulation in the liver and spleen [28]. In order to
enhance drug absorption and delivery, these nanoparticle scaffolds are often chemically
modified. One such modification is the attachment of small molecule substrates of trans-
porters to the surface of the nanoparticles to enhance recognition, and thus barrier passage
or targeting to specific tissues (Figure 1).

A variety of chemical substances have been used as nanocarriers and substrates for
further chemical modification to fine-tune pharmacokinetic properties. Among them, li-
posomes and liposome-based formulations (e.g., functionalized liposomes) [10,26,29–31],
solid lipid nanoparticles/nanostructured lipid carriers [32], various polymer-based nanomi-
celles/nanoparticles [29,31,33–40], carbon dots [41], mesoporous silica nanoparticles [42,43]
and nanoemulsions [44] have been used for transporter-targeted drug delivery.

Cellular uptake of such nanoparticles usually occurs through binding to the tar-
get transporter on the cell surface, followed by endocytosis via caveolin-dependent,
clathrin-dependent or clathrin/caveolin-independent pathways such as micropinocy-
tosis [10,26,29,30,44–46], rather than through uptake by the transporter itself (Figure 1).
Endocytosed particles can be trapped in lysosomes, which can lead to their degradation
and prevent their transcytosis, thus reducing their efficiency [47,48]. After the endocytic
process, transporters are usually restored/recycled, but the exact mechanism remains
unclear [26].

In the next chapter we review transporters that have been used as targets of either the
prodrug approach or to nanoparticle targeting.

3. Targeting Transporters
3.1. Facilitative Glucose Transporters (GLUTs)

Facilitative glucose transporters are members of the GLUT/SLC2 family, which in-
cludes 14 transporters in humans [49]. Most members of this family transport sugars with
a six-membered ring, such as glucose and galactose, with different substrate specificities
and tissue expression patterns depending on their biological roles. The best-characterized
member, GLUT1/SLC2A1, is present to varying degrees in many different tissues and cell
types. Particularly high expression levels are found in erythrocytes, endothelial cells of the
blood–brain barrier (BBB) and endometrial stromal cells of the placenta, where GLUT1 ful-
fills vital physiological roles [49]. At the BBB, for example, GLUT1 is the major mechanism
for glucose delivery to the central nervous system (CNS), and mutations in its SLC2A1 gene
cause GLUT1 deficiency syndrome with seizures and other neurological symptoms [50].
Other members of the GLUT/SLC2 family have more tissue-specific expression patterns,
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such as GLUT5/SLC2A5 and GLUT7/SLC2A7, which are abundant in the small intestine,
and GLUT4/SLC2A4, which represents the major glucose uptake pathway in skeletal
muscle [49]. GLUT1 has attracted particular attention as its expression has been detected
both at the blood–brain barrier and in malignant glioma cells that have elevated nutrient
demand [51].

The prodrug strategy was used early on with GLUT1 to deliver drugs to the CNS.
D-glucose and D-galactose esters of 7-chlorokynurenic acid, an N-methyl-D-aspartate
(NMDA) receptor antagonist, were synthesized as prodrugs to facilitate the delivery
of 7-chlorokynurenic acid to the CNS and were shown to be effective against NMDA-
induced seizures in mice [52,53]. Glycosyl derivatives of dopamine and L-DOPA (L-3,4-
dihydroxyphenylalanine), synthesized as anti-Parkinson prodrugs, were also shown to
be effective in classic dopaminergic models, indicating that the prodrugs can cross the
BBB and act in the CNS after intravenous administration [54]. In later in vitro studies,
a glucose-dopamine conjugate was shown to compete with 3-O-methylglucose, a non-
metabolizable substrate of GLUT1, indicating direct involvement of the transporter in the
uptake process [55]. Interestingly, the conjugation of chlorambucil, an anticancer drug, with
glucose yielded a compound that interacts with GLUT1 but is not itself transported [56].

GLUT1 has been used to deliver diagnostic and imaging markers into tumor cells;
for example, [18F]fluoro-2-deoxy-D-glucose is used in positron emission tomography for
in vivo tumor diagnosis [57,58]. Similarly, γ-Fe2O3 nanoparticles were coated with dimer-
captosuccinic acid and modified with 2-deoxy-D-glucose to target GLUT1-overexpressing
cells for tumor imaging [59]. Liposomes loaded with the fluorescent dye coumarin 6 and
decorated with glucose residues bound to cholesterol via poly(ethylene glycol) (PEG) also
successfully delivered coumarin 6 to mouse brain [60]. Glucose-functionalized poly(lactic-
co-glycolic acid) (PLGA) nanoparticles were also developed and shown to deliver the
encapsulated Cy5.5 fluorescent dye into HEp-2 cells that express GLUT1 at high levels,
and enhanced antiproliferative effects were demonstrated when these nanoparticles were
loaded with the chemotherapeutic agent docetaxel [37].

In addition, the GLUT1 pathway has been exploited to target gliomas, requiring thera-
peutics to both cross the BBB and achieve maximal distribution in the tumor tissue. GLUT1
is a promising candidate because it is expressed in both the BBB and various tumors. For
glioma therapy, 2-deoxy-D-glucose-functionalized poly(ethylene glycol)-co-poly(trimethylene
carbonate) (PEG-PTMC) nanoparticles were used to effectively enhance binding to GLUT1 in
a dual targeting strategy involving both BBB transfer and tumor penetration [36]. Specifically,
PEG-PTMC, a biodegradable aliphatic polycarbonate, was conjugated with 2-deoxy-D-glucose
to target GLUT1-mediated transcytosis and deliver the encapsulated anticancer drug paclitaxel
to the brain. The 2-deoxy-D-glucose nanoparticles were shown to be effectively internalized
by the cells through caveolae- and clathrin-mediated endocytosis [36]. In addition, both an
in vitro co-culture model of the BBB and in vivo studies with mice showed effective uptake
and anti-glioma activity when the nanoparticles were loaded with paclitaxel [36]. A simi-
lar technique was used with D-glucosamine-functionalized nanoparticles, which showed
enhanced tumor uptake and antiproliferative activity in cancer cells, 3D tumor spheroids
and in vivo mouse xenografts [61]. Due to the high affinity of GLUT1 for D-glucosamine,
these nanoparticles could enter the tumor tissue through GLUT1-mediated endocytosis with
improved selectivity.

Functionalized nanoscale particles decorated with dehydroascorbic acid (DHA) have
also been used to target GLUT1 for drug delivery, e.g., across the BBB or into malignant
gliomas [62,63]. GLUT1, which is expressed on endothelial cells of the BBB, can transport
not only glucose but also DHA into the brain, which is subsequently reduced to ascorbic
acid [64]. Because ascorbic acid is not a substrate for GLUT1, DHA transport is unidi-
rectional, making this system ideal for drug delivery via the BBB. In one study, a “smart
nanodevice” was built and decorated with DHA using click chemistry to target malignant
glioma cells [63]. The nanodevice was loaded with paclitaxel via disulfide bonds, which
protects the entrapped drug from escaping into the bloodstream but are reduced inside
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the cell due to the high concentration of glutathione, triggering the release of the drug.
These nanoparticles showed significantly enhanced targeting to glioma and enhanced
chemotherapeutic effects. A similar strategy was used to deliver itraconazole into the brain
as a therapy against intracranial fungal infection. Compared with the non-conjugated
micellar formulations, this strategy showed a significantly higher efficacy [62].

Multivalent glucosides have also been used as ligands to functionalize liposomes
for enhanced brain delivery by targeting GLUT1 [65]. The modified nanoparticles were
able to deliver docetaxel into the brains of mice with significantly higher efficiency than
unmodified liposomes or the direct application of docetaxel alone. Modification with
quinantennary glucoside yielded the highest efficiency of delivery into the brain [65].

GLUT1 has been shown to be overexpressed not only in gliomas, but also in other
cancers outside the CNS as well. One example is hepatocarcinoma, against which a
micellar formulation of PEG-pLys-pPhe polymers decorated with dehydroascorbic acid was
developed, again anchoring the drug via a disulfide link, the dissociation of which triggers
release of the encapsulated drug due to high intracellular glutathione levels [38]. Such
doxorubicin-loaded nanocarriers showed remarkable targeting abilities to hepatocarcinoma
cells and enhanced anti-tumor efficacy [38]. Mesenchyme-like cancer cells were furthermore
targeted by glucose-coated magnetic nanoparticles, with glucose shown to compete with
nanoparticle uptake, suggesting the direct involvement of sugar transporters in the uptake
process [66].

Because GLUT1 is abundantly expressed in the BBB, it has been targeted for drug delivery
for the treatment of neurodegenerative diseases, as discussed in the following examples.

Glucose-decorated nanomicelles were engineered for brain delivery of 3D6 antibody
fragments (3D6-Fab) used for the clearance and reduction of Aβ plaques in Alzheimer’s
disease, where glucose decoration was responsible for a marked increase in cellular up-
take [35]. Uptake was inhibited in a dose-dependent manner by the GLUT1 inhibitor
phloretin, indicating the involvement of GLUT1 in the process [35]. The highest level of
brain penetration measured in mice was achieved with a 25% glucose decoration ratio,
while the enhancement of Fab uptake into peripheral tissues was negligible. The delivered
3D6-Fab was also successful in preventing the aggregation of Aβ in a mouse model of
Alzheimer’s disease [35]. Proper orientation of the glucose molecule on the nanomicelle
surface (i.e., conjugation through the C6 position of glucose) was found to be crucial for
glucose-GLUT1 interactions and nanoparticle entry into the brain [67].

A PEG-based polymeric formulation was conjugated with galactose to enhance brain
delivery of anti-BACE1 siRNA against Alzheimer’s disease, based on the observation that
D-glucose and D-galactose are both substrates of GLUT1 [68]. The galactose-modified
nanoparticles showed cellular uptake that was inhibited by phloretin in a dose-dependent
manner, indicating a dominantly GLUT1-mediated uptake pathway [69], while their brain
penetration was 5.8-fold higher than that of nanoparticles not modified with galactose [69].
The effect of galactose-mediated targeting was underscored by behavioral studies in the
APP/PS1 double transgenic mouse model of Alzheimer’s disease, which showed that in
contrast to mice treated with non-galactose-modified nanoparticles, mice treated with the
galactose-decorated anti-BACE1 siRNA-loaded nanoparticles achieved the performance of
normal, healthy WT mice in the novel object recognition test [69].

It is important to emphasize that conjugation with a ligand transported by a specific
transporter does not automatically mean that that transporter is the primary uptake route.
Glucose-coated nanoparticles have been shown to cross the primary human brain endothe-
lium at least three times faster than non-brain endothelia, with eventual localization in
astrocytes [70]. However, the GLUT1 inhibitor cytochalasin-B had no effect on the rate
of transport of these molecules. It was first assumed that uptake occurs through passive
diffusion, as vesicular transport could not be detected, but uptake and transfer rates are
temperature dependent, suggesting that other cellular processes are involved.

The high or specific expression of other glucose transporters such as GLUT2/SLC2A2,
GLUT3/SLC2A3, GLUT12/SLC2A12 and the fructose transporter GLUT5/SLC2A5 has
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also been associated with various cancer types and specific cancer stages [71–74]. For
example, GLUT5 shows a 5-fold and 17-fold higher protein expression in MCF-7 and
MDA-MB-231 breast cancer cell lines, respectively, compared to the 184B5 non-cancerous
breast cell line [75]. However, the lack of specific binders to these transporters has hindered
the development of therapeutics that can utilize these proteins [75]. In the case of GLUT5,
fluorescently labeled glycoconjugates (2,5-anhydro-D-mannitol-coumarines) have shown
high affinity and specificity of binding [76,77]. Based on these results, either mannitol
directly, or mannitol–coumarin were chemically conjugated with chlorambucil, an anti-
cancer agent [75]. These prodrugs showed selective uptake into the GLUT5-expressing
MCF-7 breast cancer cell line compared with the 184B5 non-cancerous mammary tissue
cell line, which competed with the uptake of previously used fluorescent probes, showing
a GLUT5-dependent uptake mechanism. All but one of the synthesized prodrugs also
showed a cytotoxic effect [75].

Attempts were also made to target GLUT4/SLC2A4 in muscle cells. GLUT4 in the
C1C12 muscle cell line was targeted with glucose-functionalized quantum dots, and uptake
responded to insulin stimulation, which is known to increase the surface expression of
GLUT4, and competed with 2-deoxyglucose, suggesting the direct involvement of GLUT4
in the uptake process [78].

3.2. Amino Acid Transporters

LAT1/SLC7A5 has been in the spotlight of drug delivery efforts because it is abundant
in BCECs of the BBB as well as in glioma cells and other tumors [79–81]. For this reason,
there has been a great focus on LAT1-mediated drug delivery, either with the goal of
delivering therapeutics to the CNS or to specifically target cancer cells. It has been argued
that LAT1 has better properties than 20 other transporters studied for delivery across the
BBB in terms of high maximal capacity and appreciable binding affinity, relatively simple
structural requirements for binding and relative promiscuity, and the fact that neither its
use nor the disruption of its activity by the possible overdose of therapeutics result in
irreversible brain damage [82–84]. LAT1 is prominently expressed on both the luminal and
abluminal sides of the BBB [80] and its expression was not altered by inflammatory insult
in the mouse BBB [85]. LAT1 is a non-glycosylated protein [86,87] that forms an obligate
complex with the N-glycosylated auxiliary type II membrane protein 4F2hc/SLC3A2,
resulting in a transport system that is also referred to as system L [86,88].

Several drugs already utilize LAT1 for crossing the BBB (e.g., melphalan [89], lev-
odopa [79], gabapentin [90], pregabalin [91], methyldopa and baclofen [26]). The approach
to generating LAT1-transported prodrugs mostly utilizes the conjugation of drugs with
large and/or hydrophobic amino acids such as L-Phe and L-Tyr, and has been applied to
drugs such as ketoprofen [92], ferulic acid [83], dopamine [93], valproic acid [94], nipecotic
acid [95], phosphonoformate [96], flurbiprofen, salicylic acid, ibuprofen, naproxen [87]
and probenecid [97] (for a recent review, see [98]). In addition, gemcitabine has also been
conjugated with threonine to target LAT1 [99]. There is also a prodrug strategy to enable the
brain penetration of 7-chlorokynurenic acid, an NMDA receptor antagonist, by converting
it into the prodrug of 4-chlorokynurenine [100]. This compound is an amino acid that is
readily taken up by the system L (LAT1/SLC7A5) through the BBB into the CNS [100]. In
terms of substrate recognition by LAT1, analysis of competent substrates has suggested
that a free amino and a free carboxyl group are required for recognition by LAT1 [101–103].
A pharmacophore study later found that the free amino group can also interact with LAT1
through a H-bond interaction instead of purely through the positive charge [104]. The
model has also pointed out the preference for aromatic vs. lipophilic moieties, as well as
an optional H-bond acceptor region that can enhance affinity [104]. Later, a quantitative
structure-activity relationship (QSAR) model was developed for designing potent binders
of LAT1, which indicated that meta-substituted amide derivatives of phenylalanine (i.e.,
with an amide bond at the meta-position of the aromatic ring) have the highest ability to
utilize LAT1 [105]. Subsequently, a detailed in vitro study was performed on the structural
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features affecting the transportability of LAT1-targeted phenylalanine-drug conjugates, pro-
viding further insight into suitable drug scaffolds for selective and efficient delivery via this
strategy [106]. It should be noted that prodrugs designed to be substrates for LAT1 can also
be substrates for other uptake transporters, such as monocarboxylate transporters 8 and
10 (MCT8/SLC16A2 and MCT10/SLC16A10, respectively), and organic anion transporter
proteins (OATPs, SLCO/SLC21 family) [107,108]. Eadie–Hofstee plots can be applied to
find uptake systems that transport a particular compound, and such additional transport
systems have been found for a number of prodrugs at higher concentrations [87].

Nanoparticles have also been functionalized using LAT1 substrates to focus their
targeting. In particular, LAT1/SLC7A5 has been used to deliver anticancer medication
through the BBB for the treatment of glioma, either for imaging/detection/staging purposes
or for developing anti-cancer therapeutics.

Gold nanoclusters (AuNCs) have recently emerged not only as a promising detection
approach in biomedical imaging, but also in drug delivery by conjugating drugs to the
AuNCs [109]. For the delivery of doxorubicin into cancer cells, methionine and the fluo-
rescent dye MPA were conjugated with AuNCs and doxorubicin was immobilized on the
methionine-modified AuNCs to form Au-Met-DOX nanoparticles [110]. The authors pro-
pose that LAT1/SLC7A5 and LAT2/SLC7A8, which transport methionine into malignant
cells, are involved in the drug delivery process [110].

The functionalized nanoparticle strategy was also used to target LAT1 by L-DOPA-
decorated amphiphiles [111]. These liposomes, when loaded with NIR-dye, showed prefer-
ential accumulation in brain tissue, and while carrying WP1066, a STAT3 inhibitor [112],
enhanced overall survival in a glioblastoma mouse model [111].

An interesting approach is presented by Mintz et al., who synthesized carbon nan-
odots from tryptophan and 1,2-ethylenediamine, which were able to cross the BBB in
zebrafish [41]. The authors hypothesized that residual tryptophan bound to the surface of
the carbon dots facilitated uptake through the BBB via the LAT1 transporter [41].

Phenylalanine-conjugated solid lipid nanoparticles were prepared that can deliver dox-
orubicin into glioma with higher efficiency than without phenylalanine conjugation [113].
However, these efforts have been criticized because the conjugation was performed on
the α-carboxyl group of phenylalanine, which was previously reported to be essential for
recognition by LAT1 [104,114]. Moreover, phenylalanine tends to be entrapped in the core
of solid lipid nanoparticles due to its hydrophobicity [103].

Later on, a revised strategy for the delivery of doxorubicin into glioma was utilized,
involving the conjugation of the γ-carboxyl group of glutamate to the surface of liposomes
and PLGA nanoparticles, leaving the α-amino and α-carboxyl groups free for recognition
by LAT1. This approach resulted in effective transcytosis across the BBB and uptake into
glioma cells [103]. A similar approach was applied to PLGA nanoparticles to target breast
cancer cells through LAT1-mediated delivery [115].

Liposomes composed of egg phosphatidylcholine (EPC) and dioleoyl phosphatidyletha
nolamine (DOPE) and modified with an L-tyrosine conjugated polymer showed enhanced
uptake into HeLa cells, which strongly express LAT1, compared to liposomes with unconju-
gated polymer [116]. Interestingly, the polymer used, poly(N-isopropylacrylamide-co-N,N-
dimethylacrylamide), is a thermoresponsive polymer that exhibits a phase transition at
32 ◦C, leading to changes in hydrophobicity associated with its hydration and dehydration.
At temperatures above the phase transition temperature, the uptake of the formulated
nanoparticles into HeLa cells was observed because the polymer surface of the liposomes
became hydrophobic [116]. L-tyrosine modification further enhanced the cellular uptake of
these nanoparticles [116].

In addition to LAT1, another commonly targeted amino acid transporter is SLC6A14/ATB0,+.
SLC6A14 is a relatively promiscuous transporter that transports a wide range of neutral and
cationic amino acids [117] and is highly concentrative [8]. It is prominently expressed in the
lungs [117] but is also found in the small intestine [118,119], making it a candidate for oral
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drug delivery. In addition, SLC6A14 has been shown to be upregulated in various tumor
types [120–123].

SLC6A14 has been targeted by prodrugs as it can transport a wide range of substrates,
conjugation with an amino acid by esterification and acylation transforms many drugs
into substrates of SLC6A14 [124]. Examples include valacyclovir (the L-valyl ester of the
antiviral drugs acyclovir), valganciclovir (the L-valyl ester of the antiviral drug ganciclovir),
the L-glutamic acid γ-ester of acyclovir [124] and Val-SN-38, the valyl ester prodrug of the
topoisomerase inhibitor SN-38, itself a derivative of irinotecan [125]. Interestingly, Val-SN-
38 was also taken up by SLC38A1, SLC38A2 and ASCT2/SLC1A5, highlighting that several
transporters with overlapping substrate specificity can contribute to prodrug uptake [125].
The quaternary ammonium substrate of SLC6A14, L-carnitine, has also been used as
a vehicle for the delivery of small molecules, such as butyrate, in a prodrug approach.
Butyrate is a bacterial metabolite that has been attributed with preventive effects against
inflammation in the large intestines, as well as tumor suppression and immunosuppressive
effects relevant to the treatment of inflammatory bowel disease (IBD) [126]. Since SLC6A14
has been shown to be upregulated under IBD conditions [126], an ester prodrug of butyrate
conjugated with L-carnitine was developed to target colon epithelial cells [126]. The
butyrate-L-carnitine prodrug has been shown to interact with both SLC6A14 and the
intestinal carnitine transporter OCTN2/SLC22A5 [126] (see also the section about organic
cation transporters).

In a study using liposomes conjugated with small molecules, different amino acids
(Gly, Asp, Lys) were evaluated for their targeting efficacy, with lysine showing the highest
efficacy [30,127]. Lysine-conjugated liposomes, which were proposed to directly interact
with SLC6A14, have been shown to be taken up by carcinoma cell lines [30]. The authors
suggest that the binding of the lysine-conjugated particle leads to a sustained occluded
state of the transporter, which induces endocytosis [30]. The preparation further showed
selective accumulation of lysine-conjugated liposomes in tumor cells compared to non-
conjugated liposomes. Aspartate conjugates also showed efficacy when the conjugation
occurred via the β-carboxyl group of the aspartate side chain.

In addition, L-valine-conjugated PLGA nanoparticles have been used to improve the
oral delivery of insulin, presumably through uptake by amino acid transporters in the small
intestine [128]. However, in this case, the authors mention that L-valine was conjugated
with the PLGA particles through its amino group, which could preclude their binding to
amino acid transporters.

Attempts were also made to target both LAT1 and SLC6A14 with a single nanopar-
ticle [129]. Liposomes loaded with the anticancer agent irinotecan, the water-soluble
precursor of its active metabolite SN-38, were functionalized with polyethylene glycol
monostearate conjugated with different amino acids. Interestingly, while liposomes func-
tionalized with glutamate and lysine were able to target LAT1 and SLC6A14, respectively,
tyrosine-functionalized liposomes were able to target both transporters simultaneously.
These dual-targeting liposomes showed highest uptake efficiency in BxPC-3 and MCF-7
cancer cells, which highly express both LAT1 and SLC6A14. The tumor inhibition rate of the
tyrosine-functionalized liposomes was also higher than that of unfunctionalized liposome
formulations. The mechanism of uptake was confirmed as LAT1- and SLC6A14-mediated
endocytosis [129].

Another amino acid transporter, ASCT2/SLC1A5, has been shown to be overex-
pressed in various carcinomas, making it an ideal target for cancer-specific drug deliv-
ery [130–134]. ASCT2 is a sodium-dependent neutral amino acid exchanger that transports
L-alanine and L-glutamine as well as other small neutral amino acids [135–138]. Glu-
tamine transport activity is particularly important for cancer cells, in which glutamine
addiction can develop due to the Warburg effect [139]. For this reason, radiolabeled
[18F](2S,4R)4-fluoroglutamine has been used as a positron emission tomography (PET)
probe for tumor imaging [140,141]. Similarly, non-glutamate based amino acid radiotracers
have been developed for use with PET/CT-based cancer diagnosis, such as anti-1-amino-
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3-[18F]fluorocyclobutane-1-carboxylic acid (FACBC, fluciclovine) [142,143], which is also
partly transported by ASCT2 [144]. The prodrug strategy has additionally been used to
generate a series of glutamine-linked platinum (IV) prodrugs that have shown anticancer
activity, albeit to a lesser extent than their parent compound, cisplatin. However, for one of
the compounds, the authors expect less off-target accumulation, as it is mainly taken up by
ASCT2-overexpressing tumor cells [145].

Functionalized nanoparticles targeting ASCT2 via glutamine have also been generated.
In one study, glutamine-β-cyclodextrin was synthesized and loaded with doxorubicin. It
was shown to specifically accumulate in strongly ASCT2-expressing triple negative breast
cancer cell lines (MDA-MB-231 and BT549). Uptake of the nanoparticles was attenuated by
L-γ-glutamyl-p-nitroanilide, a specific inhibitor of ASCT2, demonstrating the involvement
of the transporter in the uptake process [146]. In another study, a polyglutamine-based
co-polymer gene delivery system was developed for cancer therapy to deliver interfering
siRNA agents against multidrug resistance protein 1 (MDR1/P-gp/ABCB1) and survivin.
The nanoparticles were shown to be taken up by clathrin-mediated endocytosis, which
was partially ASCT2-dependent, as the inhibition of ASCT2 attenuated uptake, while
glutamine deprivation enhanced it [147]. Interestingly, nanoparticle binding resulted in
a significant decrease in intracellular glutamine levels due to competition for glutamine,
which in turn resulted in a remarkable upregulation of ASCT2. In vivo, the polyglutamine-
based nanoparticles were shown to be specifically taken up into the lung parenchyma after
intravenous injection, likely due to the high expression of ASCT2 in that tissue [147].

As mentioned earlier, LAT1 and also other SLC7 amino acid transporters form ob-
ligate complexes with type II single-transmembrane domain glycoproteins of the SLC3
family [133,148–150]. Thus, SLC3A2/4F2hc (also known as CD98), the obligate interaction
partner of LAT1, although not a transporter itself, is a potential target as well due to its ele-
vated expression in various carcinomas and neoplasms, and as a consequence of intestinal
inflammation [151,152].

Targeting and silencing of SLC3A2 in colorectal cancer was the basis for the develop-
ment of a new oral nanoparticle strategy that improves the efficacy of anticancer drugs.
While SLC3A2 is only weakly expressed on the basolateral membranes in healthy colon
epithelial cells, it is distinctly overexpressed on both apical and basolateral membranes
in colon cancer, where it plays a special role in the development of colon cancer [153].
This suggests that SLC3A2 can serve as a receptor for targeted drug delivery in colon
cancer cells and that its downregulation, in combination with anticancer drug treatment,
increases the therapeutic efficacy of the anticancer drug. For this purpose, SLC3A2 siRNA
and the anti-cancer alkaloid camptothecin were co-loaded into SLC3A2 Fab-functionalized
nanoparticles [153]. These nanoparticles showed enhanced drug delivery, anticancer and
antimigration effects in in vitro and in vivo experiments compared with drug-only loaded
nanoparticles or non-functionalized nanoparticles, demonstrating the potential of this
targeted nanoparticle combination therapy [153]. A similar antibody-mediated targeting
strategy was used with PLGA nanoparticles to deliver SLC3A2 siRNA into intestinal cells
of mice with colitis [154], thereby targeting SLC3A2 on the surface of colon epithelial cells
and macrophages, where it is overexpressed due to inflammatory processes [152,154].

3.3. Bile Acid Transporters

Bile acid conjugation was used as early as 1948 as a strategy for targeting hepatocytes
to treat germ and viral infections attacking the liver [10,155,156]. Bile acids are polyhydrox-
ylated steroidal acids derived from cholesterol that are secreted by the liver into the bile
canaliculus via the ABCB11/BSEP transporter and stored in the gallbladder [157]. Most of
the chemical species in bile are the primary bile acids cholic acid and chenodeoxycholic
acid, which are conjugated with either glycine or taurine [157]. After emptying into the
small intestine following the ingestion of a meal, they help solubilize and break down large
dietary lipid droplets by converting them into small ones, thus improving accessibility to
pancreatic lipases. After enzymatic digestion of the components of the micelles, the lipids
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are converted into common hydrolysis products such as fatty acids, monoacylglycerols,
phospholipids and free cholesterol [10,158]. These products remain associated with the
bile acids in mixed micelles, which facilitate their passage through the intestinal mucus
layer, one of the important barriers to overcome when developing drug delivery strate-
gies [10,159]. The ingredients of the micelles are then taken up by the enterocytes in the
upper part of the small intestine, either via passive diffusion or by specific transporter
proteins [10,160–162]. After uptake across the brush border membrane, the resulting intra-
cellular lipid droplets bind to fatty acid binding protein (FABP), and the lipid digestion
products migrate to the endoplasmic reticulum, where they are re-esterified to generate
triglycerides, phospholipids, cholesterol esters, etc. After transport from the ER to the Golgi
apparatus, lipids are packaged together with apolipoproteins to form chylomicrons, with
apolipoproteins playing an important role in chylomicron synthesis [163,164]. The chylomi-
crons are then extruded from the Golgi apparatus in exocytic vesicles and released across
the basolateral membrane into the lacteals in the villi of the small intestine, and thereafter
into the lymphatic vessels and thoracic duct to enter the systemic circulation [10,160,161].
Similar transport pathways exist for certain fat-soluble vitamins, carotenoids and other
lipophilic compounds that rely on the formation of bile acid micelles.

As for the absorption of therapeutic drugs via the lipid absorption pathway, most of
them enter the portal vein after transcytosis by enterocytes. However, it is also known that
the bioavailability of several highly lipophilic drugs depends significantly on lymphatic
transport [161,165,166]. In general, it is the high lipophilicity and the large particle size
that favor the lymphatic system over the portal vein [10]. Drug uptake via the lymph has
several advantages, such as the ability to bypass first-pass metabolism in the liver and the
avoidance of rapid distribution of drugs into organs and tissues, thus resulting in reduced
toxicity [10,161,165].

The lymphatic delivery pathway can also be exploited via the microfold M cells located
in the intestinal epithelium [166]. These are specialized immune cells distributed among the
epithelial cells covering mucosa-associated lymphoid tissues such as Peyer’s patches [10].
Their normal function is to rapidly take up antigens from the intestinal lumen in order to
initiate an immune response [10,167,168]. They lack microvilli and a mucus layer and are
coated with a thinner glycocalyx than enterocytes, which allows them easier access to the
contents of the intestinal lumen, making them ideal candidates for developing advanced
oral bioavailability strategies for therapeutics [10,167].

While lipid absorption facilitated by bile acid micelles occurs in the upper part of the
small intestine, conjugated bile acids are taken up via the luminal sodium-coupled bile acid
transporter SLC10A2/ASBT located in the distal ileum. There, 95% of conjugated bile acids
are absorbed as part of the recycling of bile salt called enterohepatic circulation, which
is important because the liver is unable to synthesize enough bile salts to meet the daily
requirements [10,169]. As part of the recycling process, bile acids taken up through the
apical membrane of epithelial cells via SLC10A2/ASBT bind to the ileal bile acid binding
protein IBABP, which then shuttles them to the basolateral membrane, followed by exit via
the heteromeric organic solute transporter OSTα/β (SLC51A/B) into the portal vein [170].
From there, conjugated bile acids travel back to the liver, where they are taken up by the
hepatic sodium-dependent taurocholic transporter SLC10A1/NTCP [170]. Unconjugated
bile acids can be taken up by OATP transporters (SLCO/SLC21 family).

The intestinal barrier poses a major challenge in the development of new strategies to
improve oral drug availability. While most small molecule drugs administered orally are
believed to be substrates of one or more uptake transporters expressed in the intestines [171,172],
various approaches have been used to attempt to translocate non-transport substrates and poor
substrates more efficiently across the brush border membrane. Bile acids and their derivatives
were among the first molecules used to aid drug absorption in the intestines. Specifically, it
was found that the conjugation of chemically modified cholic acid with peptides of different
lengths resulted in the uptake of some of these peptides into bile [173,174], while competitively
inhibiting the uptake of taurocholate. This was one of the first studies in this field when the
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molecular identity of the bile acid transporter in the ileum was still unknown. The latter was
then successfully identified in 2003 as ASBT/SLC10A2 [175,176].

Subsequent studies have used the prodrug-based strategy to enhance either intestinal
absorption or targeting to the liver. In the case of the antiviral agent ribavirin used to treat
hepatitis C infections, the aim was to lessen off-target effects in erythrocytes that cause
hemolytic anemia. To this end, ribavirin was conjugated to bile acids to target the liver bile
acid transporter NTCP/SLC10A1 [176]. This strategy reduced the ribavirin concentration
in erythrocytes 16.7-fold and the exposure of ribavirin in erythrocytes, plasma and kidneys
1.8-fold, while exposure in the liver was similar to that of ribavirin itself [177].

The antiviral agent valacyclovir was conjugated with chenodeoxycholate to improve
oral bioavailability. The conjugate resulted in a more than 10-fold increase in intestinal
uptake compared to the parent acyclovir in a cell line model [178]. In addition, the acyclovir
molecule was recovered from the urine of rats after the administration of the conjugate,
indicating that acyclovir was successfully cleaved and activated in the organism.

Another example is floxuridine, an antimetabolite used to treat metastatic liver disease.
In order to enhance its hepatic uptake, it was conjugated with chenodeoxycholic acid
using glutamic acid as a linker between the drug and the bile acid [179]. Two isomers
were synthesized, and both were found to be substrates of NTCP/SLC10A1 [179]. The
compounds showed stability in rat plasma but rapid release of the drug in rat liver. This
suggests that glutamic acid is a promising linker for the conjugation of bile acids with liver-
targeted drugs because the ester bond remains stable in plasma but is readily metabolized
in the liver [179].

The conjugation of cytarabine, an anti-cancer agent that has poor oral bioavailability,
with various bile acids has been explored as a way to improve intestinal absorption and liver
targeting to optimize liver cancer treatment [180]. The ursodeoxycholic acid derivative of
cytarabine showed prolonged half-life in vivo and increased oral bioavailability compared
to cytarabine itself [180]. This confirms the benefit of the bile acid transporter-based prodrug
strategy to enhance oral absorption.

Bile acid conjugation was also used to improve the oral bioavailability of heparin by
the conjugation of deoxycholic acid with low molecular weight heparin (LMWH) [181].
The formulation was effective in vivo [182,183], and a competition study with free bile acid
indicated that the uptake process was mediated by ASBT/SLC10A2 [183].

A similar strategy was later used with insulin by linking it to succinimido deoxycholate
and succinimido bisdeoxycholyl-L-lysine [184]. The resulting conjugates retained high
binding affinity to the insulin receptor and showed prolonged biological activity compared
with normal insulin when administered intravenously to rats [184].

Another approach was taken by Lu and coworkers by linking paclitaxel to a PEG linker
via a disulfide bond, which in turn was linked to cholic acid via an amide bond [185]. This
targeted prodrug approach relies on elevated glutathione levels in tumor cells to reduce
the disulfide bond and activate the drug [185–188]. The resulting formulation was resistant
to acidic in vitro conditions mimicking those in the stomach, and the prodrug was able to
enter MDA-MB-231 breast cancer cells, with uptake reduced by the addition of sodium
taurocholate, indicating the involvement of ASBT/SLC10A2 [185]. In vivo studies in rats
showed a higher plasma concentration of the prodrug than with paclitaxel administered
alone [185]. For chemotherapeutics with limited solubility and permeability, this prodrug
approach gives optimized oral delivery and tumor-specific release.

Early on, comparative molecular field analysis (CoMFA) suggested that substitution
at positions 3, 7, 12 and 24 of bile acids lead to reasonable binding to the bile acid trans-
porters [189]. Subsequent structure-activity studies confirmed that the C2-C3 positions of
bile acids can successfully be conjugated without affecting their interactions with bile acid
transporters [190]. In fact, C3 does not appear to specifically interact with ASBT/SLC10A2,
and thus offers a preferred conjugation site [10,191], even though the C3 hydroxyl group
seems to be essential for binding to IBABP [10]. In contrast, position 24 has frequently
been used for conjugation, probably due to its easy chemical accessibility [191–193]. It is
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generally believed that the negative charge at the C24 position is not essential for transport,
but significantly increases the affinity to bile acid transporters [191,193]. However, its
modification might lead to a lower uptake rate [191].

Even though 3D-QSAR models successfully predict the interaction of small molecules
with ASBT/SLC10A2 [194], the atomic-resolution structure of a bacterial homolog of ASBT
from Neisseria meningitidis suggests that the cavity of ASBT is relatively small, and therefore
it is questionable whether bile acid conjugates are actually transported [195]. On the other
hand, it has also been claimed that the substrate-binding site of ASBT is much bigger than
the size of bile acids, and that larger substrates can also be accommodated. For example,
even a tetrameric form of deoxycholic acid shows high affinity for ASBT and improves the
oral bioavailability of heparin upon conjugation [196]. Nevertheless, whether these large
substrates actually enter the cell via the bile acid transporter or whether uptake occurs via
another process such as endocytosis has not yet been clarified.

In addition to the classical prodrug strategy involving the direct chemical linking of
small molecule drugs to bile acids, a nanocarrier strategy involving nanoparticles func-
tionalized with bile acid molecules has also been developed. In particular, the decoration
of various types of nanoparticles with bile acids has widely been used to enable the oral
bioavailability of, for example, heparin and insulin.

Deoxycholic acid-conjugated chitosan particles were loaded with insulin for successful
delivery into the portal vein [197–199]. Chitosan is a natural polysaccharide derived from
marine crustaceans; chitosan-based nanomaterials have proven effective for advanced
delivery approaches such as protein/peptide delivery, as they offer several advantages,
including high encapsulation efficiency and favorable biocompatibility. Insulin-loaded
deoxycholic acid-conjugated chitosan particles were shown to undergo ASBT/SLC10A2-
mediated endocytosis, followed by sequestration to the basolateral membrane via IBABP
and release at the basolateral membrane [197]. Another, different formulation based on
the same idea has also been developed [200,201]. Polymer coating increases the stability of
liposomes while enabling their conjugation with various small molecule ligands. Chitosan-
coated and deoxycholic acid-modified liposomes have been successfully used to deliver
insulin to rats in vivo [202], suggesting that the delivery of proteins/peptides via the bile
acid uptake route is possible.

In another study, an attempt was made to deliver insulin by developing PEGylated
polyhydroxybutyrate copolymeric nanoparticles conjugated with deoxycholic acid [203].
To avoid the release of insulin from the nanoparticles due to the harsh acidic and enzymatic
milieu in the stomach, the nanoparticles were coated with a hydrophobic polymer, Eudragit
S-100. While the encapsulation prolonged in vivo insulin release beyond 24 hours, deoxy-
cholic acid ligation caused significantly higher intestinal uptake of the nanoparticles [203].

Heparin conjugated to nanomaterials has been explored in view of its expected versatil-
ity in the surface functionalization and embedding of biomolecules [204]. Nanocarriers were
developed using heparin-taurocholic acid nanoparticles loaded with docetaxel [205,206].
The self-assembling formulation enabled effective oral absorption and anti-cancer activity
in tumor-bearing mice and absorption could be blocked by the administration of taurocholic
acid, confirming the involvement of the bile acid pathway.

In a further attempt to explore bile acid transporter-mediated delivery routes to im-
prove oral administration of poorly water-soluble drugs, self-assembling hybrid nanopar-
ticles of sodium-taurocholate and polyvinyl caprolactam-polyvinyl acetate-polyethylene
glycol (Soluplus®, BASF Pharma, Germany) were prepared, and the calcium channel
blocker felodipine was selected as a model drug [207]. The permeability of felodipine
depended on the presence of taurocholate on the particles and was inhibited by excess
sodium taurocholate or direct inhibition of ASBT/SLC10A2. A fluorescence approach was
used to verify that the Soluplus nanoparticles were taken up intact by the ileum. These
results confirm the potential use of this approach to enhance the oral bioavailability of
poorly soluble drugs [207].
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Taurocholic acid-modified nanostructured lipid carriers based on polyethylene glycol
100-monostearate have furthermore been developed for improving the oral delivery of the
cancer preventing agent curcumin [32]. Taurocholine modification has also been used on
nanoparticles to deliver siRNA of Akt2 for the treatment of colorectal cancer metastases in
the liver [208].

Conjugation with glycocholic acid has also been shown to increase drug bioavailability.
This has been shown for the 39-amino acid peptide exendin-4, a glucagon-like peptide-1
(GLP-1) receptor agonist and incretin mimetic used to treat type 2 diabetes. However,
its therapeutic benefit is limited due to the frequent injections required. To address this
issue, liposomes coated with glycocholic acid-conjugated chondroitin sulfate and loaded
with exendin-4 were used to facilitate oral administration [209]. The efficiency of the
nanoparticle formulation was similar to that of subcutaneous injection of exendin-4 in a rat
model of type 2 diabetes. Interestingly, the site of absorption of the modified liposomes
relocated from duodenum to ileum, most likely as a result of coating with bile acids [209].

To avoid problems with the bioavailability of the chemotherapeutic agent etoposide,
a topoisomerase II inhibitor, this medication was embedded in a nanoemulsion based on
low molecular weight methylcellulose, which also contains the ion pair of the anionic
1,2-didecanoyl-sn-glycero-3-phosphate, a lipid, and the cationic Nα-deoxycholyl-L-lysyl-
methylester, a derivative of deoxycholic acid [44]. This formulation showed improved
cellular permeability in Caco-2/HT29-MTX-E12 cells and also higher oral bioavailability in
in vivo studies in rats [44]. The inhibition of ASBT with actinomycin D and the heteromeric
organic solute transporter OST α/SLC51A and OST β/SLC51B with clofazimine reduced
permeability, indicating the involvement of bile acid transporters in this process [44].

It should be noted that the hydrophobic nature of certain bile acids, such as deoxycholic
acid, causes the molecules to be preferentially buried in the liposomes and micelles, which
could limit their efficacy by obstructing binding to bile acid transporters [8]. Similarly,
while carriers such as bilosomes, which are liposome-like systems with bile acids present
directly in the bilayer membrane, do show advantages for oral delivery, it is still unclear
whether they directly interact with bile acid transporters [10].

3.4. Choline Transporters

Choline is an important precursor for phospholipid production in all cell types. In
addition, it plays a special role in the brain for the synthesis of the neurotransmitter
acetylcholine [210,211]. To meet the brain’s high demand for choline, and given the cationic
charge of the choline molecule, it has been generally accepted that a dedicated choline
transport system must be present at the BBB. However, its identity has long remained
elusive. While the high-affinity Na+-dependent choline transporter CHT1/SLC5A7 was
shown to be highly expressed in cholinergic nerve endings [212], it is not expressed in the
brain capillary endothelial cells that form the BBB [213,214]. More recently, the choline
transporter-like proteins CTL1/SLC44A1 and CTL2/SLC44A2 were shown to be expressed
on the plasma membrane of human brain microvascular endothelial cells (hBMEC) as
well as human brain cortical sections [214]. Upon the knockdown of CTL1/SLC44A1 by
RNA interference in cultured rat astrocytes, the Na+-independent choline uptake activity
vanished, indicating that CTL1 transports choline in a Na+-independent fashion [215].
Due to the presence of choline transporters at the BBB, they stand at the focus of drug-
transporter interactions and serve as gateways for the delivery of therapeutic agents across
the BBB. In addition to normal brain function, glioma cells have an increased demand for
choline to synthesize phospholipids, which are essential for cell proliferation [8]. Therefore,
targeting choline transporters could be beneficial both for delivering drugs into the CNS
and for targeting glioma cells in the brain.

Even before the identification of the choline transporter at the BBB, pharmacophore
models were proposed to study the chemical modifiability of choline while retaining
affinity to its transporter [216,217]. Whereas earlier studies suggested that both the qua-
ternary ammonium and the free hydroxyl groups are necessary for the recognition by the



Molecules 2023, 28, 1151 15 of 52

transporter [217], it was later found that bis-quaternary ammonium compounds can also
inhibit transport [218]. Based on this, various linker lengths and types have been explored
to develop high-affinity binders of the choline transporter at the BBB [219,220]. One of
these compounds was shown to efficiently accumulate in the brain when linked to the
BODIPY dye. Furthermore, a nanodelivery system based on dendrigraft poly-L-lysines
(DLGs) decorated with the compound was able to successfully deliver plasmid DNA into
the brain [220]. Interestingly, even though the uptake of conjugated nanoparticles was
inhibited by excess choline, inhibition by filipine also suggested a non-specific adsorptive
endocytosis mechanism of uptake [220].

Similar nanoparticles were later used to deliver a gadolinium chelate contrast enhancer
for the localization of glioma by magnetic resonance imaging (MRI) [221], and also for
the simultaneous delivery of doxorubicin and a vector carrying a gene encoding the
hTRAIL (human tumor necrosis factor-related apoptosis-inducing ligand) protein [222].
Both applications showed superior brain penetration and activity of the formulations
compared to non-conjugated controls. Similarly, a micellar preparation based on linking the
above-mentioned choline derivative to a PEG segment conjugated with eight doxorubicin
molecules was prepared and showed higher glioma accumulation compared to the same
formulation without the choline derivative compound [223].

3.5. Vitamin Transporters

Vitamins are vital compounds that play a role as cofactors or precursors in a variety of
fundamental physiological processes. Since vitamins are indispensable nutrients, there are
numerous vitamin transporters in the intestines for their absorption. Several of these have
been exploited as routes to enhance the oral absorption of drugs.

Ascorbic acid, or vitamin C, is an important cofactor in various enzymatic processes
and typically acts as an electron donor. It also scavenges and neutralizes free radicals such
as reactive oxygen species [224]. This antioxidant activity is especially important during
the inflammatory reaction to protect immune cells [224]. The byproduct of the activity is
the oxidized form of ascorbic acid, called dehydroascorbic acid (DHA) [224]. Different
transport systems exist for these two forms. While L-ascorbic acid is taken up by the
Na+-coupled vitamin C transporters SVCT1/SLC23A1 and SVCT2/SLC23A2, DHA can
cross the membrane through facilitated diffusion with the help of GLUT/SLC2 transporters
(see the section above about facilitative glucose transporters).

While SVCT1/SLC23A1 is expressed in epithelial tissues such as the small intestine
and kidney and is responsible for regulating whole-body homeostasis of the vitamin,
SVCT2/SLC23A2 is expressed more broadly. Importantly, SVCT2 is also highly expressed
in epithelial cells of the choroid plexus [225,226], suggesting that it enables the transport
of ascorbic acid into the brain [224,227]. This function is especially important because the
blood levels of the oxidized form of vitamin C, DHA, which could serve as an alterna-
tive source of vitamin C supply to the brain, are negligible under normal physiological
conditions [228]. Vitamin C taken up by SVCT2 in the epithelial choroid plexus cells was
recently shown to exit the cells into the cerebrospinal fluid (CSF) via GLUT12/SLC2A12,
a facilitative transporter that is highly expressed in the choroid plexus [229]. In further
support of the concept that SVCT2 and GLUT12 provide vitamin C to the brain via the
choroid plexus and the CSF, earlier autoradiographic studies confirmed that 14C-labeled
ascorbic acid slowly accumulates in the central nervous system after intravenous injection
and that radioactivity leaving the choroid plexus reaches the highest levels in the central
nervous system about 6 days after intravenous injection in mice [230]. How exactly ascorbic
acid enters the brain from the CSF, however, has not yet been clarified.

Since ascorbic acid can cross both the intestinal barrier and be delivered into the CSF
via SVCT/GLUT ascorbic acid transporters, the conjugation of ascorbic acid to various
compounds has been explored as a strategy for brain delivery.

Earlier studies to generate ascorbic acid transporter-specific ligands have shown that
the C5 and C6 positions are modifiable without significantly affecting the interaction with
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the transporter [231–233]. Additionally, the oxidized forms of these derived compounds
showed no interaction with GLUT1 and GLUT3, which transport DHA, confirming their
specificity for SVCT transporters [231,232]. Some of these derivatives have been developed
for medical imaging but have proven to be of limited use [234,235]. Prodrugs of nipecotic
acid (an SLC6 GABA transporter uptake inhibitor), kynurenic acid (a neuroactive interme-
diate of L-tryptophan metabolism) and diclofenac acid (a nonsteroidal anti-inflammatory
drug) conjugated with ascorbic acid have also been developed in order to improve their
brain penetration [236–238]. The nipecotic acid derivative was also tested in a mouse
model of epilepsy induced by pentylenetetrazole (a GABAA receptor antagonist) and
was found to prolong the latency for the onset of tonic seizures, whereas the application
of nipecotic acid itself had no such effect [237,238]. The γ-secretase inhibitor N-[N-(3,5-
difluorophenylacetyl)-(S)-alanyl]-(S)-phenylglycine tert-butyl ester (DAPT), a potential
therapeutic against Alzheimer’s disease, has also been chemically linked to ascorbic acid
in order to improve its bioavailability in the CNS and to reduce potential off-target ef-
fects [239]. One of the developed compounds showed accumulation in the brain while
retaining the inhibitory activity on γ-secretase [239]. A prodrug of the anti-inflammatory
drug ibuprofen was also developed by conjugating ibuprofen with ascorbic acid to enhance
its delivery to the brain via SVCT2, allowing it to be used for the treatment of CNS disorders
such as Alzheimer’s disease [240]. The prodrug accumulated in the brain to a greater extent
than ibuprofen and became activated in the brain, effectively releasing ibuprofen [240]. The
uptake competed with the transport of free ascorbic acid, consistent with the involvement
of SVCT2 in the uptake process [240].

To further exploit the potential of SVCT2 for improved drug delivery into the brain, li-
posomes and lipid-core polymeric micelles were developed as nanocarriers to target SVCT2.
For this, the nanocarriers were decorated with ascorbate by modifying 1,2-distearoyl-sn-
glycero-3-phosphoethanolamine-amino-PEG with ascorbic acid [227]. The nanocarriers
showed enhanced targeting to SVCT2-expressing glioma cells based on the delivery of
rhodamine into these cells, which could significantly be inhibited by the presence of
free ascorbic acid in the medium, indicating SVCT2-mediated uptake [227]. In another
study, poly(D,L-lactic-co-glycolic acid)-block-poly(ethylene glycol) (PLGA-b-PEG)-based
nanoparticles were functionalized with ascorbic acid and loaded with galantamine, an
acetylcholinesterase inhibitor used to treat Alzheimer’s disease [241]. Ascorbic acid conju-
gation enhanced uptake of the nanoparticles into SVCT2-expressing cells in in vitro studies.
The functionalization also reduced the accumulation of galantamine in the liver, spleen,
lungs and kidneys and improved the outcome in scopolamine-induced amnesic rats [241].

SMVT/SLC5A6 is a Na+-coupled vitamin transporter expressed in absorptive tissues
such as the intestine, kidney and placenta [242,243]. It primarily plays a role in the intestinal
absorption of the vitamins pantothenate and biotin, as well as lipoate, the enzyme cofactor
that plays a key role in mitochondrial metabolism [243]. Even before the identification
of this transporter, it was observed that the conjugation of biotin with various molecules
enhances their cellular uptake [244–246]. In these studies, the cellular uptake of Tat (trans-
activator of transcription) protein of the human immunodeficiency virus 1 (HIV-1) and its
fragments were enhanced by biotin conjugation. The fragment proteins were developed
to display Tat antagonistic activity, and in a later study, a retro-inverso derivative of
this peptide was developed that exhibited high resistance to proteolysis in serum [247].
All of these Tat-derived biotinylated peptides were shown to use SMVT as an uptake
route [247,248].

Similarly, a camptothecin topoisomerase inhibitor-PEG-biotin conjugate was devel-
oped, which showed enhanced cytotoxic activity compared with camptothecin alone [249].
Since the PEG and PEG-biotin fragments alone did not induce cell death, it was concluded
that the improved efficiency of the conjugate was likely due to enhanced solubility, stability
and SMVT-mediated uptake of camptothecin [249].

Prodrug derivatives of acyclovir conjugated with both various lipids and biotin were
also developed, and the addition of both the hydrophobic moiety and biotin appeared
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to have an additive effect on increasing the cellular uptake of the compounds [250,251].
The effect of biotin conjugation could significantly be reduced by competition with biotin,
indicating the involvement of SMVT in this process [250,251]. Computational docking of
the biotinylated prodrug was also performed using a structural model of human SMVT,
suggesting a possible mode of interaction of the generated compounds with the trans-
porter [251].

Biotin has also been used to functionalize various nanocarriers in order to improve
the oral bioavailability of biomolecules and drugs. Insulin encapsulated in biotinylated
liposomes showed about twice the bioavailability of those in conventional liposomes [252].
The formulation exhibited a mild hypoglycemic effect that lasted longer than subcuta-
neous insulin injection [252]. Nanostructured lipid carriers functionalized with biotin
were also developed for the intestinal absorption of oridonin, a natural compound with
anti-inflammatory and anti-cancer effects, which otherwise exhibits low solubility and
bioavailability [253]. However, the involvement of SMVT in the uptake of these formula-
tions has not been tested.

Several types of cancer exhibit increased uptake of vitamins, indicating that vita-
min transporters (or receptors) could be used for selective cancer targeting [254–256]. In
one study, a hydrophobized polysaccharide, pullulan acetate, was used to generate self-
assembling nanoparticles functionalized with biotin to enhance cancer cell targeting [257].
The biotin-conjugated nanoparticles showed increased uptake in cells of the HepG2 car-
cinoma cell line compared to unconjugated particles [257]. Biotin-coated nanodiamonds
(i.e., carbon-based nanomaterials that provide large surface area for drug delivery) were
developed and tested against streptavidin binding, but cell-based in vitro studies were not
performed [258].

Another type of nanoparticles formed from poly(amido)amine (PAMAM) dendrimers
conjugated to biotin and labeled with fluorescein isothiocyanate (FITC) were shown to
be taken up by HeLa cells much more effectively than unmodified PAMAM [259,260].
However, the uptake of these nanoparticles was only partially mediated by SMVT, as it
proceeded predominantly through nonspecific absorption that could not be inhibited by
biotin [260,261]. While biotin conjugation did confer an advantage for FITC dye delivery,
no increase in delivery was observed between biotinylated and non-biotinylated particles
when the nanoparticles were loaded with cisplatin [261].

Biotin-conjugated polymeric micelles were also developed as delivery agents for
doxorubicin. The corresponding study showed that biotin labeling enhanced both cellular
uptake and drug efficacy when tested in the MCF-7 breast cancer cell line [262]. Similar
results were reported for biotinylated cubosomes (i.e., liquid crystalline nano-structures
formed from the cubic phase of lipids) carrying paclitaxel into HeLa adenocarcinoma
cells [263] and for biotinylated polyurethane-urea nanoparticles loaded with a reporter gene-
encoding vector and either sunitinib or phenoxodiol as anticancer agents [264]. However,
none of these studies examined whether SMVT was involved in the uptake process.

In an interesting study showing that biotin targeting is likely receptor-mediated, rat
erythrocytes were used as nanocarriers functionalized with N-hydroxysuccinimide ester of
biotin [265]. Upon injection into rats, the modified erythrocytes accumulated predominantly
in the liver and spleen, which was attributed to a clearance process of the biotinylated
erythrocytes that depends on C3b receptors of the complement system present on liver
and spleen macrophages, which then leads to opsonization and excretion by the liver and
spleen [265]. Subsequently, methotrexate was encapsulated into the erythrocytes using the
pre-swell dilution procedure and was shown to accumulate in the liver at higher levels
one hour after application of the biotin-labeled erythrocytes compared to using unlabeled
nanoparticles [265].

Vitamin B6 has also been used as a conjugate to enhance the uptake of nanoparticles
into cancer cells [266], as increased vitamin B6 metabolism is associated with cancer risk,
especially in lung cancer, and elevated expression of the vitamin B6-dependent enzyme
serine hydroxymethyltransferase (SMHT) is associated with an increased requirement for
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DNA synthesis as part of the metabolic adaptation of cancer cells to support growth and
proliferation [267,268]. Nanoparticles consisting of a poly(ester amine)-based gene delivery
system were decorated with the active form of vitamin B6, pyridoxal 5’-phosphate. The
decorated system exhibited higher transfection rates in lung cancer cells than normal lung
cells, resulting in enhanced gene delivery within the rapidly proliferating cancer cells.
The nanoparticles utilized an uptake mechanism with relatively high affinity, followed
by an endocytic internalization mechanism. Moreover, the uptake of the nanoparticles
could be inhibited by the vitamin B6 antagonist, 4’-deoxypyridoxine [266]. Whether uptake
involves one of the known H+-coupled thiamine transporters SLC19A2 and SLC19A3,
which mediate transmembrane translocation of the positively charged pyridoxine [269], or
whether another, yet unidentified transporter is involved is still unclear.

The conjugation of folic acid has been used to improve the oral bioavailability of
therapeutics, as a means to target cancer cells, and also to deliver drugs into the brain via
the blood–cerebrospinal fluid barrier. The first folate transporter identified was the reduced
folate carrier (RFC/SLC19A1), which shows high affinity for reduced folates most abundant
in systemic circulation, such as 5-methyltetrahydrofolate. It is widely expressed and can
mediate folate uptake from the bloodstream [270]. Intestinal absorption of dietary folic acid
occurs in the duodenum and upper jejunum predominantly as a carrier-mediated process
with a low-pH optimum [271]. The transporter responsible for uptake was identified as
the H+-coupled folate transporter PCFT/SLC46A1 [272]. It enables folates to be absorbed
across the brush-border membrane. PCFT is also expressed in the choroid plexus and is
required for the transport of folates into the CSF. Loss of function of this transporter causes
autosomal recessive hereditary folate malabsorption, a syndrome characterized by severe
systemic and cerebral folate deficiency [272]. The folate receptor alpha (FRα) is expressed
in the choroid plexus as well, and its loss of function results in an autosomal recessive
disorder that solely leads to cerebral folate deficiency [272]. One theory to account for the
requirement of both PCFT and FRα in the transepithelial flow of folate from blood to CSF
is that folate binds from the blood side to the receptor at the basolateral membrane where
PCFT is also expressed. This would be followed by internalization and the forming of a
vesicle containing both receptor and PCFT, which would traffic to the apical membrane and
be released into the CSF as an exosome from which folates are exported via PCFT [273]. An
alternative pathway would comprise the PCFT-mediated export of folates from acidified
endosomes within the intracellular compartment, followed by export into the CSF via the
RFC/SLC19A1 reduced folate/organic phosphate antiporter [274].

Folate-functionalized PLGA nanoparticles have been successfully used to deliver
an Hsp90 heat shock protein inhibitor to mouse Colon-26 epithelial-like and Raw
264.7 macrophage-like cells [275]. The formulation was also shown to be taken up
by inflamed colon cells in a mouse model of ulcerative colitis and to attenuate both
inflammation as well as colitis-associated cancer [275]. In contrast, similar nanoparticles
without folic acid conjugation did not show therapeutic efficacy. Due to the expression
of folate receptors on the inflamed colon cells, the cellular uptake was suggested to be a
receptor-mediated process [275].

Interestingly, PCFT/SLC46A1 was shown to be upregulated in proximal intestinal
epithelial cells of diabetic rats [276]. Based on this observation, folate-grafted chitosan
nanoparticles were generated and loaded with insulin. The resulting nanoparticles could
be taken up by Caco-2 cells highly expressing PCFT and transported through the Golgi
pathway, while the uptake was attenuated by free folic acid. In contrast, in Caco-2 cells ex-
pressing lower amounts of PCFT, the nanoparticles were endocytosed but mainly degraded
in lysosomes [276]. In vivo studies with diabetic rats also showed that the nanoparticles
can successfully deliver insulin into the bloodstream reaching an oral bioavailability of
14.4% [276].

In humans, the receptor-mediated uptake pathway of folate can be mediated by three
different folate receptors paralogs, α, β and γ [277]. While all three folate receptors are reported
to be expressed in the small intestine only at negligible levels [271], folate receptor α is expressed
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in epithelial cells of the proximal tubules of the kidney and the choroid plexus, as well as
in various cancers [277,278]. Due to this, folate-linked therapeutics have been developed for
targeting cancer cells, which predominantly use the receptor-mediated pathway.

Folate-conjugated N-trimethyl-chitosan chloride (TMC) nanoparticles have been engi-
neered for targeting tumor cells, which could be loaded with anti-cancer proteins [278]. In
this study, the nanoparticles were loaded with FITC-BSA (bovine serum albumin), and fo-
late functionalization showed a 3.7-fold increase in uptake compared to non-functionalized
nanoparticles [278]. The dependence of the uptake on folate receptor expression was
confirmed by competition with free folate in the buffer and by using the A549 folate
receptor-deficient cell line [278].

Multi-walled carbon nanotubes were coated with chitosan that was previously func-
tionalized with folic acid to generate a nanodelivery agent [279]. The nanoparticle was
able to deliver a plasmid encoding green fluorescent protein (GFP) into HeLa and MCF-7
cancer cells, and the chitosan-folic acid coating improved the transfection efficiency 1.5-
fold [279]. The uptake was suggested to be mediated by a folate receptor, but this has not
been examined in detail.

Recently, a new route for the delivery of nanomedicine into the CNS was described
using the folic acid transport pathway of the choroid plexus [280]. This was based on the ob-
servation that folate uptake in neuroepithelial cells in mouse embryos is dependent on the
presence of the low-density lipoprotein (LDL) receptor-related protein 2 (LRP2) in the cellu-
lar membrane [281]. It was hypothesized that the direct interaction of the folic acid-bound
soluble FRαwith LRP2 triggers the endocytosis of the receptor complex and thus enables
folic acid uptake [281]. To exploit this pathway, nanoparticles made of poly-(ethylene
glycol)-block-poly(ε-caprolactone) (PEG-b-PCL) were surface-modified with the folic acid
receptor α/folic acid complex (FRα-FA). The uptake of FRα-FA conjugated nanoparticles
by human choroid plexus epithelial cells (HCPEpiCs) was determined in vitro using in-
verted optical fluorescence and confocal microscopy. FRα-modified nanoparticles were
internalized by HCPEpiCs to a greater extent and the apparent permeability coefficient was
significantly higher than that of their unmodified counterparts [280]. The biodistribution
of unmodified and FRα-FA-modified nanoparticles following intravenous administration
were compared in ICR albino mice and showed that conjugation of the FRα-FA complex
to the nanoparticle surface promoted higher accumulation in the brain, highlighting the
potential of FRα-FA-modified nanoparticles as a strategy for delivering molecules from
the blood into the CNS. However, the mechanism of cellular uptake and transport of the
nanoparticle across the choroid plexus and whether folic acid transporters play a role in
this process remain unclear and require further investigation.

3.6. Oligopeptide Transporters (PEPT1/PEPT2)

The conjugation of amino acids and dipeptides to existing drugs has been a long-
standing strategy to improve their oral bioavailability [282–285]. One of the first and most
extensively studied prodrugs of this type is valacyclovir, the L-valine conjugate of the
potent antiviral agent acyclovir [286]. The conjugation of acyclovir with amino acids such
as L-valine significantly improved oral bioavailability as tested in rats [286] and also in
human volunteers [287].

The intestinal transport system responsible for the increased permeability was identi-
fied as the oligopeptide transporter PEPT1/SLC15A1 [288,289]. It is highly expressed in the
small intestines and is responsible for the absorption of dietary di- and tripeptides as well
as a variety of peptide-like drugs such as aminocephalosporins, angiotensin-converting
enzyme inhibitors, antiviral prodrugs and many others (see below) in a proton-coupled
manner [288,290]. Its closest paralog with 50% sequence identity [291], PEPT2/SLC15A2, is
expressed in the proximal tubules of the kidney, where it reabsorbs oligopeptides, as well
as peptide-like drugs, including prodrugs [290]. PEPT2 is also expressed in adult rat brains
by astrocytes, ependymal cells, subependymal cells and the epithelial cells of the choroid
plexus [292]. Additionally, retinal Müller cells and peripheral satellite cells express this



Molecules 2023, 28, 1151 20 of 52

transporter [292]. Two further paralogs in humans, SLC15A3/PHT2 and SLC15A4/PHT1,
are less well-characterized and are highly expressed in various immune cells, where they are
thought to operate as histidine and peptide transporters [290,293]. SLC15A3 and SLC15A4
are preferentially expressed by cells within the lymphoid system, including dendritic cells,
and are upregulated in response to toll-like receptor (TLR) stimulation [294,295]. Recent
studies have shown that SLC15A4 contributes to the trafficking of TLRs and their ligands
to endolysosomes, wherein recognition and signaling are initiated [296].

Since the identification of the PEPT1/SLC15A1 transporter as a promiscuous in-
testinal peptide uptake mechanism, a wealth of scientific literature has focused on the
production of amino acid, dipeptide and tripeptide prodrugs to enhance intestinal ab-
sorption of drugs that are not readily absorbed through the oral route. Drug classes for
which this strategy has been used include antiviral agents (acyclovir [286,287,289,297–300],
gancyclovir [301], levovirin [302], oseltamivir [303,304], zanamivir [305], peramivir [306],
lopinavir [307], cidofovir [308] and zidovudine [309]), chemotherapy medications (cytara-
bine [310], paclitaxel [311], floxuridine [312–317], gemcitabine [318] and melphalan [319]),
anti-inflammatory agents (5-aminosalicylic acid [320], nabumetone [321] and ibupro-
fen [322]), natural products (oleanolic acid [323–325] and glucosamine [326]), L-DOPA and
L-methyldopa [20,327–330], as well as tricin [331], pterostilbene [332], alendronate [333,334]
and various other drugs [335]. An interesting strategy was the development of a dipeptide-
like thiopeptide “carrier”, which is a small molecule binder of PEPT1 that was intended to
be used as a general drug carrier [321]. This carrier was chemically conjugated to several
different drugs, and many of the conjugates showed high-affinity binding to PEPT1 and
the ability to permeate into cells and through a Caco-2 cellular monolayer [322,335].

Additionally, many studies have focused on exploring the selectivity of binding to
PEPT1 to optimize interactions between prodrugs and the transporter. In a study us-
ing a dipeptide-conjugated azidothymidine library to screen the ability of dipeptides
to compete with the known ligand cephalexin, certain dipeptides, such as Phe-Gly and
Val-Ser, were found to be highly effective, in line with previous studies [336]. Peptides
whose first amino acid is Ile or Ala have also shown binding to PEPT1, as has previ-
ously been found for certain prodrugs [336]. In addition, several other dipeptides (Arg-
Ile, Ile-Ala, Leu-Ile, Phe-Ala, Phe-Lys, Pro-Ile, Ser-Pro, Ser-Glu, Thr-Ala and Val-Arg)
have shown strong binding to PEPT1 [336], which could also be used in drug modifica-
tions to improve intestinal permeability. Other studies have also shown that L-valine
and L-isoleucine conjugation often gives the most efficient cellular permeability and oral
bioavailability [286,297,302,303,305,306,310,311,314,316,318,323,324,332]. In turn, D-amino
acid-containing dipeptides appear to be less well-absorbed by the oligopeptide transport
system, and their affinity is also lower [329].

Interestingly, as the structural basis of valacyclovir [337] and valganciclovir [338] bind-
ing to homologs of PEPT were experimentally elucidated, it was found that the two drugs
bind in different orientations in these structures despite their very close chemical similarity.
It was suggested that the different binding orientations of these prodrugs may depend
on structural differences between the prokaryotic DtpA protein and mammalian PEPT
proteins used in the above studies [339]. With the recent resolution of an outward-open
state of rat PepT2, molecular docking suggested a binding mode for valacyclovir consistent
with that of tripeptides [339]. Using the same protein structure, a very similar binding
mode and set of interacting residues were proposed for valganciclovir, and these might
correspond to an initial binding conformation [339]. Nevertheless, this mode of binding
and the set of interacting residues do not completely overlap with the experimentally
observed binding mode of valacyclovir to the inward-open structure of a bacterial homolog
of hPEPT1, PeptSh, which might represent a substrate conformation at a later point in the
transport cycle [337].

Variation in binding modes has also been observed previously for di- and tripep-
tide substrates [340,341]. As for dipeptides with positively charged lysine and arginine
sidechains, it was proposed that they could bind in a conformation similar to that of tripep-
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tides [342]. The conserved position of the amino group in the above-mentioned binding
modes of valacyclovir and valganciclovir [339] as well as di- and tripeptides [340,341] sug-
gests that the N-terminus of substrate peptides is the primary binding site of the substrate,
confirming previous findings and the importance of a free amino group in high-affinity
substrates [343].

The chemical requirements for a PEPT1 substrate have been the subject of a number of
studies. Early on, it was shown that PEPT1 substrates must have at least the two oppositely
charged head groups separated by at least four methylene groups [344]. Based on structural
information of rat PepT2, it was proposed that Glu622 and Arg57 are responsible for binding
the N- and C-terminus, respectively, of the bound peptide substrate [339], corresponding
to Glu595 and Arg27, respectively, in hPEPT1. The same cryo-EM structure has also
confirmed that the ideal distance between these two binding points is about 6 Å, in line
with previous suggestions [339,344]. In addition, it has been proposed that interaction with
the first carbonyl group of the substrate through Asn192 (Asn171 in hPEPT1) and a series
of tyrosine and tryptophan residues in the protein contributes to the promiscuity of the
binding pocket by forming hydrophobic and polar subpockets as required [339,345]. The
importance of a carbonyl moiety near the primary amino group of the substrate has also
been shown to be important in previous studies of the structure–activity relationship [346].

It should be noted that in some instances, amino acids were conjugated with drugs via
their amino groups while bearing a free carboxyl group, resulting in compounds that did
not comply with the binding mechanism described above [306,331,332,347]. In one such
case, although the uptake of such a prodrug competed with the PEPT1 model substrate
glycylsarcosine (Gly-Sar), uptake was also inhibited by estrogen-3-sulfate, which is a typical
substrate of the organic anion-transporter OATP2B1/SLCO2B1 that is also expressed in the
Caco-2 cells used in the assay [332]. Consequently, anionic amino acid prodrugs intended
to be substrates for PEPT1 may also utilize other cellular uptake pathways.

PEPT1 has also been targeted by nanoparticle formulations to enhance the intestinal ab-
sorption of drugs. One such example is the targeting of PEPT1 for the delivery of docetaxel
by developing dipeptide-linked (L-valyl valine, L-valyl phenylalanine) PLGA nanoparti-
cles [348]. The formulation was tested in HeLa cells stably transfected with hPEPT1, as well
as in Caco-2 cells, and showed improved uptake compared to unmodified nanoparticles.
In addition, in situ small intestinal perfusion as well as in vivo oral absorption experiments
showed that the modified nanoparticles can elicit higher uptake of the drug and higher
plasma half-life. Interestingly, the application of the formulation was observed to decrease
the expression of PEPT1 at both the mRNA and protein levels [348].

PEPT1 was furthermore targeted using poly(lactic acid)-poly(ethylene glycol) (PLA-
PEG) nanoparticles linked with valine, Gly-Sar, valyl-glycine and tyrosyl-valine to improve
the oral delivery of acyclovir [349]. In vitro uptake of the functionalized nanoparticles
competed with the PEPT1 model substrate Gly-Sar, indicating the involvement of the
transporter in the uptake of the nanoparticles [349]. Encapsulation of acyclovir did not alter
the rate of absorption, based on the assessment of the Cmax/AUC ratio, but increased the
half-life and mean residence time (MRT) following oral administration in in vivo mouse
studies [349].

3.7. Organic Cation Transporters (OCTNs)

OCTN2/SLC22A5 is a Na+-coupled L-carnitine transporter expressed in the small
intestine and is responsible for the uptake of dietary L-carnitine [350–352] together with
ATB0,+/SLC6A14 [353,354]. The carnitine uptake pathway has been used to improve oral
absorption of various drugs. The prodrug strategy was used to synthesize a conjugate
linking L-carnitine to gemcitabine through its carboxyl group. This formulation was able
to increase the oral bioavailability of gemcitabine by up to 4.9-fold [355]. A potential
prodrug of butyrate, butyrate-L-carnitine, has also been synthesized for the treatment of
IBD because of its anti-inflammatory effect [126]. However, under pathophysiological
conditions, OCTN2 was shown to be downregulated while SLC6A14 was expressed at
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higher levels, so the uptake of the prodrug likely proceeded via SLC6A14 [126] (see also the
section on amino acid transporters). L-carnitine conjugation has also been used to increase
the hydrophilicity and to prolong the pulmonary residence time of prednisolone, a drug
often administered by inhalation for the treatment of bronchial asthma (BA) [356]. The
non-tumorigenic human airway epithelial cell line BEAS-2B has been shown to express
both OCTN2/SLC22A5 and OCTN1/SLC22A4 carnitine transporters [356,357]. Of the
two prodrugs, the one retaining both the free choline and carboxyl groups of L-carnitine
showed higher uptake in BEAS-2B cells, indicating that both charged groups are probably
important for substrate recognition by carnitine transporters [356].

L-carnitine conjugation has also been used to guide the targeting of various nanoparti-
cle formulations. PLGA nanoparticles conjugated with L-carnitine were engineered to be
taken up by Caco-2 cells [358]. It was found that the optimal surface density of L-carnitine
is about 10% to achieve the highest uptake efficacy [358]. It was also found that the uptake
of nanoparticles competes with free L-carnitine in the buffer and that the uptake process is
dependent on the presence of Na+, which is in line with the Na+-cotransporter mechanism
of OCTN2 [358]. The uptake of the labeled nanoparticles was also inhibited by various
endocytosis inhibitors such as indomethacin and chlorpromazine, indicating that endocyto-
sis is involved as well [358]. Nanoparticles with 10% L-carnitine labeling also showed the
most favorable pharmacokinetic parameters, including maximum plasma concentration
(Cmax) and oral bioavailability compared to unlabeled PLGA nanoparticles [358].

OCTN2 is also highly expressed in brain capillary endothelial cells that make up
the BBB [359–362]. L-carnitine was used as a carrier to deliver nipecotic acid, an anticon-
vulsant, through the BBB [363]. The conjugate prodrug was shown to be taken up and
activated in vivo in the mouse brain and to prolong the latency to convulsions triggered by
pentylenetetrazole [363].

Cells of the T98G glioblastoma multiforme cell line have also shown robust expression
of OCTN2/SLC22A5 [45]. This cell line has been used as a model for targeting glioma
and the BBB with PLGA nanoparticles conjugated with L-carnitine [45]. Various linker
lengths were explored, with PEG-1000 showing the highest cellular uptake [45]. Uptake
of L-carnitine conjugated nanoparticles followed the endocytic pathway, was dependent
on Na+ and competed with free L-carnitine, in contrast to unlabeled particles [45]. L-
carnitine conjugated PLGA nanoparticles loaded with paclitaxel were found to be 11-fold
more enriched in mouse brains compared to non-conjugated nanoparticles. In addition,
the cytotoxicity increased with the application of L-carnitine conjugated nanoparticles
compared to non-conjugated nanoparticles and to Taxol, presumably due to enhanced
cellular uptake, as shown by cytotoxicity assays in T98G cells. Finally, in vitro anti-glioma
efficacy was evaluated in T98G spheroids, with paclitaxel-loaded L-carnitine conjugated
nanoparticles showing enhanced toxicity [45].

Since SLC6A14 can also transport L-carnitine, albeit with a lower affinity than
OCTN2/SLC22A5, similar nanoparticles have been shown to bind to and utilize both
transporters in various cancer cell lines [364]. Such dual targeting has also been used to
target LAT1 and SLC6A14 with a single nanoparticle formulation [129], as described in
the section on amino acid transporters.

3.8. Organic Anion Transporters (OATPs)

Transporters of the SLCO/SLC21 family (also called the organic anion transporter
family) typically exhibit a broad substrate range with a preference for negatively charged
substrates. Because of these properties, they readily interact with a great variety of endoge-
nous compounds and xenobiotics [365,366]. OATP1B1/SLCO1B1 and OATP1B3/SLCO1B3
are two members of the SLCO family that are considered to have liver-specific expres-
sion [367]. In certain cases, these transporters have been targeted to enhance liver-specific
drug delivery in order to reduce off-target effects in other tissues.

The enzyme glucokinase is present in the liver, pancreas and brain, and converts
glucose to glucose-6-phosphate for further metabolism, playing a central role in glucose
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homeostasis [11]. Its activators are among the potential next generation therapies for
type 2 diabetes [368,369]. However, these compounds can cause hypoglycemia due to the
overactivation of glucokinase in the pancreas, leading to the overproduction of insulin [11].
One of the strategies to reduce off-target effects was the development of hepatoselective
glucokinase activators by targeting OATPs highly expressed in the liver [368,370]. With this
in mind, a structure-activity relationship (SAR) study of N-heteroaryl acetamides revealed
a hepatoselective glucokinase activator that, through the incorporation of a carboxyl group,
enables hepatoselective uptake via OATPs while minimizing passive cellular uptake of the
compound [368]. One of the resulting compounds proved to be a substrate for OATP1B1
and OATP1B3 and showed enhanced activity in isolated hepatocytes compared to systemic
activators. In addition, it was able to normalize fasting plasma glucose levels in a diabetic
rat model without causing hypoglycemia, in contrast to systemic activators [368]. The
hepatoselective compound displayed a tissue distribution with a liver-to-pancreas ratio of
75-fold for rats and 58-fold for dogs [368].

Systemic stearoyl-CoA desaturase-1 (SCD1) is an enzyme that catalyzes the introduc-
tion of a cis-double bond between the C9 and C10 positions of various long chain saturated
fatty acid-CoA esters, which has made it a promising target for the treatment of type
2 diabetes, dyslipidemia, obesity and metabolic diseases [371,372]. However, systemic
inhibition of SCD1 causes side effects such as dry skin and hair loss, in addition to its
intended effect of reducing de novo production of oleic acid in the liver [371]. Since SCD1
expression is highest in the liver, hepatoselective inhibitors were developed by exploiting
transport through liver-specific OATPs [371,373]. The OATP-targeting homing moiety used
was either a tetrazole acetic acid [371] or a nicotinic acid [373], both of which bear a free
carboxyl group. Each of these compounds has been shown to be a substrate of OATP1B1
and OATP1B3 [371,373]. The tetrazole acetic acid derivative displayed a liver-to-plasma
distribution ratio of >10-fold and a liver-to-skin ratio of >30-fold in various preclinical
animals [371]. In turn, both compounds showed improved blood glucose clearance in an
obese mouse model [371,373].

3.9. Monocarboxylate Transporters (MCTs)

MCT1/SLC16A1 is a monocarboxylate transporter that has been shown to be highly
expressed on both the apical and basolateral membranes of enterocytes along the intestinal
tract, particularly in the colon and rectum [374–376]. MCT1 is responsible for the uptake
of short-chain fatty acids such as acetate, propionate and butyrate, which are important
metabolites with anti-inflammatory effects for maintaining a healthy colon. They are
produced by the bacterial fermentation of undigested fibers from complex carbohydrates
by the intestinal microflora [377–379]. Due to its localization, MCT1 has gained focus as a
possible entry pathway for therapeutics across the intestinal barrier.

XP13512 is a prodrug of gabapentin designed to be transported by intestinal nutrient
transporters to enhance the oral bioavailability of gabapentin at therapeutic doses for treating
neuropathic pain [380]. The acyloxy-alkyl carbamate modification changes the zwitterionic
state of gabapentin due to conjugation at the amino group, while the free carboxyl group
remains unmodified. The prodrug was subsequently found to act as a substrate for both MCT1
and SMVT transporters and to compete with their natural substrates [380]. In vitro transport
studies in Caco-2 and MDCK cellular monolayers indicate that the prodrug is able to cross
both cellular layers effectively [380]. This prodrug was later marketed as gabapentin enacarbil,
an extended release formulation, and approved for use for the treatment of moderate to severe
primary restless legs syndrome (RLS) [381–383].

In another study, 5-fluorouracil was conjugated with dicarboxylic acids to target MCT1
in order to enhance oral bioavailability [384]. The octanedioic acid ester derivative of
5-fluorouracil showed superior uptake properties compared to the unmodified drug in
Caco-2 cells, as well as in monolayers [384]. The uptake could be inhibited by known
inhibitors and substrates of MCT1 such as quercetin and butyrate, respectively, indicating
the involvement of the transporter in the uptake process [384]. The prodrug also showed
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improved uptake rates according to in situ perfusion measurements as well as a 4.1-fold
increase in oral bioavailability in rats [384].

A similar strategy was used for gemcitabine, an anti-cancer agent, to develop prodrugs
with various linker lengths to improve oral bioavailability by targeting MCT1 in the
intestine [385]. Out of five prodrugs, all showed uptake competing with butyric acid,
indicating the involvement of MCT1, with prodrug 2 showing the highest affinity to
MCT1 [385]. Interestingly, all prodrugs showed superior permeation properties in Caco-
2 monolayers compared to previous gemcitabine prodrugs that utilized PEPT1 [318] or
OCTN2 [355] transporters for uptake. Prodrug 2 with a 6-carbon linker also showed the
highest oral bioavailability in rats [385].

In addition, MCT1/SLC16A1 was also found to be highly expressed in tumors [386].
For delivery into cancer cells, O-carboxymethyl chitosan nanoparticles were modified
with acetic acid to help target them to MCT1-abundant membranes [40]. The resulting
nanoparticles showed significantly higher uptake rates of carried docetaxel than unmodi-
fied liposomes in Caco-2 cells [40]. The conjugation of acetic acid significantly improved
oral bioavailability, while drug uptake was competitively attenuated by free acetic acid,
suggesting the involvement of MCT1 in the process [40]. The conjugated nanoparticles also
showed significantly higher anti-tumor efficacy than did the unmodified liposome formu-
lation of docetaxel [40]. The best uptake results were achieved with 45.14% conjugation
with acetic acid, likely due to steric crowding effects that limit transporter binding, as has
also been suggested in other reports [358,387,388].

Butyrate itself was also used to decorate PEG-based nanoparticles to enhance intestinal
delivery [389]. The functionalized nanoparticles showed up to 2.84-fold increase in uptake
in both E12 and Caco-2 cells compared to non-functionalized ones [389]. Free butyrate, as
well as lactate and pravastatin were found to attenuate the endocytosis of the functionalized
nanoparticles, indicating the involvement of MCT1 in the uptake process [389]. The deco-
rated nanoparticles also showed a twofold increased uptake in an ex vivo ligated intestinal
loop assay compared with normal nanoparticles [389]. The nanoparticle formulations were
used to deliver insulin into rats, and it was found that butyrate conjugation enhances oral
bioavailability of insulin to threefold higher levels compared with unconjugated nanoparti-
cles, while the nanoparticle encapsulation prolonged its release [389].

In the BBB, MCT1/SLC16A1 is expressed at both the luminal and abluminal mem-
branes of the brain capillary endothelial cells, and it plays an important role at the luminal
membrane during the influx of lactate from the bloodstream into the brain [390,391].
Therefore, it has also been a target for the delivery of formulations to the brain. To this
end, β-hydroxybutyrate conjugated solid lipid nanoparticles loaded with docetaxel were
tested [392]. The study showed a significantly increased uptake in brain epithelial cells,
which could be inhibited by β-hydroxybutyrate, indicating the involvement of MCT1,
followed by an effective increase in docetaxel distribution in the brain [392].

Pluronic-85, a tri-block copolymer that self-assembles into micelles, has been used as a
nanocarrier to deliver drugs through the intestinal and blood–brain barriers, as well as into
tumors [393]. While this material has been at the focus of drug nanocarrier development
due to its low toxicity and inhibition of several ABC transporters related to multi-drug
resistance [394], it has also been shown to interact with OCTN2 and MCT1 in bovine
brain microvascular endothelial cells (BBMEC), which often serve as a model system for
the BBB [378,395]. However, whether MCT1 is involved in the uptake of the various
formulations based on Pluronic-85 has not yet been studied in detail [378].

4. Conclusions and Outlook

As a convenient reference to the reader, we have summarized the transporters, their
presence in various organs and on biological barriers, the assigned endogenous substrates,
as well as the cell lines that have been used for testing for transporter-mediated uptake
in the studies referenced in our review in Table 1. In general, the rational design of
targeted delivery systems has mainly focused on specific organs with well-characterized
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physiology, such as the liver, and key biological barriers (e.g., blood–brain barrier and
intestinal barrier). However, based on similar principles, it should also be possible to target
other organs (e.g., heart, kidney, lung, pancreas, prostate, ovary or bone) and barriers
(e.g., the blood–cerebrospinal fluid barrier and the blood–retinal barrier), even though only
limited information on applications is available and development is often hampered by the
lack of a detailed characterization and quantitation of the transporters available on these
organs and barriers [11].

Table 1. SLC transporters used for barrier and organ targeting. The gene symbols and protein names
of transporters, their expression in organs and on biological barriers, endogenous substrates and cell
lines referenced in this review that have been used to test for corresponding transporter-mediated
uptake. Primary cells have not been listed, except in special cases.

Gene symbol/Protein
Name Tissue Expression Barriers Cell Lines Substrates

SLC1A5/ASCT2

brain [396,397],
adipocytes [398,399],

testis [399], colon, small
intestine, pancreas,

stomach [400], kidney
[400], activated T cells

[401], lung, skeletal
muscle [399]

likely on the basolateral
membrane of epithelial

cells and responsible
for taking up nutrients

from the blood [399]

9L [140,141], SF188
[140,141], A549 [145],

A549/DPP [147], BT549
[146], DU145 [144],

LNCaP [144],
MDA-MB-231 [146],

PC-3 [141]

L-Ala, L-Ser, L-Thr,
L-Gln, L-Asn, L-Glu,
L-Met, L-Leu, L-Gly,

L-Val [399]

SLC2A1/GLUT1

erythrocytes [402], eye,
retina [403], brain

microvessels [403,404],
choroid plexus [403],

peripheral nerves [403],
placenta [403], uterus

[405], liver [406]

BBB, placenta, BCSFB,
blood–aqueous barrier,

blood–retina barrier,
blood–nerve barrier

[403]

MDA-MB-231 [59,66],
Bel-7402 [38], BMEC
[70], BV2 [35], Caco-2
[35], hCMEC/D3 [70],
HEp-2 [37], HRPE [55],

human erythrocyte
membranes [56],

MCF-7 [66], Neuro-2a
[69], RG-2 [36,61],

SH-SY5Y [62], U-87 [63]

D-glucose [402,407],
DHA [408,409],

glucosamine [410]

SLC2A4/GLUT4
adipose tissue, skeletal

and cardiac muscle
[411,412]

C1C12 (differentiated,
with induction by

insulin) [78]

D-glucose
(2-deoxy-D-glucose)
[413], glucosamine

[410]

SLC2A5/GLUT5

small intestine [414],
kidney [414], skeletal
muscle [414], adipose

tissue [414], testis,
spermatozoa [415],

brain [416]

intestinal [414,417],
BBB [416]

MCF-7 [75–77],
MCF10AneoT [77],
MDA-MB-231 [75]

D-fructose [415,418]

SLC5A6/SMVT

heart, brain, placenta,
lung, liver, skeletal

muscle, kidney,
pancreas [419], small
intestine [243], brain

microvessels [420,421]

intestinal [243], BBB
[421], blood–retinal

barrier [422]

Caco-2
[247,248,250,252], HeLa

[259,263], HepG2
[257,264], HLCE-D36
[245,246], A2780/AD
[249], A2780 [249], KB

[259], MCF-7 [262],
MDCK-MDR1 [250],

MT2 [245], OVCAR-3
[260]

pantothenate, biotin
[242], lipoate, iodide

[423]
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Table 1. Cont.

Gene symbol/Protein
Name Tissue Expression Barriers Cell Lines Substrates

SLC6A14/ATB0,+

lung, trachea, salivary
gland, mammary gland,

stomach, pituitary
gland, uterus, prostate,
testis [117,424], small
intestine [118], colon

[117,118,424]

blood–air barrier
[117,425,426], intestinal

[118,119]

MCF-7 [125,129,364],
A549 [127], BxPC-3
[129], Caco-2 [364],

CCD841 [364], HCT116
[364], HepG2 [30],

HT29 [364], LS174T
[364]

neutral and cationic
amino acids (L-Ile,

L-Leu, L-Met, L-Val,
L-Ala, L-Gly, L-Ser,

L-Cys, L-Asn, L-Thr,
L-Gln, L-Phe, L-Trp,
L-Tyr, L-His, L-Lys,
L-Arg), β-alanine,
3,4-DOPA [117]

SLC7A5/LAT1

brain [427,428], brain
microvessels

[79,80,86,429,430],
retina [431], placenta
[86,429,432,433], testis

[86,429,434], ovary
[434], colon [86,434],

fibroblasts [435], bone
marrow [429], lymph

node [429], monocytes
[436], macrophages

[436], peripheral
leukocytes [429], spleen

[86], pancreas
[434,437,438],
thymus [429]

BBB [79,430], placenta
[86,429], blood–retinal

barrier [431,434],
blood–testis barrier

[434], blood–follicular
barrier [434]

MCF-7 [97,108,110,439],
ARPE-19 [83,92,97], C6

[103,113], GL261
[111,112], AsPC1 [99],
Bel7402 [110], BxPC-3
[99], hCMEC/D3 [91],
HeLa [116], MBEC4
[79], MDA-MB-231

[110], MIAPaCa-2 [99],
PANC-1 [99], S180 [110]

large neutral L-amino
acids (L-Leu, L-Ile,

L-Phe, L-Met, L-Tyr,
L-His, L-Trp, L-Val,

D-Leu, D-Phe, D-Met,
D-Leu) [86,429], T3,

T4 [429]

SLC10A1/NTCP liver [440],
pancreas [441]

NTCP-transfected
HEK293 [178,179], not

expressed in
HepG2 [442]

cholate, TC, GC, CDC,
TCDC, GCDC, UDC,

TUDC, LC, TLC, GLC,
TLC, GLC, TDC [440],

estrone-3-sulfate
[443,444]

SLC10A2/ASBT

small intestine
[445,446], colon [446],
kidney [447], bile duct

[448,449],
gallbladder [450]

intestinal [445,446]
Caco-2

[44,183,185,189,196,197,
201,202,206,208,451]

cholate, TDC, TC, DC,
TCDC, CDC, TUDC,
UDC, GDC, GCDC,

GUDC [444]

SLC15A1/PEPT1

small intestine
[288,452,453], colon
[452], kidney [454],
pancreas [455], bile

duct [456],
monocytes [457]

intestinal [288,452,453]

Caco-2
[289,297–307,310,313–
316,318–322,324,329,
332,334,335,346–349],

AsPC-1 [315,316],
Capan-2 [315,317],

MDCK [307,331], A549
[325], MCF-7 [311]

di- and tripeptides
[288,290,336]

SLC15A2/PEPT2

kidney [454], brain
[292,458], choroid

plexus, retina [292],
peripheral nervous

system [292,459],
enteric nervous system

[460], lung [461],
mammary gland [462],
heart [463], spleen [464]

BCSFB [292] SKPT [301,346], MDCK
[307,331]

di- and tripeptides
[465,466]
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Table 1. Cont.

Gene symbol/Protein
Name Tissue Expression Barriers Cell Lines Substrates

SLC16A1/MCT1

bladder [467], brain
[390,467,468], choroid
plexus [469], stomach
[467], intestine [467],

small intestine
[374,376,390,468], colon

[374,376,467],
erythrocytes [468], eye
[468], retina [470], heart

[390,467,468], kidney
[390,467,468], liver

[467,468], lung
[467,468], mammary
gland [471], muscle

[467], skeletal muscle
(red muscle) [390,468],
ovary [467], placenta

[471], spleen [467],
testis [467,468],

epididymis [468]

intestinal [374,376],
BBB [390], BCSFB [469],

blood–retinal barrier
[470]

Caco-2
[40,380,384,385,389],
4T1 [40], bEnd [392],

HT29-MTX-E12 [389],
MDCK [380],

PEAKrapid [380], U373
[392]

butyrate [472],
L-lactate, pyruvate,
acetoacetate, D,L-3-
hydroxybutyrate,
α-oxoisohexanoate,
α-oxoisovalerate [473],

acetate, propionate
[474,475]

SLC19A1/RFC

expressed in 68 human
tissues, highest levels
in placenta, liver and

peripheral blood
leukocytes, also in
heart [476], small

intestine, colon, kidney
and choroid plexus

[477]

placenta [476]

A549 [278], Colon-26
[275], HeLa [279],

MCF-7 [279], Raw 264.7
[275], SKOV3 [278]

5-MTHF [478,479]

SLCO1B1/OATP1B1 liver [480]

not expressed in
HepG2 [481], primary
rat hepatocytes have
been routinely used

[368,371,373]

DHEAS, estradiol-17β-
glucuronide,

estrone-3-sulfate, PG
E2, TXB2, LTC4, LTE4,

T4, T3, TC [480],
bilirubin, MGB, BGB,

cholate [482], GC [483],
TUDC, GUDC [484]

SLCO1B3/OATP1B3 liver [485] HepG2 [180]

DHEAS, estradiol-17β-
glucuronide [485],

estrone-3-sulfate, LTC4,
T4, T3 [483], TC, GC
[483,486], bilirubin
[487], MGB [482],

glutathione, cholate,
TDC, TCDC [486],

TUDC, GUDC [484]
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Table 1. Cont.

Gene symbol/Protein
Name Tissue Expression Barriers Cell Lines Substrates

SLC22A5/OCTN2

brain [488–493], brain
capillary endothelial

cells [359], spinal cord
[490], retina [494], heart

[489–493], salivary
gland [492], small

intestine
[351,488,490–492],

colon [488], kidney
[488–493], liver

[488–490,492], pancreas
[489,490], trachea [490],

lung [489,490,492],
uterus [490], placenta

[488–491,493,495],
prostate [490], testis

[488], skeletal muscle
[488–491], striated

muscle [492], adrenal
gland [490,492],

mammary gland [496],
thymus [490], thyroid

[490]

intestinal [351], BBB
[359], blood–retinal

barrier [494]

Caco-2 [355,358,364],
BEAS-2B [356,357],

RBE4 [361,362], BxPC-3
[355], CCD841 [364],

hCEMC/D3 [45],
HCT116 [364], HT29
[364], LS174T [364],
MDA-MB-231 [364],

MCF-7 [364], T98G [45]

L-carnitine, betaine
[497]

SLC23A1/SVCT1

kidney, liver, small
intestine, colon, ovary,

prostate, pancreas
[225,498], lung [499],

skin [500]

intestinal [501] L-ascorbic acid [498]

SLC23A2/SVCT2

brain, spleen, prostate,
testis, ovary, placenta,

peripheral blood
leukocytes [498], retina,

small intestine,
epididymis, brain,

choroid plexus,
pancreas, adrenal

gland, gastric glands,
spleen, thymus, testis
[225], lung [225,499],

skin [500]

BCSFB [225,226],
blood–retinal barrier

[225], intestinal
[225,498]

HRPE [236–238],
NIH/3T3 [227,241],
CRL-1497 [232], C6

[227], F98 [227]

L-ascorbic acid [498]

SLC44A1/CTL1

spinal cord, brain
[502,503], lung

[502,503], colon [502],
peripheral blood
monocytes and

neutrophils, fibroblasts
[504], brain

microvessels [214],
skeletal muscle, heart,
testis [505], placenta,
kidney, liver, small
intestine, pancreas,
spleen, ovary [503],

mitochondria [214,506]

BBB [214], intestinal
[502]

U-87 MG [221,222],
brain capillary

endothelial cells
(BCECs) [220]

choline [502,505,507],
ethanolamine [508]
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Table 1. Cont.

Gene symbol/Protein
Name Tissue Expression Barriers Cell Lines Substrates

SLC44A2/CTL2

brain [214,509], inner
ear [509,510], stomach
[511], intestine [511],
colon [509], kidney

[509,511], heart
[509,511], lung

[509,511], muscle
[509,511], tongue

[509,511], liver [509],
spleen [509], testis

[511], mitochondria
[214,506]

BBB [214]

U-87 MG [221,222],
brain capillary

endothelial cells
(BCECs) [220]

choline [357,508,509],
ethanolamine [508]

SLC46A1/PCFT

kidney, liver, placenta,
small intestine, colon,
spleen, brain, testis,

skin, stomach [271,512],
choroid plexus [513]

intestinal [271,512],
BCSFB [513]

A549 [278], Caco-2
[276], Colon-26 [275],
HeLa [279], MCF-7

[279], Raw 264.7 [275],
SKOV3 [278]

folic acid, 5-MTHF
[271]

Abbreviations: 3,4-DOPA, 3,4-dihydroxyphenylalanine; 5-MTHF, 5-methyltetrahydrofolate; BGB, bisglu-
curonosyl bilirubin; CDC, chenodeoxycholate; DC, deoxycholate; DHA, dehydroascorbic acid; DHEAS,
dehydroepiandrosterone-3-sulfate; GC, glycocholate; GCDC, glycochenodeoxycholate; GDC, glychodeoxycholate;
GLC, glycolithocholate; GUDC, glycoursodeoxycholate; LC, lithocholate; LTC4, leukotriene C4; LTE4, leukotriene
E4; MGB, monoglucuronosyl bilirubin; PG E2, prostaglandin E2; T3, triiodothyronine; T4, thyroxine; TC, tau-
rocholate; TCDC, taurochenodeoxycholate; TDC, taurodeoxycholate; TLC, taurolithocholate; TUDC, taurour-
sodeoxycholate; TXB2, thromboxane B2; UDC, ursodeoxycholate.

There are certain routes of drug administration that offer viable alternatives to oral
delivery. For example, nasal delivery of therapeutics through the nasal cavity is attractive
because olfactory neurons exposed in the nasal cavity provide direct access to the CNS,
thus bypassing the BBB while also avoiding initial metabolism in the liver [514]. To date,
many ABC and SLC drug transporters have been reported to be present in the nasal
cavity [515,516]. While there is evidence that some of these transporters, such as the
equilibrative nucleoside transporter ENT1/SLC29A1, can readily mediate the uptake of
substrates such as [18F]fluorothymidine into the brain through the nasal route [517], these
mechanisms appear to be underutilized in the development of new formulations. While
certain nanoparticle formulations designed for nasal-to-brain delivery use functionalization
through receptor ligands, there do not appear to be any reports of targeting transporters in
the nasal cavity for drug delivery [518].

Similarly, the pulmonary route of administration through inhalation could be an in-
teresting alternative because of the thin epithelial barrier and large surface area of the
lungs [519], and lower expression of metabolic enzymes compared to the liver [519,520].
While drug transporters are expressed in mammalian airway epithelia, their exploitation
through rational design to enhance delivery has remained scarce [521–523]. In addition,
OCTN2 expressed in the trachea has been used for lung-specific drug targeting by devel-
oping an L-carnityl ester conjugate of prednisolone for pulmonary administration against
bronchial asthma [356]. This novel prodrug also showed improved efficacy in an in vivo
model of asthma [524]. However, other transporters in different cell types of the lung have,
to our knowledge, not been used for organ-specific drug delivery.

Along the same lines, many other transporters besides those mentioned in this review
could also be potential targets for tissue- and barrier-specific targeting of medications.
Specifically, in the intestines, several known uptake systems are available, including the
cholesterol transporter SLC65A2/NPC1L1 (Niemann–Pick C1-like 1) [525], the fatty acid
transporter CD36 [526] or the long-chain fatty acid transporter proteins SLC27/FATP [527].
In terms of brain and CNS targeting, one vitamin that must enter the brain from the
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blood via the choroid plexus and CSF is riboflavin (vitamin B2). Riboflavin is an essential
component of the brain and is not synthesized in mammalian tissues. Based on in vitro
studies it was shown that there is a potent active transport system for riboflavin in the
isolated rabbit choroid plexus [528], but its molecular identity appears to be unknown.
The known riboflavin transporters belong to the SLC52 family, but these do not appear to
provide active transport [529].

Recently, many SLC transporters have been shown to have very specific expression
patterns, in contrast to non-transporter protein families [530]. Nevertheless, many SLC
transporters remain relatively understudied, and more information about their localization
and tissue expression patterns would be beneficial. With respect to transporter expression
levels, it is important to note that interspecies differences in expression may limit the
usefulness of preclinical animal models and that bridging the gap between these models
and clinical trials is an important challenge to overcome [33].

In terms of the exploitation of individual transporters, the lack of specific binders
to transporters with similar substrate specificity can be a bottleneck [75]. However, their
discovery would greatly aid in the development of more advanced drug delivery systems.
Once specific binders become available, dual or multiple targeting could also be an in-
teresting approach, especially when targeting heterogenous cell populations such as in
tumors [26,129].

Transporters can also modulate the efficacy of nanoparticle uptake without directly
taking part in the process. In this context, it is important to note that systematic database
analyses suggest that many more transporter-like proteins may be encoded in mammalian
genomes than previously thought [5]. For example, MFSD2A/SLC59A1, a key transporter
for docosahexaenoic acid uptake at the BBB, regulates caveolae-mediated transcytosis
by modifying the lipid composition of the plasma membrane [531]. Transcytosis in BBB
endothelial cells is exceedingly suppressed compared to peripheral endothelial cells [531].
Priming the BBB with MFSD2A inhibitors, followed by the application of transcytosis-
employing nanoparticles carrying doxorubicin showed that doxorubicin was taken up
4.3-fold more effectively in this manner [531].

In addition to their advantages, many of the current transporter-targeted delivery
formulations still have to overcome certain challenges. One such obvious barrier in tar-
geting nutrient transporters is the occurrence of off-target effects due to the abundant
expression of these transporters in healthy cells in a variety of tissues [29]. On the other
hand, pathological conditions can also lead to changes in the expression pattern of cer-
tain transporters [33]. For example, GLUT1 expression in the BBB is decreased in pa-
tients at the early stage of Alzheimer’s disease [31,532]. It should also be considered
that the application of transporter-targeted formulations themselves may affect the ex-
pression level of the corresponding transporter, including depletion from the cell sur-
face [26,29,30,103,115,127,348,364]. Transporter-targeting formulations can also be expected
to compete with the endogenous substrate of the transporter and thus block its uptake,
which can lead to efficacy and safety concerns [33]. Overall, most transporter-targeted
formulations are limited by their specificity, potential toxicity and absorption efficiency [10].

While the efficacy of absorption and a phenotypic readout are often used to evalu-
ate the success of transporter-targeted delivery, the underlying mechanism of uptake is
often not known in detail, especially with respect to the recycling of the targeted trans-
porters [26,29]. In addition, transporter-targeted nanocarrier formulations often become
trapped in lysosomes, which can cause their degradation and prevent their successful
transcytosis to the basolateral membrane [10]. However, the specific mechanism of lysoso-
mal escape is not known. Therefore, more comprehensive studies of the intracellular fate,
including the mechanism of absorption and processing of nanocarrier formulations, are of
great importance.
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