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Abstract: Melanogenesis is a biosynthetic pathway for the formation of the pigment melanin in
human skin. A key enzyme in the process of pigmentation through melanin is tyrosinase, which
catalyzes the first and only limiting step in melanogenesis. Since the discovery of its methanogenic
properties, tyrosinase has been the focus of research related to the anti-melanogenesis. In addition
to developing more effective and commercially safe inhibitors, more studies are required to better
understand the mechanisms involved in the skin depigmentation process. However, in vivo assays
are necessary to develop and validate new drugs or molecules for this purpose, and to accomplish
this, zebrafish has been identified as a model organism for in vivo application. In addition, such
model would allow tracking and studying the depigmenting activity of many bioactive compounds,
important to genetics, medicinal chemistry and even the cosmetic industry. Studies have shown the
similarity between human and zebrafish genomes, encouraging their use as a model to understand the
mechanism of action of a tested compound. Interestingly, zebrafish skin shares many similarities with
human skin, suggesting that this model organism is suitable for studying melanogenesis inhibitors.
Accordingly, several bioactive compounds reported herein for this model are compared in terms
of their molecular structure and possible mode of action in zebrafish embryos. In particular, this
article described the main metabolites of Trichoderma fungi, in addition to substances from natural
and synthetic sources.

Keywords: melanogenesis inhibitors; tyrosinase; melanin; danio rerio

1. Introduction

Estimates indicate that approximately 15% of the world’s populations invest in skin
whitening [1] with melanogenesis as one of the main reasons. Melanogenesis is a complex
process with different physiological stages. Any imbalance in this process can cause differ-
ent types of pigmentation deficiency, classified as hypopigmentation or hyperpigmentation,
and may occur with or without changes in the number of melanocytes. The serious patho-
logical consequence of such physiological imbalance is cancer derived from melanocytes,
or melanomas, which are among the most aggressive, metastatic, and lethal forms of skin
cancer [2].

In addition to physiological imbalance, other factors can inhibit melanin production.
These include pharmaceutical or cosmetic additives, which cause adverse side effects,
such as skin irritation, cytotoxicity, and carcinogenicity. In addition, because of the low
stability of some formulations and low penetration into the skin, their multiple use must be
limited [3]. Moreover, studies reported that many have been linked to neurodegenerative
diseases, including Parkinson’s, Alzheimer’s, and Huntington’s diseases [4–7].
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Melanogenesis occurs in melanocytes, which are found in the basal layer of the
epidermis, with tyrosinase as the unifying biochemical characteristic of melanogenesis
in plants and animals. Tyrosinase (EC 1.14.18.1), a copper oxidase, is a type 3 copper
containing metalloenzyme widely distributed in bacteria, fungi, insects, plants, and animals,
including humans, to produce melanin pigments [8]. Initially, tyrosinase is synthesized
on the surface of the rough endoplasmic reticulum. It is considered a key and limiting
enzyme for the in vivo synthesis of melanin. Melanin plays a key role in several biological
functions, including the pigmentation process of mammalian dermis. As a component of
primary immune response, it is a triggering agent of the wound healing system in plants
and fungi [9].

The effect of tyrosinase is observed in various living organisms. In plants, it is observed
in degradation processes. In fungi, tyrosinase acts in the differentiation of reproductive
organs during spore formation [10–12]. In humans, tyrosinase, which regulates melanin, is
responsible for the coloration of the skin, eyes, and hair, with high diversity among human
populations [13–15].

The discovery of new molecules from natural products and fungal extracts which
have anti-melanogenesis activity is ongoing. Since these molecules would be expected to
minimize the side effects of pigmentation treatment, they represent a potent, low-cost and
effective alternative [16–19].

Fungal metabolites have stood out as substantial melanogenesis inhibitors owing to
their pharmacological potential [20]. Thus, fungi of different genera, which demonstrate
anti-melanogenic activity with antibiotic action, and growth regulators in vegetables and
fruits, among others, have attracted the interest of researchers who are pursuing the
discovery and isolation of new compounds in the agricultural, food and pharmaceutical
industries [21].

However, according to the World Health Organization (WHO), researchers must follow
the NEQ (Needs Evaluation Questionnaire) validation process when carrying out pharma-
cological tests in traditional in vivo and in vitro systems in order to increase investment in
research and innovation, mainly in underdeveloped countries.

Several in vivo models have been used extensively to investigate anti-tyrosinase
mechanisms [22]; however, some are limited from a practical point of view and others
from a physio/pathological point of view. Consequently, researchers have resorted to
emerging models, such as zebrafish (Danio rerio). This model has the advantages of small
size, ease of handling and maintenance, and rapid reproduction rate, as well as the high
efficiency of drug penetration through skin and gills [23,24]. Moreover, zebrafish have a
fully characterized genome with functional domains of many key proteins nearly identical
to their human homologues [25,26].

In addition, the use of the zebrafish model has enabled the development of new ap-
proaches, the refinement of techniques, and the insertion of quantitative and qualitative
parameters into the screening of bioactive compounds based on phenotypes. In particular,
zebrafish analysis has been linked to the presence or absence of melanin since the pigmen-
tation process can be observed on the surface of the zebrafish embryo without complicated
experimental procedures [27–30].

Therefore, this work aimed to review the most recent scientific information available
on melanogenesis inhibitors of natural (plant or fungal) and synthetic origin using zebrafish
as an experimental model. An important part of the review involves clarifying how the
zebrafish depigmenting system works and whether it resembles that of humans. The
inclusion criteria for this study were original articles exclusive to the genus and species
studied with full text available in portuguese, english or other languages. Exclusion criteria
included abstracts, online sites without scientific sources, incomplete text, and unrelated or
repeated articles, according to the methodology previously described [31].

The descriptive words used in our search were (a) Trichoderma spp. and their secondary
metabolites; correlated to the potential, (b) anti-melanogenic agent, (c) Tyrosine, (d) natural
and synthetic products in the zebrafish model.
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2. Melanin and Tyrosinase Mechanism of Action

Melanin is synthesized by melanocytes, which are directly related to neighboring
keratinocytes. It is an amorphous substance formed by the polymerization of phenolic and
indole compounds. Specific to the skin, melanin protects the epidermis against harmful
stimuli, such as UV-radiation, through melanogenesis, the process regulating autocrine or
paracrine factors, including α-melanocyte-stimulating hormone and endothelin. Together
with this intricate system, keratinocytes and skin cells, such as fibroblasts and immune cells,
are regulators of the behavior of melanocytes, which, in turn, are produced by paracrine
factors.

This series of reactions makes the polymerized material available spontaneously as
melanin. The formation of melanin is dependent on the catalysis of L-tyrosine in L-DOPA,
but not intermediate dopachrome, also called (TRP2), though both are direct products of
the tyrosinase cycle (Figure 1).
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Figure 1. Synthetic pathway of melanin. Melanin synthesis begins with the catalysis of substrates
L-phenylalanine and L-tyrosine to produce L-DOPA via phenylalanine hydroxylase (PAH), tyrosinase
and, partially, tyrosinase hydroxylase 1 (TH-1). Pathways are then divided into eumelanogenesis or
pheomelanogenesis. The other melanogenic enzymes are TRP-2 (DCT) and TRP-1 for eumelanogenesis.

Melanin is an amorphous polymer, negatively charged, but derived from the auto-
oxidative polycondensation of several quinone groups with hydrophobic properties [32].
Therefore, the pathway of melanogenesis (Figure 1) can be conveniently divided into two
phases: proximal, which consists of the enzymatic oxidation of a monophenol (tyrosine)
and/or o-diphenol (L-DOPA), to its corresponding O-quinone and distal, which is represented
by chemical and enzymatic reactions occurring after the formation of dopachrome to direct
the synthesis of eumelanins, which are either derived from DHICA (5,6-dihydroxyindole-2-
carboxylic acid; brown) or from DHI (5,6-dihydroxyindole; black) [33–37].

Therefore, synthesis of eumelanin is directly linked to the process of melanin pigments
responsible for retaining the ability to deactivate free radicals, peroxides and absorb heavy
metals and toxic electrophilic metabolites, thus exhibiting strong antioxidant activity in
addition to absorbing light in a wide spectrum range including UV [3,38]. By deregulating
this system, hyperpigmentation can occur. This is equivalent to tyrosinase hyperactivity,
which is normally associated with pathological disorders, such as spots, melasma and
the appearance of melanomas [39]. Therefore, it is fundamentally important to regulate
tyrosinase productions so that balance in the melanogenesis process is maintained and
pathogenicity is avoided [40,41].

3. Inhibitors of Melanogenesis by Fungi of the Genus Trichoderma

The literature presents several potential tyrosinase inhibitors, both from natural and
synthetic sources. However, studies that investigate the molecular and functional char-
acterization of this enzyme are rare, mainly those specific to anti-melanogenic activity
originating from organisms, such as heterotrophs. In this sense, fungi stand out for their
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potential, with greater occurrence in the genus Trichoderma (Hypocreales, Ascomycota), hav-
ing more than 300 species with high adaptive capacity, favoring their presence in different
natural environments under different climatic conditions [42–44].

Species of the genus Trichoderma, order Hypocreales, have greater phytogeographic
occurrences in the soil of regions with a humid tropical climate. Such conditions produce a
class of Hyphomycetes characterized as filamentous and cosmopolitan fungi with diverse
biotechnological applications [43,45,46]. Given these characteristics, various species of
Trichoderma use a wide variety of compounds as a source of carbon and nitrogen, a typical
characteristic of fungi from saprophytic soil [47].

Drawing on their chemodiversity, tyrosinase inhibitors biosynthesized by fungi are
derived from isoflavones and pyrones, along with terpenes, steroids, and alkaloids, which
can reversibly or irreversibly inactivate the enzyme [48].

In particular, some studies report Trichoderma reesei and Trichoderma harzianum as
significant producers of extracellular tyrosinase, previously characterized, isolated and
purified by precipitation with ammonium sulfate (85%). Purified tyrosinase exhibited a final
specific activity of 69.39 and 65.11 U/mg of protein, values which double the purification
of 21.09 and 14.93 for T. reesei and T. harzianum, respectively [49,50].

Other studies described the activity of fungal extracts of Trichoderma atroviride, Tricho-
derma gamsii, Trichoderma guizhouense and Trichoderma songyi. These extracts were reported
to have tyrosinase inhibitory capacity associated with the elimination of reactive quinone
products. Furthermore, a trichoviridine cyclopentyl isocyanide, MR566A and MR566B,
isolated from T. reesei, showed moderate cytotoxicity against the human melanoma cell line
A375-S2 [51].

Studies show that antioxidant activity is associated with the ability to inhibit tyrosi-
nase. However, fungal extracts of Trichoderma atroviride, Trichoderma gamsii, Trichoderma
guizhouense and Trichoderma songyi, of marine origin, which showed a considerable ability
to inhibit tyrosinase (IC 50 < 100 µg/mL), demonstrated low radical scavenging activity
(<50%). This suggests the presence of other mechanisms that inhibit tyrosinase, such as
competitive inhibitors, including copper chelators that inhibit this metal coenzyme, or
suicide inhibitors that inactivate tyrosinase by altering tertiary and quaternary structures
of the enzyme [52].

Viridiofungins, broad spectrum antifungal agents, are derived from the secondary
metabolite of Trichoderma viride. They act as inhibitors of tyrosinase and farnesyl transferase
and the farnesylation of the oncogenic Ras protein, indicating their potential to treat
cancer [53]. Furthermore, an oxazole derivative called melanoxazal, which is isolated from
the fermentation broth of Trichoderma strain ATF-451, showed strong inhibitory activity
against mushroom tyrosinase [54].

A strain of T. harzianum, an isomer designated as MR304A, was isolated and identified
as an isocyanide compound, demonstrating inhibition of melanin formation in Streptomyces
bikiniensis and B16A melanoma cells [55]. Still related to T. harzianum isolated from soils,
the authors verified the inhibition of melanin synthesis by two new tyrosine inhibitors.
MR566A, along with a new oxazole compound, MR93B, exhibited activity similar to that
of MR93A. in addition to isocyanide compounds, identified as derivatives of alkyl citrate
(Table 1) [56,57], a group of isocyanide compounds acting in the inhibition of tyrosinase
activity [20].
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Table 1. Secondary metabolites found in fungi of the genus Trichoderma with anti-melanogenic effect. Structures of tyrosinase inhibitors from Trichoderma spp.

Fungus Molecules and Their Derivatives Reference

Trichoderma viride

1 
 

 
 
 

 
 
 

 

Viridiofungins and derivatives (R = -OH; -H; -C=O)

Reino et al. [53]

Trichoderma spp.

1 
 

 
 
 

 
 
 

 

Melanoxazal

Takahashi et al. [54]

Trichoderma harzianum

1 
 

 
 
 

 
 
 

 

Lee et al. [55]
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The strain Trichoderma viride H1-7 from a marine environment presented a tyrosinase
inhibitory factor through the Homothallin II structure (Table 1). It was preliminarily isolated
and studied as an antibiotic from Trichoderma koningii and T. harzianum [58]. These fungi
are excellent producers of extracellular enzymes, and seven new molecules were isolated
from the metabolites of these species, demonstrating anti-melanogenic activity by binding
to the copper active site [48].

In addition to experimental research involving endophytic fungi with enzymatic
activity against tyrosinase, the supernatant of the metabolite of Trichoderma atroviride has
found an industrial use in the manufacture of functional whitening cosmetics, but it is also
a potential inhibitor of tyrosinase [59].

4. Anti-Melanogenic Activity in Zebrafish Embryo

Assays involving the mechanisms of action of tyrosinase have become increasingly
important for two reasons: (a) the elucidation of inhibitory pathways in melanin pigment
synthesis; and (b) the growing demand for anti-melanogenic agents capable of reducing
or inhibiting the unwanted side effects of current treatments [60]. Consequently, R&D
efforts have turned to experimental models, such as zebrafish, able to facilitate the in vivo
screening of anti-melanogenic agents. Such models are low in cost, but high in fertilization
rate and genetic homogeneity, relative to mammalian models, thus enabling screening for
tyrosinase-reactive drugs and cosmetics [60].

Compared to the zebrafish model, traditional models have both physiological and
economic disadvantages. Therefore, experimental robustness and safety in zebrafish,
as a phenotype-based screening model for melanogenic inhibitors or stimulators, have
advanced considerably in recent years [61,62].

Because it is a model with biological similarity to more complex organisms, its genome
shares more than 70% genes with humans [63,64]. This small teleost has three types of
pigment cells: iridophores (containing reflective lines, blue), xanthophores (yellow) and
melanophores, factors that have favored its use (Figure 2). The existence of homogeneity in
the genetic characteristics of genes related to melanogenesis in zebrafish, such as TYR that
gives instructions for making tyrosinase, which resemble mammalian genes, is decisive for
the selection of this experimental model in anti-melanogenic studies [65,66].
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Figure 2. Zebrafish pigment cells include xanthophores (xp), iridophores (ip) and melanophores
(mp). The main external barrier is the epidermis, which consists of two layers of cells connected by
tight junctions. Certain substances can pass through the epidermis mesenchymal space by diffusion
or by active transport (adapted from Irene et al. [67]).

The zebrafish model can be used to understand phylogeny mechanisms and TYR
patterns expressed in melanophores relative to time. Specifically, the formation of pigmen-
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tation in zebrafish begins directly in the epithelium and pigment of the developing retina
with subsequent transcription of TYR within 16.5 h post fertilization (hpf). Melanin in
melanophores can be detected in the dorsolateral skin and retina at approximately 24 hpf.
Because melanin is synthesized in melanophores in the early stages of zebrafish embryonic
development, microscope-assisted observation is possible [30,61,66].

On the other hand, tyrosinase inhibitors derived from secondary metabolites of bac-
teria and fungi are known to produce anti-melanogenic compounds. Currently, many
of these molecules have been identified (Figure 3) and tested for their anti-melanogenic
activity in zebrafish [68,69].
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Figure 3. Schematic diagram showing the possible mechanism of action of depigmenting agents on
zebrafish embryo. The embryonic chorion is composed of a nanoporous outer membrane 500–700 µM
in diameter. The chorion is composed of a three-layer structure (extraembryonic mesoderm) with
four main polypeptides. Small or hydrophobic molecules can diffuse across the lipid bilayer (adapted
from Bonsignorio et al. [70]; Jon et al. [71]).

Among the most commercially used tyrosinase inhibitors, kojic acid and its derivatives
are derived from secondary metabolites produced by fungi of the genera Aspergillus and
Penicillium [35,72]. These metabolites are used in the cosmetics industry for skin whitening,
as well as a food additive to prevent enzymatic browning in the food oxidation process.
However, they are also used as a standard in research involving melanogenesis inhibitory
activity in the zebrafish model [3,37]. Kojic acid is hydrophilic and acts as a Cu2+ chelating
agent at the active site of tyrosinase to suppress the tautomerization of dopachrome to
5,6-dihydroxyindole-2-carboxylic acid [68,73].

Ethanolic extract of Laetiporus sulphureus (LSE) and Agaricus silvaticus (ASE), edible
mushrooms, underwent biochemical mapping for their anti-melanogenic effect and were
found to effectively inhibit melanogenesis in a dose-dependent manner (400–500 µg/mL).
However, the exploited extracts at the depigmenting dose did not show adverse effects on
the melanocytes of zebrafish embryos [74].

To validate the in vivo anti-melanogenesis activity of Antrodia cinnamomea ethanol
extracts, a study was based on the zebrafish phenotype. In experiments, the AC_Et50_Hex
extract fraction exhibited depigmenting activity similar to that of kojic acid (56.1% vs.
52.3%), but with lower dosage (50 ppm vs. 1400 ppm), in addition to demonstrating less
toxicity to embryos [75].

Studies which evaluated the ability of modified Shiitake extract (A37) and wild Shiitake
extract (WE) demonstrated that A37 conferred less pigmentation in zebrafish embryos and
inhibited the growth of melanoma cells better than WE. The difference in cell cycle profile
suggests that the greater anticancer effect of the A37 extract results from changes in the
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metabolite produced as a result of mutation such that A37 is also capable of inhibiting
GSK3β phosphorylation. Both extracts contain 14 compounds in common [76].

Azelaic acid [(1, 7-heptanedicarboxylic acid) Table 1], produced by Pityrosporum ovale,
a strain found naturally in wheat, rye and barley [77,78], is often used for the treatment
of acne, rosacea, skin pigmentation and freckles. The compound can bind to amino and
carboxyl groups and prevent the interaction of tyrosine in the active site of tyrosinase,
acting as a competitive inhibitor [73,79,80].

Interestingly, azelaic acid has demonstrated thioredoxin reductase inhibition in cul-
tured human keratinocytes, melanocytes, melanoma cells, murine melanoma cells and
purified enzymes from Escherichia coli, rat liver and human melanoma [77,81]. This may
explain the antiproliferative and cytotoxic effect, the synthesis of deoxyribonucleotides.
Moreover, azelaic acid, when combined with taurine, an antioxidant compound, inhibits
tyrosinase by activating the ERK pathway [82,83].

5. Natural Products Used as Melanogenesis Inhibitors in Zebrafish

Melanogenic inhibitors 1-phenyl-2-thiourea, arbutin, kojic acid, 2-mercaptobenzothiazole
and synthesized compounds (haginin, YT16i) [61] were used in zebrafish embryos, and
the inhibitory effects on pigmentation were indicated. However, compound YT16i showed
major abnormalities in terms of morphological deformities and cardiac function, along
with high toxicity at higher concentrations (Table 2) [66].

Table 2. Compounds and metabolites derived from plant species used as melanogenesis inhibitors in
zebrafish embryos relative to concentration and toxicity.

Entry Bioactive
Compound/Structure Mechanism Toxicity/Concentration Reference

1 Fisetin
Blocks

tyrosinase-induced
tyrosine oxidation

Did not show (25 µM,
50 µM, 75 µM, and

100 µM)
Ilandarage et al. [61]

2 KDZ-001 TYR active site Did not show (10 µM) Kyu-Seok et al. [60]

3 1-phenyl-2-thiourea Unknown Did not show Ilandarage et al. [52]

4 2-mercaptobenzothiazole Unknown Did not show Ilandarage et al. [61] 2020;
Tae-Young et al. [66]

5 Haginin Unknown Did not show Tae-Young et al. [66]

6 YT16i Unknown Showed toxicity
(1 mM) Tae-Young et al. [66]

7 triclocarban (3,4,4′-
trichlorocarbanilide) Unknown Showed toxicity

(50 µg/L). Giulia et al. [62]

8 Adenosine
Inhibits melanogenesis

by down-regulating
tyrosinase

Did not show (400 µM) Mi Yoon et al. [84]

9 Ecklonia cava
seaweed extract Unknown Slight toxicity (400 µM) Kang et al. [85]

10 Sargassum siliquastrum
seaweed extract Unknown Did not show (400 µM) Kang et al. [85]

11 Ganoderma formosanum
mycelium extract

Blocks
tyrosinase-induced
tyrosine oxidation

Did not show (400 ppm) Kai et al. [86]

Triclocarban (3,4,4′-trichlorocarbanilide) has TYR inhibition activity and is present in
soaps, shampoos, cosmetic detergents, and toothpastes [62]. At a concentration of 50 µg/L,
zebrafish embryos exposed to triclocarban showed signs of toxicity, such as mortality and a
significant index of teratogenicity [62]. Based on this characteristic, several studies have
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already shown that the exposure of developing embryos to chemicals considered pollutants
will cause the dysregulation of thyroid hormones, resulting in craniofacial and ocular
pathologies [87,88].

Omeprazole reduces pigment area density in zebrafish embryos by 63% at a concen-
tration of 60 µM. Furthermore, intracellular TYR activity was decreased by 48%, compared
to untreated zebrafish embryo, after treatment with omeprazole [89].

Several studies on plant and fungal extracts used zebrafish as an in vivo experimental
model to investigate tyrosinase inhibition or their activity as depigmenting agents. Among
these studies, extracts from Ecklonia cava and Sargassum siliquastrum seaweeds showed
slight toxicity. Phlorofucofuroeckol-A (PFF-A) isolated from a seaweed species, Ecklonia
cava, demonstrated an attenuating effect against tyrosinase in the B16F10 cells of zebrafish
embryos. When evaluating the safety and efficacy of PFF-A for anti-melanogenic effects,
the study tested low doses of PFF-A (1.5–15 nM) [90]. This suggests that low doses of
E. cava derived PFF-A can suppress embryonic pigmentation and melanogenesis. This
indicates the possibility of using PFF-A as an anti-melanogenic agent [90].

Studies with extracts of the marine Pseudomonas anoectochilus and P. narcissus showed
a potentiated effect in inhibiting zebrafish embryo TYR [85,91], and the natural compound
derived from oleic acid, produced in the small intestine as oleoylethanolamide, reduced
TYR by about 49.5% at a concentration of 150 µM in zebrafish embryos [92]. In contrast,
sesamol, a bioactive lignan from Sesamum indicum, inhibited melanin biosynthesis in a
concentration-dependent manner in zebrafish embryo. The absence of pigmentation can
be explained by reduced TYR activity and gene expression related to melanogenesis [93]
(Table 3).

Table 3. Compounds and metabolites derived from plant species used as melanogenesis inhibitors in
zebrafish embryos.

Entry Name Chemical Structure Reference

1. Mearsetin
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Table 3. Cont.

Entry Name Chemical Structure Reference

4. Niacinamide
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Table 3. Cont.

Entry Name Chemical Structure Reference
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Table 3. Cont.

Entry Name Chemical Structure Reference
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Table 3. Cont.

Entry Name Chemical Structure Reference
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Kim et al. [96]; Hsu et al. [86];
Thach et al. [120]

Hydrophobicity is an important feature that demonstrates an affinity for permeating
cell membranes. For zebrafish, several membrane layers must be taken into account,
including chorion, melanocyte cell membrane and melanosome plasma membrane [70,121].

Chorion is a porous channel measuring 0.5 to 0.7 µm in diameter with a gap at
intervals of 1.5 to 2.5 µm. It surrounds the embryo, thus reducing the rate of diffusion
of small molecules in the embryo (Figure 3) [103,106]. Most of these compounds show
conformity in the benzene ring structure with a varied number of hydroxyl groups (OH)
bonded to it. This chemical feature may explain the cellular permeability that leads to TYR
inhibition [70,122,123].

Twenty-seven new cinamides, consisting of cinnamic acid derivatives similar to 1-
aryl piperazines, were synthesized and evaluated for potential tyrosinase inhibitory ac-
tivity. Among them, 3-chloro-4-fluorophenyl moiety at the N-1 of the piperazine ring
was essential for potent tyrosinase inhibitory effect with 3-nitrocinnamoyl and 2-chloro-3-
methoxycinnamoyl. In general, all compounds characterized by the presence of 1-(3-chloro-
4-fluorophenyl)piperazine () demonstrated the ability to inhibit melanogenesis in A375
human melanoma cells and zebrafish embryos. One of the most potent compounds in this
series, 19 t, significantly reduced embryonic pigmentation at a concentration of 50 µM, but
showed 100% mortality in an acute toxicity test [124].

7. Conclusions

Tyrosinase plays a key role in disorders related to depigmentation changes in humans.
Thus, TYR inhibitors may be the best option for treatment. Much research has been ad-
vancing in the discovery of new inhibitors. A variety of plants and fungi are important
producers of bioactive metabolites inhibiting tyrosinase. Trichoderma is the most studied
genus in terms of tyrosinase inhibition since metabolites of its species are derived from
isoflavones and pyrones, along with terpenes, steroids and alkaloids, which can reversibly
or irreversibly inactivate the enzyme. In recent years, research has guided important ad-
vances in the development of technologies and in the screening of bioactive compounds.
Moreover, in vivo tests have intensified the use of the experimental zebrafish model based
on phenotypes in which melanin pigments can be observed on the zebrafish surface, allow-
ing the simple observation of the pigmentation process without complicated experimental
procedures. For this reason, the zebrafish is gaining increasing viability as an in vivo model
to evaluate the depigmenting activity of melanogenic regulatory compounds.
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