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Abstract: Fungal infections pose a serious challenge to human health due to the limited paucity of
antifungal treatments. Starting as a hit compound screened from our compound library, a series of
nicotinamide derivatives have been successfully synthesized via a facile one-step coupling reaction of
aromatic carboxylic acid and amine. The synthesized compounds were evaluated for their antifungal
activity against Candida albicans SC5314. Among the 37 nicotinamide derivatives screened, compound
16g was found to be the most active against C. albicans SC5314, with an MIC value of 0.25 µg/mL
and without significant cytotoxicity. The rudimentary structure-activity relationships study revealed
that the position of the amino and isopropyl groups of 16g was critical for its antifungal activity. In
particular, compound 16g showed potent activity against six fluconazole-resistant C. albicans strains
with MIC values ranging from 0.125–1 µg/mL and showed moderate activity against the other
seven species of Candida, three strains of Cryptococcus neoformans, and three strains of Trichophyton.
Furthermore, compound 16g showed fungicidal, anti-hyphal, and anti-biofilm activities in vitro,
which were related to its ability to disrupt the cell wall of C. albicans. Taken together, 16g is a
promising compound that is fungal-specific by targeting the cell wall and could be used as a lead
compound for further investigation.

Keywords: antifungal; structure-activity relationship; nicotinamide; hit-to-lead; synthesis

1. Introduction

Invasive fungal infections (IFIs) are increasingly threatening the lives of immuno-
compromised patients (e.g., following organ transplantation, patients with HIV/AIDS,
immunosuppression, or receiving chemotherapy for cancer) [1]. It was estimated that more
than 300 million people suffered from serious fungal-related diseases, and over 1.6 million
people were killed by IFIs annually [2]. Notably, the mortality rate of IFIs is frequently
greater than 50%. Approximately 90% of mycotic deaths are caused by three major fun-
gal species: Candida, Cryptococcus, and Aspergillus [3,4]. To date, the classes of available
antifungal drugs for the treatment of invasive fungal infections are still limited to azoles,
polyenes, flucytosine, echinocandins, and a triterpenoid. Moreover, the clinical application
of these drugs is not only limited by their drawbacks but also by drug resistance, which is a
commonly occurring treatment complication. Therefore, new antifungal drugs are urgently
needed.

As an important class of heterocyclic derivatives, nicotinamide analogues play an
important role in the development of antifungals [5–11]. Despite the development and
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commercialization of several nicotinamide analogues, most have been studied as pesticides
(Figure 1). An example of such a fungicide is boscalid (1), which was discovered by
BASF for the control of Alternaria late blight of pistachio [5,6]. In 2008, Queron et al.
reported a 4-(3-chloro-5-(trifluoromethyl)pyridin-2-yl)butyl nicotinamide (2) possessing
good fungicidal activities against Alternaria alternate [7]. In 2010, Nakamoto et al. described
a nicotinamide analogue 5 possessing excellent antifungal activities against C. albicans, C.
neoformans, and A. fumigatus [8]. In 2014, Ye et al. described that the compound N-(3-chloro-
4-fluorophenyl)-2-(methylthio)nicotinamide (3) displayed moderate antifungal activity
against two phytopathogenic fungi, Rhizoctonia solani and Sclerotinia sclerotiorum [9]. In
2019, our team reported that nicotinamide (4, Vitamin B3) showed moderate antifungal
activity against C. albicans, including fluconazole-resistant isolates [10]. More recently,
Wang and his co-workers also reported several nicotinamide derivatives (6) exhibiting
good fungicidal activities after modification of the boscalid structure [11].
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Through measuring the MIC of each compound in our in-house library, we discovered
several new scaffolds with antifungal activities against C. albicans [12]. In this study, we
focused on another moderately active antifungal hit compound, 7, which showed an MIC
value of 16 µg/mL against C. albicans. Although the structure of compound 7 is very similar
to that of compound 3 in Figure 1, compound 3 was demonstrated to be inactive against
C. albicans (MIC > 64 µg/mL), which suggested a possible structure-activity relationship
(SAR) divergence between activity against pathogenic fungi and phytopathogenic fungi.
Herein, based on compound 7, the hit-to-lead optimization was preliminarily completed,
and a series of 37 nicotinamide derivatives were designed, synthesized, and screened for
their antifungal activity, which resulted in the identification of a potent and broad-spectrum
lead nicotinamide derivative, namely 2-amino-N-(3-isopropylphenyl)nicotinamide (16g).
Meanwhile, we assessed the cytotoxicity, anti-hyphae, and anti-biofilm activities of lead
compound 16g against Candida albicans in vitro. The ADMET properties of 16g were also
predicted by the SwissADME online tool to evaluate its theoretical druggability [13]. Our
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results indicated that the lead compound 16g warrants further in-depth investigation as a
promising antifungal agent.

2. Results and Discussion
2.1. Screening and Hit Identification

More than 30,000 compounds were screened for their antifungal activities against
three of the most common pathogenic fungi C. albicans, C. neoformans, and A. fumiga-
tus. After filtering out pan-assay interference compounds (PAINS, by SwissADME) and
cytotoxic compounds, several hits were obtained [12,14]. Among them, compound 7 at-
tracted our attention, which possessed a simple structure and showed moderate antifungal
activity against C. albicans with an MIC value of 16 µg/mL and without obvious cyto-
toxicity against human umbilical vein endothelial cells (HUVECs) with an IC50 value of
> 64 µg/mL. Notably, neither compound 1 nor 3 (Figure 1) showed superior antifungal
activities over compound 7 (Table 1). Encouraged by these results, we decided to conduct
further structure-activity relationship studies on the hit compound 7.

Table 1. In vitro antifungal activities of nicotinamide derivatives against C. albicans SC5314.

Compd Structure
MIC (µg/mL)

Compd Structure
MIC (µg/mL)

C. alb SC5314 C. alb SC5314

7
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2.2. Chemistry

As depicted in Scheme 1, all compounds (16a-16z, 17, 18a-18d, 19, 20, 21, and 22a-22d)
were synthesized facilely by a one-step coupling reaction of aromatic carboxylic acids (8a-8l,
9, 10a-10b, 11, and 12) and amines (13a-13m, 14, and 15a-15d) in the presence of PyBOP
and TEA.
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2.3. Structure-Activity Relationship

To analyze the structural determinants for antifungal activity of compound 7 against
C. albicans, we initially replaced the meta-isopropyl group with meta-ethyl, meta-t-butyl,
and para-isopropyl, giving 16a, 16b, and 16c, respectively. The results are shown in Table 1.
These modifications led to a decrease in potency. Furthermore, we replaced -SMe with
-Ome, -CF3, -NHMe, -NH2, and -H, giving 16d, 16e, 16f, 16g, and 16h, respectively. All
these modifications were found unfavorable for antifungal activity with the exception of
compound 16g, which showed excellent antifungal activity against C. albicans SC5314. The
MIC value of 16g for C. albicans was 0.25 µg/mL, which was comparable to FLC.

Due to the high potency exhibited by 16g, we used it as a new starting point for
further structural optimization. The results are shown in Table 2. Initially, modifications
focused on the meta-isopropyl aniline moiety. Moving the meta-isopropyl group to the
ortho- or para-position of the aniline moiety gave the compounds 16i and 16j, respectively.
Para-substitution (16j) was relatively well-tolerated with a 2-fold decrease in potency (MIC
= 0.5 µg/mL), whereas ortho-substitution (16i) resulted in a complete loss of activity (MIC
> 64 µg/mL). In addition, the replacement of the isopropyl group with fluorine and trifluo-
romethyl, methyl, ethyl, tert-butyl, and dimethylamino groups to give compounds 16k-16r
resulted in varying degrees of potency reduction. Moreover, the introduction of chlorine
and bromine into aniline, giving 16s and 16t, respectively, proved unfavorable with a
32-fold and 16-fold reduction in activity. Subsequently, we investigated the effect of the
2-amino pyridine moiety of 16g by varying the position of the amino group and nitrogen
atom while fixing meta-isopropyl aniline to give compounds 16u-16z. Unfortunately, these
modifications appeared to be unhelpful. Furthermore, the incorporation of a second nitro-
gen atom into the pyridine ring gave the diazine analogue 17, the pyrimidine analogues 18a
and 18b, and the pyrazine analogue 19, which also yielded disappointing results, despite
19 exhibiting moderate antifungal activity with an MIC value of 4 µg/mL. Replacement
of the pyridine ring with it’s bioisosteric thiazole ring, giving 20, also demonstrated an
unfavorable result. In a final study, we replaced the phenyl of the aniline moiety with
pyrazole (21), isopropyl (22a), tert-butyl (22b), cyclohexyl (22c), and dodecyl (22d), all of
which were found to be detrimental to antifungal activity.
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Table 2. In vitro antifungal activities of compounds against C. albicans SC5314.

Compd. Structure
MIC (µg/mL)

Compd. Structure
MIC (µg/mL)

C. alb SC5314 C. alb SC5314

16g
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Overall, the results discussed above shed light on 2-aminopyridine and meta-isopropyl
as the essential moieties for the antifungal activity of this scaffold. Therefore, the most
active compound, 16g, was selected for further investigation.

2.4. Compounds 16g and 16j Exhibit Low Toxicity to Mammalian Cells

To confirm the antifungal effects were not due to the cytotoxicities of compounds 16g
and 16j, HUVEC cells were treated with various concentrations (2.5, 5, 10, and 20 µg/mL)
of FLC, 16g, and 16j for 24 h. Cell viability was measured by the CCK8 assay. As shown
in Figure 2, we found that FLC, 16g, and 16j did not cause significant cytotoxicity below
20 µg/mL, and no significant difference was observed between the two compounds and
fluconazole.
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Figure 2. The in vitro toxicity evaluation of 16g, 16j and FLC. The cytotoxic effects of compounds 16g
and 16j, compared to that of FLC, on HUVECs viability was assessed by the CCK-8 test following a 2
h treatment. FLC: fluconazole.

2.5. Compound 16g Exhibits Broad-Spectrum Antifungal Activity

To investigate the antifungal effect of this chemotype, compound 16g was selected to
screen for in vitro activity against two strains of fluconazole-sensitive C. albicans and six
strains of fluconazole-resistant C. albicans (Table 3). The antifungal activity of 16g against the
two fluconazole-sensitive strains was comparable to that of fluconazole, with MIC values
ranging from 0.125–0.5 µg/mL. In contrast, the activity of 16g against the six fluconazole-
resistant strains was significantly superior to fluconazole, with MIC values ranging from
0.125–1 µg/mL. In addition, we further evaluated the antifungal spectrum of 16g (Table 4).
Our results demonstrated that the compound 16g had moderate activities against Candida,
Cryptococcus, and Trichophyton, which were equivalent to FLC and ineffective against A.
fumigatus.

Table 3. In vitro antifungal activities against drug-resistant C. albicans of 16g and FLC.

C. albicans Isolate
MIC (µg/mL)

16g FLC

fluconazole-sensitive (2)
Y0109 0.125 0.125

465 0.5 0.125

fluconazole-resistant (6)

862 0.5 >64
786 0.5 >64
100 1 >64
385 0.125 >64
898 0.5 >64
504 0.25 >64

Abbreviations: MIC: minimum inhibitory concentration; C. albicans, Candida albicans; FLC: fluconazole.
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Table 4. In vitro antifungal activities of 16g and FLC.

Species Isolate
MIC (µg/mL)

16g FLC

C. parapsilosis 22019 4 1
660 2 0.25

C. krusei 463 8 4
629 16 2

C. glabrata 537 8 0.5
C. tropicalis 752 0.5 0.5

112936 2 2
C. neoformans 32609 32 1

34877 16 2
56992 8 1

A. fumigatus 7544 >32 >64
023-2 >32 >64

T.mentagrophyton T5A 16 16
T5B 32 16
T5E 32 16

Abbreviations: MIC: minimum inhibitory concentration; C. parapsilosis, Candida parapsilosis; C. krusei, Candida krusei;
C. glabrata, Candida glabrata; C. tropicalis, Candida tropicalis; C. neoformans, Cryptococcus neoformans; A. fumigatus,
Aspergillus fumigatus; T. mentagrophyton, Trichophyton mentagrophyton; FLC: fluconazole.

2.6. Fungicidal Activity of 16g against C. albicans

Time-kill curves showed that 16g at concentrations of 0.25 µg/mL and 0.5 µg/mL had
a slight inhibitory effect on the growth of C. albicans (Figure 3). However, 1 µg/mL of 16g
killed C. albicans after 24 h of treatment, which resulted in a log10 CFU/mL decrease from
5.5 to 2, approximately. Our results indicated that higher concentrations of 16g showed
fungicidal activities.
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Figure 3. Time-killed curves for 16g against the C. albicans. The concentrations of 16g were adjusted
to 0.25 µg/mL (1 × MIC), 0.5 µg/mL (2 × MIC), 1 µg/mL (4 × MIC) in RPMI 1640 medium. con:
control.

2.7. Compound 16g Inhibits the Hyphae Formation of C. albicans

The morphological transition from yeast to hypha is the major contributor to the
in vivo pathogenicity of C. albicans [15,16]. Therefore, we further investigated the activity
of compound 16g against the yeast-to-hypha transition of C. albicans. As shown in Figure 4,
0.125 µg/mL or higher concentrations of compound 16g exhibited potent activity against
C. albicans hypha formation, which showed fewer hyphae and more pseudohyphal cells.
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Figure 4. Anti-hyphae effects of different concentrations of compound 16g. The inhibition of 16g
on the hypha formation of C. albicans. C. albicans SC5314 were incubated at 37 ◦C for 3 h in RPMI
1640 medium. The concentrations of 16g were ranged from 0.0313–0.5 µg/mL. con: control.

2.8. Compound 16g Inhibits the Biofilm Formation in C. albicans

Biofilm formation is an important factor in the pathogenesis of C. albicans, which
leads to high resistance to a wide range of antifungals [17]. In this study, we examined the
effect of 16g on the biofilm formation of C. albicans. XTT reduction assays revealed that 16g
showed an inhibitory effect on the biofilm formation in a dose-dependent manner (Figure 5).
More specifically, 0.0625 µg/mL of 16g inhibited the biofilm formation by approximately
30%, and the inhibitory activity on the biofilm was enhanced as the concentrations of 16g
increased. The addition of 0.125 µg/mL of 16g inhibited biofilm formation by 50%, while
over 90% of the biofilms were inhibited in the presence of 0.5 µg/mL of 16g.
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Figure 5. 16g inhibits C. albicans biofilm formation in vitro. Biofilm formation was evaluated by XTT
reduction assay using C. albicans SC5314. The results were repeated for two times. *** p < 0.001,
(t test).

2.9. 16g Treatment Significantly Disrupted the Cell Wall Morphology of C. albicans

To further explore the antifungal mechanisms of nicotinamide derivatives, we investi-
gated structural changes in cells treated with 1 µg/mL of 16g. As shown in Figure 6, the
cell wall of 16g-treated cells displays broken edges and a thickened distance between the
cell wall and cell membrane. Meanwhile, the gaps between the cell wall and cell membrane
were filled with cytosolic fluid, which suggested the weakened protective effect of the cell
wall was disrupted by 16g. Our results indicated that 16g could inhibit the growth of C.
albicans by disrupting the cell walls.
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Figure 6. Cell wall damage caused by compound 16g in C. albicans. C. albicans SC5314 was treated
with 1 µg/mL of 16g for 16 h. The structural changes of cell wall were observed by transmission
electron microscope. con: control.

2.10. ADMET Prediction

In silico ADMET prediction of compounds 16g and FLC was performed using the free
SwissADME online tool [13]. The Brain Or IntestinaL EstimateD permeation (BOILED-Egg)
method is a graphical model that works by calculating the polarity and lipophilicity of
small molecules. According to Figure 7A, compound 16g was located in the yellow circle
while FLC was in the white circle, representing that both compounds were highly absorbed
through the gastrointestinal tract, but compound 16g penetrates the blood-brain barrier
more readily than FLC. In addition, the compound 16g with the red spot is not a substrate
for P-glycoprotein, which perhaps facilitated overcoming efflux pump-mediated resis-
tance mechanisms in pathogenic fungi. Furthermore, as shown in the bioavailability radar
(Figure 7B,C), the physicochemical characteristics, lipophilicity, solubility, pharmacokinet-
ics, and drug-likeness properties of compound 16g and FLC were all located in the pink
area (optimal range), indicating that compound 16g, such as FLC, is a good lead compound.
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Figure 7. (A)The BOILED-Egg model prediction of 16g and FLC; (B) Bioavailability radar for 16g;
(C) Bioavailability radar for FLC; FLC: fluconazole.

3. Materials and Methods
3.1. General Procedure for the Synthesis of Target Compounds

To a solution of aromatic carboxylic acid (8a-8l, 9, 10a, 10b, 11, and 12, 1 mmol), DIEA
(2 mmol) and PyBOP (1.1 mmol) in DMF (5 mL) were added to various anilines (13a-13m
and 14) or amines (15a-15d, 1 mmol) at room temperature. The mixture was stirred at this
temperature for 2 h. The reaction was monitored by TLC. After the reaction was finished, the
mixture was poured into water, and then the mixture was extracted with EtOAc (2 × 10 mL).
After washing with brine (2 × 10 mL) and drying over anhydrous Na2SO4, the organic
phase was evaporated in a vacuum. The crude product was purified by silica gel column
chromatography using EtOAc/PE (1:1) as the eluent to give target compounds (16a-16z,
17, 18a, 18b, 19, 20, 21, and 22a-22d). The NMR spectra can be found in the Supplementary
Materials.

16a: 238 mg, yield: 87%. White solid. 1H NMR (300 MHz, CDCl3-d1) δ 8.52 (d,
J = 4.0 Hz, 1H), 8.24 (s, 1H), 7.88 (d, J = 7.5 Hz, 1H), 7.52 (s, 1H), 7.45 (d, J = 8.1 Hz, 1H),
7.28 (dd, J = 8.8, 6.8 Hz, 2H), 7.12 − 6.97 (m, 2H), 2.74 − 2.55 (m, 5H), 1.25 (t, J = 7.6 Hz,
3H). 13C NMR (151 MHz, DMSO-d6) δ 165.33, 157.91, 150.58, 144.78, 139.38, 135.79, 131.03,
129.09, 123.86, 119.65, 119.22, 117.76, 28.75, 16.00, 13.46.

16b: 273 mg, yield: 90%. White solid. 1H NMR (300 MHz, CDCl3-d1) δ 8.55 (dd, J = 4.8,
1.5 Hz, 1H), 8.17 (s, 1H), 7.92 (d, J = 7.3 Hz, 1H), 7.63 (s, 1H), 7.53 (d, J = 7.8 Hz, 1H), 7.31 (d,
J = 7.9 Hz, 1H), 7.22 (d, J = 7.9 Hz, 1H), 7.10 (dd, J = 7.6, 4.9 Hz, 1H), 2.63 (s, 3H), 1.35 (s,
9H). 13C NMR (151 MHz, DMSO-d6) δ 165.31, 157.95, 151.74, 150.57, 139.17, 135.81, 131.00,
128.82, 121.31, 119.19, 117.49, 117.27, 34.92, 31.57, 13.47.

16c: 254 mg, yield: 89%. White solid. 1H NMR (300 MHz, CDCl3-d1) δ 8.56 (d,
J = 3.1 Hz, 1H), 8.05 (s, 1H), 7.95 (d, J = 7.1 Hz, 1H), 7.57 (d, J = 8.2 Hz, 2H), 7.25 (d, J = 8.2
Hz, 2H), 7.17 − 7.09 (m, 1H), 2.96 − 2.87 (m, 1H), 2.64 (s, 3H), 1.25 (d, J = 6.9 Hz, 6H). 13C
NMR (75 MHz, DMSO-d6) δ 165.18, 157.91, 150.56, 144.50, 137.12, 135.76, 131.04, 126.90,
120.39, 119.22, 33.40, 24.42, 13.46.

16d: 239 mg, yield: 88%. Yellow solid. 1H NMR (300 MHz, DMSO-d6) δ 10.34 (s, 1H),
9.56 (s, 1H), 8.78 (d, J = 1.4 Hz, 1H), 8.20 (d, J = 8.5 Hz, 1H), 8.10 (dd, J = 8.6, 1.8 Hz, 1H),
7.65 (d, J = 8.8 Hz, 2H), 7.27 (t, J = 7.8 Hz, 1H), 6.99 (d, J = 7.7 Hz, 1H), 2.96 − 2.79 (m, 1H),
1.21 (d, J = 6.9 Hz, 7H). 13C NMR (151 MHz, DMSO-d6) δ 165.40, 159.49, 155.27, 149.34,
139.62, 134.10, 132.69, 128.99, 126.24, 123.20, 122.95, 122.34, 118.74, 118.39, 33.99, 24.35.

16e: 263 mg, yield: 85%. Semi-solid. 1H NMR (300 MHz, DMSO-d6) δ 10.62 (s,
1H), 8.90 − 8.78 (m, 1H), 8.20 (dd, J = 7.8, 0.8 Hz, 1H), 7.84 (dd, J = 7.8, 4.8 Hz, 1H),
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7.62 − 7.42 (m, 2H), 7.27 (t, J = 7.8 Hz, 1H), 7.02 (d, J = 7.7 Hz, 1H), 2.93 − 2.79 (m, 1H), 1.19
(d, J = 6.9 Hz, 6H). 13C NMR (151 MHz, DMSO-d6) δ 164.24, 150.49, 149.64, 142.96, 142.74,
139.11, 137.88, 132.88, 129.25, 127.67, 122.68, 118.01, 117.68, 33.95, 24.29.

16f: 231 mg, yield: 86%. White solid. 1H NMR (300 MHz, DMSO-d6) δ 10.10 (s, 1H), 8.21
(dd, J = 4.8, 1.7 Hz, 1H), 8.02 (dd, J = 7.7, 1.8 Hz, 1H), 7.85 (d, J = 4.7 Hz, 1H), 7.58 (d, J = 1.7
Hz, 1H), 7.55 − 7.46 (m, 1H), 7.24 (t, J = 7.8 Hz, 1H), 6.97 (d, J = 7.7 Hz, 1H), 6.61 (dd, J = 7.6,
4.8 Hz, 1H), 2.97 − 2.78 (m, 4H), 1.20 (d, J = 6.9 Hz, 6H). 13C NMR (151 MHz, DMSO-d6) δ
167.10, 158.39, 151.77, 149.25, 139.33, 137.27, 128.88, 122.32, 119.10, 118.73, 111.25, 110.65, 33.98,
28.19, 24.33.

16g: 204 mg, yield: 80%. White solid. Melting point:127.3 ◦C. 1H NMR (300 MHz,
CDCl3-d1) δ 8.24 − 8.23 (d, J = 3 Hz, 1H), 7.81 − 7.78 (d, J = 9 Hz, 1H), 7.71 (s, 1H),
7.44 − 7.42 (t, J = 6.3 Hz, 2 H), 7.36 − 7.33 (d, J = 9 Hz, 1 H), 7.09 − 7.07 (d, J = 9 Hz, 1H),
6.72−6.68 (dd, J = 7.7, 4.9 Hz, 1H), 6.38 (s, 2H), 3.00 − 2.91 (m, 1H), 1.31 − 1.28 (d, J = 9 Hz,
6H). 13C NMR (75 MHz, DMSO-d6) δ 166.93, 159.15, 151.77, 149.26, 139.34, 137.72, 128.90,
122.31, 119.09, 118.74, 111.82, 110.77, 33.97, 24.34.

16h: 198 mg, yield: 82%. Semi-solid. 1H NMR (300 MHz, DMSO-d6) δ 10.37 (s, 1H),
9.09 (d, J = 1.7 Hz, 1H), 8.75 (dd, J = 4.8, 1.6 Hz, 1H), 8.33 – 8.23 (m, 1H), 7.66 − 7.50 (m,
3H), 7.26 (t, J = 7.8 Hz, 1H), 7.00 (d, J = 7.7 Hz, 1H), 2.92 − 2.82 (m, 1H), 1.20 (d, J = 6.9 Hz,
6H). 13C NMR (151 MHz, DMSO-d6) δ 164.41, 152.51, 149.39, 149.13, 139.29, 135.85, 131.11,
129.03, 123.92, 122.57, 118.77, 118.43, 33.96, 24.33.

16i: 214 mg, yield: 84%. White solid. 1H NMR (300 MHz, DMSO-d6) δ 9.86 (s, 1H),
8.14 − 8.09 (m, 2H), 7.40 − 7.16 (m, 4H), 7.05 (s, 2H), 6.68 − 6.64 (m, 1H), 3.21 − 3.03 (m,
1H), 1.15 (d, J = 6.9 Hz, 6H). 13C NMR (75 MHz, DMSO-d6) δ 167.74, 159.50, 152.07, 145.50,
137.38, 135.23, 128.73, 127.46, 126.31, 126.10, 111.90, 109.88, 28.02, 23.63.

16j: 203 mg, yield: 80%. White solid. Melting point: 180.0 ◦C. 1H NMR (300 MHz,
DMSO-d6) δ 10.07 (s, 1H), 8.11 (dd, J = 4.8, 1.8 Hz, 1H), 8.01 (dd, J = 7.7, 1.8 Hz, 1H), 7.58
(d, J = 8.5 Hz, 2H), 7.20 (d, J = 8.5 Hz, 2H), 6.95 (s, 2H), 6.66 − 6.62 (m, 1H), 2.93 − 2.75 (m,
1H), 1.18 (d, J = 6.9 Hz, 6H). 13C NMR (75 MHz, DMSO-d6) δ 166.89, 159.26, 151.94, 144.34,
137.52, 137.09, 126.72, 121.29, 111.83, 110.68, 33.38, 24.42.

16k: 187 mg, yield: 81%. White solid. 1H NMR (300 MHz, CDCl3-d1) δ 8.28 (s, 1H),
8.13 − 8.12 (d, J =3 Hz, 1H), 7.95 − 7.92 (d, J = 9 Hz, 1H), 7.62 − 7.59 (d, J = 9 Hz, 1 H),
7.40 − 7.30 (m, 2H), 6.94 − 6.88 (t, J = 8.7 Hz, 1H), 6.77 − 6.73 (dd, J = 7.5, 5.1 Hz, 3H). 13C
NMR (151 MHz, DMSO-d6) δ 167.25, 163.29, 161.69, 159.24, 152.33, 141.25, 141.18, 137.74,
130.66, 130.60, 116.69, 111.83, 110.63, 110.50, 110.25, 107.77, 107.60.

16l: 172 mg, yield: 76%. White solid. 1H NMR (300 MHz, CDCl3-d1) δ 8.24 − 8.22 (d,
J = 6 Hz, 1H), 7.79 − 7.73 (t, J = 9.6Hz 2H), 7.44 (s, 1H), 7.37 − 7.26 (m, 2H), 7.03 − 7.01
(d, J = 6 Hz, 1H), 6.71 − 6.67 (dd, J = 7.5, 4.9 Hz, 1H), 6.36 (s, 2H), 2.40(s, 3H). 13C NMR
(151 MHz, DMSO-d6) δ 167.00, 159.27, 151.99, 139.30, 138.17, 137.59, 128.85, 124.88, 121.69,
118.33, 111.83, 110.65, 21.65.

16m: 179 mg, yield: 79%. White solid. 1H NMR (300 MHz, CDCl3-d1) δ 8.26 − 8.24 (d,
J = 6Hz, 1H), 7.82 − 7.77 (t, J = 8.5 Hz, 2H), 7.58 (s, 1H), 7.32 (s, 1H), 7.27 (s, 1H), 7.21 − 7.18
(t, J = 7.3 Hz, 1H), 6.73 − 6.69 (dd, J = 7.6, 4.9 Hz, 1H), 6.40 (s, 2H), 2.35 (s, 3H). 13C NMR
(151 MHz, DMSO-d6) δ 167.04, 159.48, 152.07, 137.52, 136.68, 134.39, 130.74, 127.24, 126.51,
126.45, 111.87, 109.94, 46.33, 46.31, 26.39, 26.34, 18.34.

16n: 163 mg, yield: 72%. White solid. 1H NMR (300 MHz, CDCl3-d1) δ 8.23 − 8.21
(dd, J = 4.8, 1.4 Hz, 1H), 7.80 − 7.77 (m, 2H), 7.47 − 7.44 (d, J = 9 Hz, 2H), 7.22 − 7.19 (d,
J = 8.2 Hz, 2H), 6.71 − 6.67 (dd, J = 7.7, 4.9 Hz, 1H), 6.36 (s, 2H), 2.37 (s, 3H). 13C NMR
(151 MHz, DMSO) δ 166.88, 159.27, 151.93, 137.53, 136.83, 133.17, 129.41, 121.19, 111.83,
110.67, 20.95.

16o: 237 mg, yield: 84%. White solid. 1H NMR (300 MHz, CDCl3-d1) δ 8.23 − 8.21 (d,
J = 6 Hz, 1H), 8.05 (s, 1H), 7.94 (s, 1H), 7.87 − 7.79 (dd, J = 16.7, 7.7 Hz, 2H), 7.56 − 7.44
(m, 2H), 6.75 − 6.71 (dd, J = 7.5, 4.9 Hz, 1H), 6.53 (s, 2H). 13C NMR (151 MHz, DMSO-d6) δ
167.39, 159.28, 152.45, 140.26, 137.81, 130.24, 124.48, 120.36, 117.05, 111.82, 110.03.
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16p: 198 mg, yield: 82%. White solid. Melting point: 164.7 ◦C. 1H NMR (300 MHz,
CDCl3-d1) δ 8.20 − 8.18 (dd, J = 4.9, 1.5 Hz, 1H), 7.85 − 7.82 (d, J = 9Hz, 2H), 7.45 − 7.32
(m, 3H), 7.07 − 7.04 (d, J = 9 Hz, 1H), 6.73 − 6.69 (dd, J = 7.7, 5.0 Hz, 1H), 6.52 (s, 2H),
2.74 − 2.66 (q, J = 7.6 Hz, 2H),1.31 − 1.26 (t, J = 7.6 Hz, 3H). 13C NMR (151 MHz, DMSO-d6)
δ 167.00, 159.27, 151.99, 144.56, 139.37, 137.59, 128.91, 123.70, 120.53, 118.59, 111.82, 110.65,
28.74, 15.99.

16q: 221 mg, yield: 82%. White solid. Melting point: 117.5 ◦C. 1H NMR (300 MHz,
CDCl3-d1) δ 8.23 − 8.21 (d, J = 6 Hz, 1H), 7.81 − 7.79 (d, J = 6 Hz, 2H), 7.52 − 7.46 (m, 2H),
7.37 − 7.32 (t, J = 15 Hz, 1H), 7.25 − 7.22 (d, J = 9 Hz, 1H), 6.71 − 6.66 (m, 1H), 6.36 (s, 2H),
1.36(s, 9H). 13C NMR (151 MHz, DMSO-d6) δ 167.00, 159.25, 151.97, 151.56, 139.11, 137.59,
128.63, 121.13, 118.38, 118.19, 111.81, 110.71, 34.91, 31.59.

16r: 201 mg, yield: 78%. White solid. Melting point:168.2 ◦C. 1H NMR (300 MHz,
CDCl3-d1) δ 8.23 − 8.21 (d, J = 6 Hz, 1H), 7.80 − 7.77 (d, J = 9 Hz, 1H), 7.69 (s, 1H),
7.27 − 7.22 (t, J = 8.3 Hz, 1H), 7.06 (s, 1H), 6.86 − 6.83 (d, J = 9 Hz, 1H), 6.71 − 6.67 (m,
1H), 6.59 − 6.56 (d, J = 9 Hz, 1H), 6.33(s, 1H), 3.00(s, 6H). 13C NMR (151 MHz, DMSO-d6) δ
166.95, 159.25, 151.87, 151.21, 140.12, 137.53, 129.32, 111.80, 110.89, 109.42, 108.78, 105.32.

16s: 65 mg, yield: 22%. White solid. 1H NMR (300 MHz, DMSO-d6) δ 10.21 (s, 1H),
8.12 − 8.14 (dd, 1H, J = 1.5, 4.8 Hz), 8.02 − 8.05 (dd, 1H, J = 1.5, 4.8 Hz), 7.71 − 7.72 (d, 1H,
J = 2.4 Hz), 7.62 − 7.66 (dd, 1H, J = 2.7, 8.7 Hz), 7.35 − 7.38 (d, 1H, J = 8.4 Hz), 6.98 (s, 2H),
6.64 − 6.68 (dd, 1H, J = 4.8, 7.8 Hz), 3.26 − 3.30 (m, 1H), 1.22 (s, 3H), 1.20 (s, 3H).

16t: 48 mg, yield: 14%. White solid. Melting point:198.1 ◦C. 1H NMR (300 MHz,
CDCl3-d1) δ 8.19 − 8.21 (dd, 1H, J = 1.5, 4.8 Hz), 7.76 − 7.79 (dd, 2H, J = 1.5, 7.5 Hz),
7.50 − 7.53 (d, 1H, J = 8.7 Hz), 7.41 − 7.42 (d, 1H, J = 2.7 Hz), 7.34 − 7.37 (dd, 1H, J = 1.5,
8.4 Hz), 6.64 − 6.69 (dd, 1H, J = 1.8, 7.5 Hz), 6.37 (s, 2H), 3.31 − 3.41 (m, 1H), 1.26 (s, 3H),
1.24 (s,3H). 13C NMR (75 MHz, DMSO-d6) δ 167.07, 159.25, 152.23, 147.17, 139.44, 137.68,
132.88, 120.44, 119.42, 117.55, 111.79, 110.32, 33.00, 23.08.

16u: 195 mg, yield: 76%. White solid. 1H NMR (300 MHz, DMSO-d6) δ 10.15 (s, 1H),
8.16 (s, 1H), 7.80 (d, J = 5.1 Hz, 1H), 7.63 − 7.45 (m, 3H), 7.24 (t, J = 7.8 Hz, 1H), 6.99 (d,
J = 7.7 Hz, 1H), 6.36 (s, 2H), 2.94−2.74 (m, 1H), 1.20 (d, J = 6.9 Hz, 6H). 13C NMR (75 MHz,
DMSO-d6) δ 166.57, 149.30, 144.76, 140.48, 139.11, 136.05, 128.92, 122.49, 121.57, 120.36,
119.13, 118.76, 33.97, 24.33.

16v: 203 mg, yield: 80%. Semi-solid. 1H NMR (300 MHz, DMSO-d6) δ 10.14 (s, 1H),
7.69 − 7.49 (m, 3H), 7.35 − 7.18 (m, 2H), 6.98 (d, J = 7.7 Hz, 1H), 6.69 (dd, J = 8.3, 0.7 Hz, 1H),
6.28 (s, 2H), 2.96 − 2.75 (m, 1H), 1.20 (d, J = 6.9 Hz, 6H). 13C NMR (151 MHz, DMSO-d6) δ
162.97, 159.02, 149.68, 148.16, 138.95, 138.65, 129.25, 122.30, 117.80, 117.38, 112.28, 110.63,
33.96, 24.30.

16w: 189 mg, yield: 74%. Semi-solid. 1H NMR (300 MHz, DMSO-d6) δ 10.33 (s, 1H),
7.87 (dd, J = 4.1, 1.4 Hz, 1H), 7.76 − 7.58 (m, 2H), 7.41 – 7.14 (m, 3H), 7.05 − 6.78 (m, 3H),
2.92−2.79 (m, 1H), 1.20 (d, J = 6.9 Hz, 6H). 13C NMR (151 MHz, DMSO-d6) δ 166.22, 149.46,
147.35, 138.80, 136.05, 129.01, 128.59, 128.23, 125.43, 122.00, 118.32, 117.81, 33.99, 24.33.

16x: 207 mg, yield: 81%. White solid. 1H NMR (300 MHz, DMSO-d6) δ 10.20 (s, 1H),
8.04 (d, J = 5.2 Hz, 1H), 7.67 − 7.52 (m, 2H), 7.24 (t, J = 7.8 Hz, 1H), 6.98 (d, J = 7.7 Hz, 1H),
6.90 (dd, J = 5.3, 1.5 Hz, 1H), 6.85 (s, 1H), 6.19 (s, 2H), 2.94 − 2.76 (m, 1H), 1.19 (d, J = 6.9 Hz,
6H). 13C NMR (75 MHz, DMSO-d6) δ 165.32, 160.71, 149.34, 148.85, 143.96, 139.28, 128.97,
122.47, 118.79, 118.43, 109.86, 106.63, 33.95, 24.32.

16y: 214 mg, yield: 84%. White solid. 1H NMR (300 MHz, DMSO-d6) δ 9.82 (s, 1H),
8.58 (d, J = 2.2 Hz, 1H), 7.91 (dd, J = 8.7, 2.5 Hz, 1H), 7.66 − 7.50 (m, 2H), 7.21 (t, J = 7.8 Hz,
1H), 6.93 (d, J = 7.6 Hz, 1H), 6.59 (s, 2H), 6.46 (d, J = 8.8 Hz, 1H), 2.95 − 2.74 (m, 1H), 1.19
(d, J = 6.9 Hz, 6H). 13C NMR (75 MHz, DMSO-d6) δ 164.67, 162.11, 149.40, 149.19, 139.88,
136.99, 128.83, 121.76, 118.73, 118.62, 118.28, 107.25, 33.97, 24.34.

16z: 206 mg, yield: 81%. White solid. 1H NMR (300 MHz, DMSO-d6) δ 10.09 (s, 1H),
8.61 (s, 1H), 8.04 (d, J = 5.8 Hz, 1H), 7.59 (s, 1H), 7.52 (d, J = 8.1 Hz, 1H), 7.23 (t, J = 7.8 Hz,
1H), 7.10 − 6.91 (m, 3H), 6.64 (d, J = 5.8 Hz, 1H), 2.90 − 2.80 (m, 1H), 1.19 (d, J = 6.9 Hz,
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6H). 13C NMR (151 MHz, DMSO-d6) δ 166.69, 154.99, 150.48, 149.70, 149.27, 139.32, 128.89,
122.25, 119.02, 118.65, 112.37, 110.98, 33.97, 24.33.

17: 213 mg, yield 83%. White solid. 1H NMR (300 MHz, DMSO-d6) δ 10.46 (s, 1H),
8.65 (d, J = 4.9 Hz, 1H), 7.69 (d, J = 4.9 Hz, 1H), 7.61 − 7.48 (m, 2H), 7.27 (t, J = 7.8 Hz, 1H),
7.10 − 6.88 (m, 3H), 2.96 − 2.77 (m, 1H), 1.20 (d, J = 6.9 Hz, 6H). 13C NMR (151 MHz,
DMSO-d6) δ 165.13, 158.57, 149.43, 143.00, 138.78, 129.05, 125.59, 122.93, 119.04, 118.71,
115.60, 33.95, 24.31.

18a: 227 mg, yield: 84%. White solid. 1H NMR (300 MHz, DMSO-d6) δ 9.72 (s, 1H),
8.52 (s, 1H), 7.46 (dd, J = 21.3, 13.2 Hz, 4H), 7.20 (t, J = 7.8 Hz, 1H), 6.92 (d, J = 7.7 Hz, 1H),
6.61 (s, 2H), 2.92 − 2.74 (m, 1H), 1.19 (d, J = 6.9 Hz, 6H). 13C NMR (75 MHz, DMSO-d6)
δ 166.23, 164.08, 163.79, 158.58, 149.16, 139.63, 128.79, 121.75, 118.97, 118.62, 99.57, 33.97,
24.34.

18b: 216 mg, yield: 84%. White solid. 1H NMR (300 MHz, DMSO-d6) δ 10.23 (s, 1H),
8.72 (s, 1H), 8.47 (s, 1H), 7.69 (s, 2H), 7.56 (s, 1H), 7.54 − 7.46 (m, 1H), 7.25 (t, J = 7.8 Hz, 1H),
6.99 (d, J = 7.7 Hz, 1H), 2.94 − 2.77 (m, 1H), 1.19 (d, J = 6.9 Hz, 6H). 13C NMR (75 MHz,
DMSO-d6) δ 165.32, 162.23, 160.21, 155.85, 149.34, 139.03, 128.96, 122.56, 119.11, 118.76,
109.21, 33.96, 24.32.

19: 207 mg, yield: 81%. White solid. Melting point: 81.5 ◦C. 1H NMR (300 MHz,
DMSO-d6) δ 10.39 (s, 1H), 8.27 (d, J = 2.3 Hz, 1H), 7.90 (d, J = 2.3 Hz, 1H), 7.75 − 7.44 (m,
4H), 7.24 (t, J = 7.8 Hz, 1H), 6.98 (d, J = 7.7 Hz, 1H), 2.96 − 2.76 (m, 1H), 1.20 (d, J = 6.9 Hz,
6H). 13C NMR (151 MHz, DMSO-d6) δ 164.87, 155.89, 149.42, 147.77, 138.56, 131.38, 128.98,
125.86, 122.46, 118.82, 118.30, 33.98, 24.31.

20: 218 mg, yield: 83%. White solid. 1H NMR (300 MHz, DMSO-d6) δ 9.43 (s, 1H),
8.90 (s, 1H), 7.52 − 7.44 (m, 2H), 7.23 − 7.14 (m, 1H), 7.02 (s, 2H), 6.92 (d, J = 7.7 Hz, 1H),
2.93 − 2.74 (m, 1H), 1.19 (d, J = 6.9 Hz, 6H). 13C NMR (75 MHz, DMSO-d6) δ 164.40, 162.94,
155.82, 149.12, 139.52, 128.74, 121.83, 119.18, 118.83, 93.85, 33.96, 24.34.

21: 192 mg, yield: 78%. White solid. 1H NMR (300 MHz, DMSO-d6) δ 10.30 (s, 1H),
8.09 (dd, J = 4.8, 1.7 Hz, 1H), 8.05 − 7.93 (m, 2H), 7.54 (s, 1H), 7.05 (s, 2H), 6.63 (dd, J = 7.7,
4.8 Hz, 1H), 4.53 − 4.40 (m, 1H), 1.39 (d, J = 6.7 Hz, 6H). 13C NMR (75 MHz, DMSO-d6) δ
165.20, 159.31, 151.92, 136.99, 130.39, 121.59, 119.01, 111.82, 109.89, 53.44, 23.09.

22a: 124 mg, yield: 69%. White solid. 1H NMR (300 MHz, CDCl3-d1) δ 8.11 − 8.14 (dd,
1H, J = 1.6, 4.9 Hz), 7.57 − 7.60 (dd, 1H, J = 1.7, 7.6 Hz), 6.58 − 6.62 (dd, 1H, J = 5.0, 7.8 Hz),
6.44 (s, 2H), 5.84 (s, 1H), 4.18 − 4.27 (m, 1H), 1.27 (s, 3H), 1.25 (s, 3H). 13C NMR (151 MHz,
DMSO-d6) δ 166.91, 158.77, 150.46, 137.45, 111.66, 110.90, 41.23, 22.68.

22b: 132 mg, yield: 68%. White solid. 1H NMR (300 MHz, CDCl3-d1) δ 8.10 − 8.13
(dd, 1H, J = 1.7, 74.8 Hz), 7.52 − 7.55 (dd, 1H, J = 1.7, 7.6 Hz), 6.56 − 6.60 (dd, 1H, J = 5.0,
7.8 Hz), 6.28 (s, 2H), 5.82 (s, 1H), 1.45 (s, 9H). 13C NMR (151 MHz, DMSO-d6) δ 168.20,
159.05, 151.01, 137.36, 111.76, 111.66, 51.34, 29.01.

22c: 173 mg, yield: 79%. White solid. 1H NMR (300 MHz, CDCl3-d1) δ 8.12 − 8.14 (dd,
1H, J = 1.7, 5.1 Hz), 7.55 − 7.58 (dd, 1H, J = 1.6, 7.6 Hz), 6.57 − 6.61 (dd, 1H, J = 4.9, 7.6
Hz), 6.35 (s, 2H), 5.86 − 5.88 (d, 1H, J = 4.0 Hz), 3.85 − 3.97 (m, 1H), 1.92 − 2.03 (m, 2H),
1.72 − 1.79 (m, 2H), 1.62 − 1.69 (m, 2H), 1.15 − 1.49 (m, 4H). 13C NMR (75 MHz, DMSO-d6)
δ 167.13, 159.24, 151.36, 136.93, 111.63, 110.50, 48.54, 32.79, 25.71, 25.39.

22d: 246 mg, yield: 81%. White solid. 1H NMR (300 MHz, CDCl3-d1) δ 8.12 − 8.14
(dd, 1H, J = 1.6, 4.8 Hz), 7.57 − 7.59 (d, 1H, J = 7.6 Hz), 6.57 − 6.62 (dd, 1H, J = 5.0, 7.6 Hz),
6.39 (s, 2H), 6.02 (s, 1H), 3.36 − 3.43 (m, 2H), 1.25 − 1.61 (m, 20H), 0.85 − 0.89 (m, 3H).
13C NMR (151 MHz, DMSO-d6) δ 167.85, 159.26, 151.45, 136.68, 111.67, 110.26, 31.76, 29.51,
29.46, 29.24, 29.18, 26.95, 22.56, 14.40.

3.2. Cytotoxicity Tests

The cytotoxic effect of compounds on HUVEC’s viability was assessed by the CCK-8
(Target Molecule Corp., Boston, MA, USA) assay as described previously [18,19]. Briefly,
HUVECs were diluted with DMEM complete mediums to 5 × 106 cells/mL, and 200 µL of
cell suspension was added to the 96-well plates. After adhesion for 3 h, the cell supernatant
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was replaced with fresh 100 µL DMEM complete medium containing different concentra-
tions of antifungal agents. Furthermore, the HUVECs were cultured for 24 h at 37 ◦C with
5% CO2. Finally, 10 µL of CCK-8 regent were added to the 96-well plates and incubated for
another 2 h. The OD450 was measured by the microplate reader.

3.3. Drug Susceptibility Testing

MIC was determined in RPMI 1640 medium for 24 h as mentioned in CLSI M27-
A [12,20]. Briefly, C. albicans or C. neoformans were cultured in a YPD medium for 18 h
or overnight. The fungi were washed with PBS three times. The fungal suspension was
adjusted to 5 × 103 CFU/mL in RPMI 1640 medium. Furthermore, the fungal suspension
was added to the 96 well plates. Antifungal compounds were dissolved in DMSO and
added to the first column and diluted two-fold serially. Fungal cells were cultured at 30 ◦C
for 24 h and OD630 was measured by the microplate reader.

3.4. Hyphae Formation Assay

The in vitro hyphae formation assay was determined as described previously [15,16].
C. albicans SC5314 was cultured in a YPD medium for 18 h. Exponentially growing cells
were diluted with RPMI 1640 medium to 5 × 105 CFU/mL and transferred to 24-well plates.
Various concentrations of 16g were added to the fungal suspension. Finally, the cellular
morphology was photographed after incubation at 37 ◦C for 3 h.

3.5. Biofilm Formation Assay

The in vitro biofilm formation assay was performed as described previously [21,22].
In brief, 100 µL of 1 × 106 CFU/mL of C. albicans in RPMI 1640 medium were added
to a 96-well tissue culture plate and incubated for 90 min at 37 ◦C. After adhesion, the
suspension and non-adherent cells were removed. 150 µL of fresh RPMI 1640 or RPMI 1640
containing different concentrations of compounds 16g was added. The plate was further
incubated at 37 ◦C for 24 h until the formation of mature biofilms. After incubation, each
well was washed with PBS for three times. The formed biofilms were cultured at 37 ◦C for
3 h with 150 µL of XTT reagents, which contained 0.5 mg/mL of XTT and 1 µM menadione.
After incubation, the OD490 was measured by the microplate reader.

3.6. Time-Kill Curve Studies

The time-kill studies were performed as previously described [23–25]. C. albicans
SC5314 was cultured in a YPD medium for 16–20 h. Cells were adjusted to
1 × 106 CFU/mL in RPMI 1640. Furthermore, 1 mL of the fungal suspension was added
to 9 mL of fresh RPMI 1640 and incubated at 30 ◦C with shaking at 200 rpm. Compound
16g was dissolved in DMSO and added at each tube to the final concentrations of 0.25, 0.5,
and 1 µg/mL. After incubation for 6, 12, 18, and 24 h, 100 µL of fungal suspensions from
each tube were serially diluted in PBS and plated onto SDA agar. Finally, the plates were
incubated at 30 ◦C for 48 h, and the C. albicans colonies were counted.

3.7. PAINS Screening and ADME/T Prediction

The Swiss ADME software (www.swissadme.ch, accessed on 25 May 2022) of the Swiss
Institute of Bioinformatics was accessed through a web server displaying the Swiss ADME
submission page and was used to evaluate the presence of chemical species belonging to
the “Pan-Assay Interference Compounds” (PAINS) chemical class, implemented from the
paper by Baell et al. and estimate individual ADME properties of compounds. The list
contains one input for each molecule, as defined by the Simplified Molecular Input Line
Input System (SMILES), and the results for each molecule are displayed in tables and Excel
spreadsheets [13,26,27].

www.swissadme.ch
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4. Conclusions

In summary, a hit-to-lead optimization was preliminarily performed in this study,
and a series of 37 nicotinamide derivatives have been designed, synthesized, and their
antifungal activities evaluated. Particularly, compound 16g exhibited excellent to mod-
erate in vitro antifungal activity against species of Candida and Cryptococcus, including
fluconazole-resistant C. albicans strains. In addition, potent anti-hyphal and anti-biofilm
effects of compound 16g were also observed. Mechanistically, our results indicated that 16g
inhibited the growth of C. albicans by disrupting the cell wall. In silico ADMET prediction
suggests antifungal compound 16g is a good lead. Further structural optimization and the
mechanisms of action of compound 16g are currently under investigation.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28031135/s1. NMR spectra of target compounds;
HPLC spectra of representative compounds.
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