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Abstract: The therapeutic efficacy of nanoscale drug delivery systems is related to particle size, zeta
potential, morphology, and other physicochemical properties. The structure and composition of
nanocarriers may affect their physicochemical properties. To systematically evaluate these char-
acteristics, three analogues, namely polyethylene glycol (PEG), PEG-conjugated octadecylamine
(PEG-C18), and tri(ethylene glycol) (TEG), were explored as nanocarriers to entrap celastrol (CSL) via
the injection-combined dialysis method. CSL nanoparticles were successfully prepared as orange
milky solutions, which revealed a similar particle size of approximately 120 nm, with narrow distri-
bution and a negative zeta potential of −20 mV. All these CSL nanoparticles exhibited good storage
stability and media stability but presented different drug-loading capacities (DLCs), release profiles,
cytotoxicity, and hemolytic activity. For DLCs, PEG-C18/CSL exhibited better CSL entrapment
capacity. Regarding the release profiles, TEG/CSL showed the lowest release rate, PEG-C18/CSL
presented a moderate release rate, and PEG/CSL exhibited a relatively fast release rate. Based on
the different release rates, PEG-C18/CSL and TEG/CSL showed higher degrees of cytotoxicity than
PEG/CSL. Furthermore, TEG/CSL showed the lowest membrane toxicity, and its hemolytic rate was
below 20%. These results suggest that the structural effects of nanocarriers can affect the interactions
between nanocarriers and drugs, resulting in different release profiles and antitumor activity.

Keywords: structural effect; degree of branching; composition; hydrophobic interaction; steric hindrance

1. Introduction

Nanoscale drug delivery systems (NDDS) play important roles in hydrophobic drug
delivery [1,2]; therefore, they have been extensively studied during the last several
years [3,4]. Many nanomaterials, especially amphiphilic block copolymers, are utilized as
nanocarriers to load hydrophobic drugs via physical entrapment [5–7]. In this process, the
hydrophobic chains in amphiphilic copolymers entrap hydrophobic drugs, which form the
inner core, while the hydrophilic chains form the outer shell, thus contributing to aqueous
solubility [8,9]. During the formation of these amphiphilic copolymers, PEGs are applied
as hydrophilic portions owing to their excellent aqueous solubility, biosafety, and stealthy
properties [10,11].

Although amphiphilic copolymers have shown efficacy in the formation of NDDS,
their drug-loading content, stability, release profile, and antitumor activity are signifi-
cantly affected by the structure of nanocarriers [12,13]. It is reported that the structure or
components of amphiphilic copolymers can influence their particle size, surface charge,
morphology, and other physicochemical properties, thus inducing different therapeu-
tic effects [14–16]. In a previous study, PEG was conjugated with different numbers of
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PCLs to form amphiphilic copolymers, and a fiber-like and spherical morphology was
observed [17]. Moreover, nanocarriers with a high degree of branching exhibit better antitu-
mor efficacy owing to their unique topological structure and more functional groups [18–20].
In another study, to research the effect of composition, different PEGylated amphiphilic
copolymers were explored to construct NDDS [21]; however, it is difficult to reach convinc-
ing conclusions on the influence of amphiphilic copolymers on antitumor efficacy due to
the lack of a unified standard.

In our previous research, the structural effect and components of nanocarriers were
studied in detail. Different from the use of amphiphilic copolymers as nanocarriers, the
potential of hydrophilic polymers to entrap hydrophobic drugs via several PEG derivatives
was investigated, and it was found that the structures of nanocarriers affect the particle size
and morphology of NDDS, further resulting in different levels of antitumor activity [22].
The results show that the tumor inhibition rate depends on the degree of the branching of
nanocarriers, which is significantly enhanced with a change in the structure from a linear
chain to a branched dendron [23]. Furthermore, it is clear that the components of nanocar-
riers also affect their antitumor activity. Although hydrophilic PEGs as nanocarriers have
shown good entrapment capacity to load hydrophobic drugs and prepare effective NDDS,
they have lower levels of antitumor efficacy than PEG-decorated amphiphilic copolymers,
which have stronger interactions with hydrophobic drugs or cell membrane [24,25]. These
results reveal that the antitumor activity of NDDS based on PEGs as nanocarriers may
be promoted by increasing the degree of the branching of PEG chains or introducing
hydrophobic chains. While these effects have been individually researched in previous
reports, it is difficult to reach conclusions on the combination of these effects based on the
published results.

To systematically compare and study the effects of the structure and components of
nanocarriers, in this study, three different PEG derivatives were applied as nanocarriers
to prepare NDDS, in which hydrophobic celastrol was selected as a model drug. The
injection-combined dialysis method was utilized to prepare CSL-loaded nanoparticles.
After the successful preparation of nanoparticles, their particle size, size distribution,
zeta potential, stability, release profile, antitumor efficacy in vitro, and hemolytic capacity
were evaluated.

2. Results and Discussion
2.1. Celastrol-Loaded Nanoparticles

To compare the effects of the structure and hydrophobic chains, PEG, PEG-C18, and TEG
were selected as nanocarriers to construct CSL-loaded nanoparticles via the ultrasonication–
dialysis method (Figure 1). CSL and the nanocarriers (8/1, w/w) were dissolved in DMF,
injected into distilled water under continuous ultrasonication, and dialyzed against deionized
water. Finally, orange CSL nanoparticle solutions were successfully obtained.

The DLCs of these CSL nanoparticles were determined via HPLC. All the nanocarriers
presented moderate to good encapsulated efficacy, and the DLCs were 77.8%, 87.3%, and
68.5% for PEG/CSL, PEG-C18/CSL, and TEG/CSL, respectively (Table 1). The relevant
encapsulate efficiencies (EE) where it was considered that CSL NPs presented “core-shell”
structure, in which CSL was encapsulated by nanocarriers to form the hydrophobic core,
meanwhile, the hydrophilic portion of nanocarriers dispersed on the outer of nanoparticles
to contribute to the hydrophilicity. During the assembly process, a DLC would be affected
by the hydrophobic interactions and steric hindrance. PEG and PEG-C18 revealed a
similar degree of entrapped efficacy, which was better than that of TEG. This phenomenon
could be attributed to the different degrees of steric hindrance; PEG and PEG-C18 have
flexible linear chains and, therefore, low steric hindrance. Although the structure of TEG
is also a linear chain, many tri(ethylene glycol) compounds exist as side chains around
the main chain, thus enhancing steric hindrance and reducing the space capacity of the
nanocarriers, which induced low drug-loading capacity [26]. Moreover, PEG-C18 presented
higher entrapped efficacy than PEG, because PEG-C18 presented more hydrophobicity than
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PEG. C18 aliphatic chains in PEG-C18 enhance the hydrophobicity of nanocarriers, which
results in stronger hydrophobic interactions between PEG-C18 and CSL. The enhanced
drug-loading capacity of PEG-C18 is shown in Table 1.

Table 1. Results of three CSL-loaded nanoparticles.

Samples
DLS Results HPLC Results

Dh (nm) a PDI ζ (mV) b EE (%) DLC (%)

PEG/CSL 125.4 ± 3.2 0.10 ± 0.01 −23.7 ± 0.6 44.3 ± 5.6 77.8 ± 3.2

PEG-C18/CSL 121.7 ± 1.3 0.09 ± 0.04 −23.2 ± 0.4 83.7 ± 3.5 87.3 ± 2.8

TEG/CSL 119.0 ± 0.9 0.11 ± 0.01 −25.7 ± 0.6 26.9 ± 4.9 68.5 ± 3.1
a Hydrodynamic diameter. b Zeta potential. All the data are mean value ± SD, n = 3.
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Figure 1. Structure of three nanocarriers and illustration of CSL-loaded nanoparticles.

2.2. Particle Size and Morphology of CSL Nanoparticles

All these CSL-loaded nanoparticles were measured via DLS, and their hydrodynamic
diameter, particle size distribution, and zeta potential are shown in Table 1. The three CSL
nanoparticles presented similar particle sizes, PDIs, and zeta potentials. The hydrodynamic
diameters of these CSL nanoparticles were approximately 120 nm, and a single peak was
observed in DLS curves with a narrow distribution (Figure 2a,c,e). The PDI values of these
nanoparticles were approximately 0.1. These results suggest that the CSL nanoparticles
exhibited good uniformity. Moreover, the zeta potentials of these CSL nanoparticles were
approximately −23 mV due to the carboxyl group of CSL. A high absolute potential value
ensures the better stability of nanoparticles in an aqueous solution.

The morphologies of these CSL nanoparticles were observed using TEM, which re-
vealed similar nanospheres (Figure 2b,d,f). For all the nanoparticles, the particle sizes
measured using TEM were smaller than those measured via DLS, which were approxi-
mately 80 nm. This phenomenon could be explained by the different measuring conditions
of these two techniques. The particle size detected with DLS is the hydrodynamic diameter,
while in TEM, it is the measured size of the dry nanoparticles.
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2.3. Stability

These CSL nanoparticles were stored at 4 and 25 ◦C for 28 days to determine their
storage stability, and their particle sizes were recorded and are shown in Figure 3. No
aggregation or precipitation was observed during the entire storage period at 25 ◦C. Their
hydrodynamic diameters were maintained at approximately 125 nm. When the nanopar-
ticles were stored at 4 ◦C, a similar phenomenon occurred. These results reveal that CSL
nanoparticles have excellent storage stability.
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The media stabilities were also assessed. The CSL nanoparticles were added in PBS
(pH 7.4), 5% glucose solution, 0.9% solution, and plasma. All the CSL nanoparticles pre-
sented good levels of stability in PBS (pH 7.4), 5% glucose solution, and plasma. After
mixing with the 5% glucose solution, the particle sizes slightly increased, which were
approximately 155, 175, and 185 nm for PEG/CSL, TEG/CSL, and PEG-C18/CSL, respec-
tively. During the subsequent 24 h, the particle sizes were maintained, and no significant
change was observed during the incubation period (Figure 4a). A similar phenomenon
occurred when the CSL nanoparticles were incubated with plasma: The particle sizes of
these nanoparticles slightly fluctuated within the initial 4 h and then maintained a constant
in the following 20 h (Figure 4b). This phenomenon may be attributed to the interactions
between nanoparticles and plasma proteins [27,28]. It was reported that nanoparticles
might be regulated by plasma proteins after entering a physiological environment, which
could bind the surfaces of the nanoparticles to form the protein crown. The CSL nanoparti-
cles interacted with plasma proteins to form nanoparticle–protein complexes within the
initial 4 h, resulting in the fluctuation in the particle size; the complexes were stable in the
subsequent incubation time, and the particle sizes were maintained.
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2.4. Cumulative Release Behavior

To determine the release profiles, the dialysis membrane method was used with PBS
(pH 7.4) as the release medium to mimic the release process in a physiological environment.
The free CSL under the same conditions was used as the control (Figure 5). The free CSL
(the CSL DMSO solution) presented a fast release rate, as it was completely released in
12 h. CSL nanoparticles exhibited sustaining release profiles, and their release process
ranged from 4 to 8 days. Compared with the free CSL, the CSL nanoparticles revealed slow
release rates, which may be attributed to the core–shell structure of the CSL nanoparticles,
consistent with previous reports [29,30].
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Moreover, these CSL nanoparticles presented similar release tendencies but different
release rates. Specifically, more than 95% of the CSL was released from PEG/CSL, PEG-
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C18/CSL, and TEG/CSL nanoparticles at 4, 6, and 8 days, respectively. PEG/CSL exhibited
a fast release rate, PEG-C18/CSL had a moderate release rate, and TEG/CSL presented a
relatively slow release rate. This result was caused by the different interactions and extent of
steric hindrance among these CSL nanoparticles. PEG/CSL nanoparticles presented faster
release rates than the other two nanoparticles because the hydrophobic interactions between
PEG and CSL were weak, resulting in their fast release. For PEG-C18/CSL nanoparticles,
the hydrophobic interactions were enhanced due to the hydrophobicity of C18 chains. For
TEG/CSL nanoparticles, although the hydrophobicity was almost the same as that in PEG,
the steric hindrance was stronger than the steric hindrance in PEG. After entrapment by
TEG and the formation of the hydrophobic core, the SL release rate from the inner core to
the outer shell was significantly affected by the steric hindrance of the outer shell. Based on
these results, the hydrophobicity and steric hindrance of nanocarriers may affect the drug
release rate [31,32]. Therefore, these factors should be thoroughly considered when a drug
delivery system is prepared.

2.5. MTT Assay

A 4T1 cell line was utilized to evaluate the cytotoxicity of CSL nanoparticles, and a
CSL DMSO solution under the same conditions was used as the control (Figure 6). All these
samples showed concentration-dependent cytotoxicity, and the IC50 values were 1.55 ± 0.21,
0.96 ± 0.08, 0.72 ± 0.04, and 0.70 ± 0.06 µg/mL for the free CSL, PEG/CSL, PEG-C18/CSL,
and TEG/CSL nanoparticles, respectively. Compared with the free CSL, the cytotoxicity
of the CSL nanoparticles was significantly enhanced (p < 0.001). This finding is consistent
with the findings of previous reports [33], which could be explained by the different uptake
mechanisms of free drugs and nanoparticles. Free drugs cross the cell membrane via passive
diffusion, while nanoparticles transfer to cells via a facilitated endocytosis mechanism [34].
Based on these results, it was concluded that the CSL nanoparticles exhibited greater
activity than the free CSL. Furthermore, compared with PEG/CSL, PEG-C18/CSL, and
TEG/CSL, the nanoparticles presented higher levels of antitumor activity (p < 0.05), owing
to their different release rates. Based on the cumulative release curves, 70% of the CSL
was released from PEG/CSL after 48 h of incubation, whereas approximately 50% of the
CSL was released from PEG-C18/CSL or TEG/CSL nanoparticles. The free CSL molecules
could not be effectively transferred through endocytosis, thus resulting in a low cytotoxicity
of PEG/CSL.
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2.6. Hemolytic Analysis

Based on our previous study, it was found that the CSL has severe membrane toxicity
in red blood cells. To verify their levels of membrane toxicity, these CSL nanoparticles were
incubated with red blood cell suspension for 4 h and detected with an Elisa reader, and their
hemolytic rates are shown in Figure 7. Compared with the free CSL, the hemolytic rates of
the CSL NPs were improved, which can be explained by the “core–shell” structure of the
nanoparticles. After entrapping the CSL molecules into the core, the nanocarriers form the
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hydrophilic shell, through which they avoid or decrease the interactions between the CSL
molecules and the erythrocyte membrane. Moreover, the hemolytic rates of all three CSL
nanoparticles depended on the CSL concentration; no hemolysis was shown when the con-
centration was below 0.125 mg/mL CLS, while with a further increase in the concentration,
these three CSL nanoparticles presented different hemolytic rates. PEG/CSL and PEG-C18
CSL revealed significant levels of membrane toxicity when the concentrations were 0.25 and
0.50 mg/mL, respectively, and the hemolytic rate exceeded 60%. For TEG/CSL, although
membrane toxicity was observed when the concentration was 1.00 mg/mL, the hemolytic
rate was below 20%. These results were consistent with those found for the cumulative
release. A low release rate presented less opportunity for the free CSL molecules to interact
with the red blood cell membrane, thus leading to a low hemolytic rate.
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3. Materials and Methods
3.1. Materials

Celastrol (CSL, 98% purity) was purchased from Aktin Chemicals, Inc. (Chengdu,
China). Tri(ethylene glycol) (TEG, Mn = 2217) and PEG-C18 were synthesized according to
previous reports [35]. Polyethylene glycol (PEG, Mn = 2000) was obtained from Ponsure
Biotechnology, Ltd. (Shanghai, China). The dialysis membrane (MWCO 8000~14,000) was
purchased from Spectrum Laboratories Inc. (Los Angeles, CA, USA). The 4T1 cell line, cell
culture materials, including 96-well plates, an RPMI 1640 medium, phosphate-buffered
saline (PBS), 0.25% trypsin, and fetal bovine serum were obtained according to previous
papers [36]. Acetonitrile and methanol were chromatographically pure and purchased
from Scientific Fisher (Hampton, NH, USA). Other reagents were analytically pure and
directly used without further purification.

3.2. CSL-Loaded Nanoparticles

The CSL (16 mg) and nanocarriers (PEG, PEG-C18, and TEG, 2 mg), were dissolved
in 5 mL DMF, separately. According to a published paper [37], the organic solutions were
injected into 5 mL of deionized water under continuous ultrasonication for 10 min, the
mixture was added to the dialysis membrane, and deionized water (4 × 1 L) was used
as the external dialysate, which was replaced every 2 h. These CSL-loaded nanoparti-
cles with orange milky appearance were collected. The CSL concentration was detected
via HPLC (Ultimate 3000, DIONEX, Sunnyvale, CA, USA) with a C18 column (5 µm,
4.60 mm × 250 mm); the specific conditions of detection were defined according to previ-
ous reports [38]. The calibration curve (Y = 0.5976 X − 1.5423, R2 = 0.9998) was utilized
to calculate the CSL concentration. The DLC of the CSL in nanoparticles was calculated
as follows:

DLC% = (CCSLV/weight of nanoparticles) × 100% (1)
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3.3. Dynamic Light Scattering (DLS)

The particle size, size distribution (polydispersity index, PDI), and zeta potentials
were detected using a Zetasizer Nano-ZS analyzer (Malvern, UK) at room temperature. A
backscattering detection pattern (He-Ne laser, 633 nm, 4 mV, and 173◦ scattering angle)
was utilized to carry out the measurements. The samples (1 mg/mL) were measured
three times.

3.4. Transmission Electron Microscopy

Transmission electron microscopy (TEM) measurements were performed with a JEM-
1400 instrument at an accelerating voltage of 120 KV. The samples were prepared by
drop-casting CSL-loaded nanoparticle solutions (0.1 mg mL−1) onto carbon-coated copper
grids and dyed (2% uranyl acetate, w/v). After air-drying, the imaging of these samples
was performed with TEM.

3.5. Stability Measurement

The samples were stored at 4 and 25 ◦C for 28 days. The particle sizes and PDI values
were recorded using DLS at 0, 1, 2, 4, 7, 14, 21, and 28 days. The measurements were carried
out in triplicate.

The media stability rates of these CSL nanoparticles were evaluated in a normal saline
solution, a 5% glucose solution, a PBS solution (pH 7.4), and plasma. The CSL nanoparticle
solution was mixed with 1.9% NaCl, 10% glucose, 2 × PBS, and plasma (1/4, v/v) to
prepare the tested samples. The media stability rates were monitored for 24 h at 37 ◦C, and
the particle size and PDI values of these samples were recorded at 0, 2, 4, 6, 8, 10, 12, and
24 h. The measurements were carried out in triplicate.

3.6. In Vitro Release

The CSL release profiles from the three nanoparticles were evaluated using the dialysis
method. Briefly, 2 mL nanoparticle solutions were placed into a dialysis membrane and
then immersed in 50 mL PBS. At a predetermined time, 5 mL PBS was withdrawn from the
external solution, and fresh 5 mL PBS was added. The samples were measured with HPLC
to determine the CSL concentration; the relative measurement conditions were explained
in Section 3.2. Then, the cumulative release rate was calculated. The measurements were
carried out in triplicate.

3.7. In Vitro MTT Assay

Briefly, 4T1 cells were cultured according to previous reports [39]. The cytotoxicity
of the CSL nanoparticles was studied using an MTT assay. The 4T1 cells were seeded in a
96-well plate (8.0 × 103 cells/well) at 37 ◦C with 5% CO2 for 24 h. The CSL nanoparticles
were diluted to 0.25, 0.5, 0.75, 1, 1.5, 2, and 2.5 µg/mL with fresh media and then were
added to each well to incubate with 4T1 cells. After 48 h incubation, an MTT solution
(5 mg/mL, 20 µL) was added to each well and cultured for another 4 h. Subsequently,
150 µL dimethyl sulfoxide (DMSO) was added to the well after removing the medium. The
optical density (OD) value of each well was recorded using an ELISA plate reader (Biotek,
Winooski, VT, USA) at 570 nm wavelength. The half maximal inhibitory concentration
(IC50) value was determined using the GraphPad Prism 5 software (No. 5.01). The cell
inhibition rate was calculated as follows:

Cell inhibition rate (%) = (1 − OD treated/OD control) × 100% (2)

where OD treated refers to the cells treated by the nanoparticles and CSL DMSO solution,
and OD control refers to the cells treated using the RPMI-1640 medium.
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3.8. Hemolytic Analysis

Briefly, 5 mL of the blood was drawn from the eyeball of Wistar rats. A red blood cell
(RBC, 2% w/v) solution was prepared according to previous reports. The CSL nanoparticle
solutions were incubated with 2% (w/v) RBC suspension at 37 ◦C for 4 h with different
concentrations (0.06, 0.12, 0.25, 0.50, and 1.00 mg/mL, and CSL equivalent concentration).
After centrifugation, 100 µL of the supernatant was placed into a 96-microwell plate, and
the absorbance was measured at 540 nm using a microplate reader (Versamax Tunable
Microplate Reader, Molecular Devices, San Jose, CA, USA). Deionized water and 0.9% NaCl
were selected as the control, which was assumed to cause 100% and 0% hemolysis, respec-
tively. The experiments were conducted in quintuplicate, and the data are shown as the
mean values plus standard deviation (±SD). All experimental procedures were performed
in accordance with the Ethical and Regulatory Guidelines for Animal Experiments as
defined by the Animal Ethics Committee of Peking Union Medical College (Beijing, China).

3.9. Statistical Analysis

The data between groups were compared using one-way analysis of variance (ANOVA)
(SPSS 25.0, Chicago, IL, USA), and p < 0.05 indicated statistical significance.

4. Conclusions

To evaluate the structural effects of nanocarriers, PEG, PEG-C18, and TEG were
utilized to entrap the hydrophobic anticancer drug CSL. An injection-combined antisolvent
precipitation method was used to effectively prepare the three CSL nanoparticles, and
orange milky solutions were obtained. These CSL nanoparticles presented small particle
sizes of approximately 120 nm and narrow polydispersity indexes. After storage for 28 days,
the CSL nanoparticles showed excellent stability, and their particle size, size distribution,
and zeta potential were maintained. In addition, all of these CSL nanoparticles presented
good media stability, and no significant change was shown in PBS, 5% glucose solution, and
plasma. Based on their different release profiles, the CSL nanoparticles exhibited different
levels of antitumor activity in vitro and membrane toxicity in red blood cells. Compared
with linear PEG/CSL nanoparticles, PEG-C18/CSL and TEG/CSL nanoparticles revealed
slow release rates, high antitumor activity, and low membrane toxicity. Especially for
TEG/CSL nanoparticles, the CSL release process could sustain for 8 days, and the hemolytic
rate was below 20%. In conclusion, the structural effects of nanocarriers can affect the
interactions between nanocarriers and drugs, resulting in different release profiles and
antitumor activity levels. These influencing factors should be systematically considered to
prepare an ideal drug delivery system.
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