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Abstract: Ovarian cancer is a lethal gynecological cancer because drug resistance often results in
treatment failure. The CHK2, a tumor suppressor, is considered to be an important molecular target
in ovarian cancer due to its role in DNA repair. Dysfunctional CHK2 impairs DNA damage-induced
checkpoints, reduces apoptosis, and confers resistance to chemotherapeutic drugs and radiation
therapy in ovarian cancer cells. This provides a basis for finding new effective agents targeting CHK2
upregulation or activation to treat or prevent the progression of advanced ovarian cancer. Here, the
results show that baicalein (5,6,7-trihydroxyflavone) treatment inhibits the growth of highly invasive
ovarian cancer cells, and that baicalein-induced growth inhibition is mediated by the cell cycle arrest
in the G2/M phase. Baicalein-induced G2/M phase arrest is associated with an increased reactive
oxygen species (ROS) production, DNA damage, and CHK2 upregulation and activation. Thus,
baicalein modulates the expression of DNA damage response proteins and G2/M phase regulatory
molecules. Blockade of CHK2 activation by CHK2 inhibitors protects cells from baicalein-mediated
G2/M cell cycle arrest. All the results suggest that baicalein has another novel growth inhibitory
effect on highly invasive ovarian cancer cells, which is partly related to G2/M cell cycle arrest through
the ROS-mediated DNA breakage damage and CHK2 activation. Collectively, our findings provide
a molecular basis for the potential of baicalein as an adjuvant therapeutic agent in the treatment of
metastatic ovarian cancer.
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1. Introduction

Ovarian cancer is one of the most aggressive and leading causes of cancer death among
female cancers worldwide, with an estimated 200,000 deaths in 2020 [1]. In 2021, more than
22,000 ovarian cancer deaths occurred in the U.S., the fifth leading cause of cancer-related
death in women [2]. The high-grade serous ovarian cancer is the most prevalent type of
ovarian cancer and is the leading cause of death from all forms of ovarian cancer due to its
highly aggressive clinical course [3]. The activation of oncogenes such as K-Ras and ErbB2
and the inactivation or mutation of tumor suppressor genes such as BRCA-1 and TP53 are
frequently associated with ovarian cancer [4–6]. Because ovarian cancer is asymptomatic
in its early stage, most ovarian cancer patients are diagnosed at an advanced stage, when
the cancer cells have metastasized, usually to the peritoneum or pelvis, resulting in a poor
5-year survival rate for patients. Therefore, there remains a need for new approaches to
target highly aggressive ovarian cancer at the molecular level.
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DNA damage affects the interpretation and transmission of genetic information. Upon
DNA damage, DNA damage response (DDR) networks, including DNA damage recogni-
tion, checkpoint activation, cell cycle arrest, DNA repair, apoptosis, and immune clearance,
are activated [7]. Once DNA double strand breaks (DSBs) occur, cells must suspend all of
the cell cycle progression for DNA repair, and the MRN (Mre11/Rad50/Nbs1) complex
is recruited to DNA damage sites by histone γH2AX and RAD17 to initiate DNA repair.
The MRN complex on DSBs recruits and directly binds to the inactive homodimeric ATM
protein kinase and converts it into an active monomer [8,9]. Activated ATM phosphorylates
Thr68 and other serine residues on CHK2 (checkpoint kinase 2) to fully activate CHK2
to prevent cell cycle progression, thereby allowing DSB repair. Activated CHK2 phos-
phorylates many intracellular targets; for example, CHK2 phosphorylates and inactivates
CDC25A and CDC25C phosphatases. Activated CDC25A dephosphorylates and activates
CDK2, thereby promoting S phase entry and progression, while activated CDC25C de-
phosphorylates and activates CDK1 to promote G2/M phase progression [9]. Moreover,
activated ATM also phosphorylates H2AX (Ser139) in the chromatin surrounding DSBs,
so forming the γH2AX foci. After the H2AX phosphorylation, chromatin remodeling
complexes and DNA repair proteins are recruited to DSB sites for DNA repair [7,9,10]. In
addition, activated ATM and CHK2 also phosphorylate and activate p53 on Ser15 and
Ser20, respectively, and activated p53 induces G1 cell cycle arrest by upregulating p21.
However, under sustained cellular injury, p53 activation induces apoptosis through the
transcription of proapoptotic genes such as PUMA and NOXA [9].

Epidemiological studies and systematic analyses suggest that increased dietary flavonoid
intake is associated with a reduced risk of some cancers; however, results on the impact
of flavonoid intake on particular cancers remain inconclusive. The inconsistent find-
ings of chemopreventive activity may be due to different flavonoids and different cancer
sites [11,12]. Baicalein (5,6,7-trihydroxyflavone) is a flavone derived from the root of Scutel-
laria baicalensis Georgi that has long been used as a traditional anti-inflammatory medicine.
Baicalein has various properties, such as being an antioxidant, anti-inflammatory, antimicro-
bial, anticancer and neuroprotective [13,14]. Regarding the anticancer activity of baicalein,
studies have shown that baicalein engages in antiproliferative activity against a variety
of different cancers by acting on various biological processes, including cell proliferation,
apoptosis, cell cycle, metastasis and epithelial-mesenchymal transition (EMT). Baicalein
has been shown to inhibit cancer growth by inhibiting oncogenic molecules such as Akt
and MAPK, inducing apoptosis of cancer cells by regulating apoptosis-related proteins
such as Bcl-2 and Bax, and causing cell cycle arrest by modulating cell cycle regulatory
proteins such as cyclins and cyclin-dependent kinases (CDKs) [15]. Baicalein also inhibits
pathological EMT action and matrix metalloproteinases (MMPs) activity to attenuate metas-
tasis [16,17]. Furthermore, recent studies have shown that baicalein-induced apoptosis in
human lung, bladder, and breast cancer cells is associated with the production of reactive
oxygen species (ROS) [18–20].

ROS are recognized as signaling molecules that regulate different physiological func-
tions such as cell proliferation, differentiation, and immune responses. The production of
ROS can activate pro-tumorigenic signaling to enhance cell survival; conversely, increased
ROS can also promote antitumorigenic signaling, which triggers oxidative stress-induced
cell death. Cancer cells can detoxify elevated ROS levels by expressing elevated levels of an-
tioxidant proteins, thereby establishing altered redox balance, maintaining pro-tumorigenic
signaling and resisting apoptosis [21]. Flavonoids are generally considered scavengers
of ROS, including hydroxyl radicals and superoxide anions, and this antioxidant activity
is thought to potentially help prevent cancer. Some flavonoids have shown to have dual
roles in ROS homeostasis; they act as antioxidants under normal conditions to eliminate
pro-tumorigenic signals and are potent pro-oxidants in cancer cells to trigger the apoptotic
signals [22]. For example, flavonoids react with superoxide anions to form relatively sta-
ble aryloxy radicals on flavonoids through single electron transfer so they can scavenge
superoxide anions [23]. The pyrogallol moiety of flavonoids also contributes to superox-
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ide radical scavenging activity [24]. In contrast, some flavonoids, such as baicalein and
quercetin, unexpectedly increase the production of hydroxyl radicals in the Fenton sys-
tem [25]. Therefore, certain flavonoids may act as antioxidants and pro-oxidants, depending
on the concentration and source of free radicals and cellular conditions.

This study explores another possible mechanism to elucidate the growth-inhibitory
effect of baicalein on aggressive human ovarian cancer.

2. Results
2.1. Baicalein Suppresses Highly Invasive Ovarian Cancer Cell Proliferation by Inducing G2/M
Cell Cycle Arrest

To elucidate whether baicalein inhibits the growth of aggressive ovarian cancer cells,
we first assessed the cell viability of highly invasive human SKOV-3 and TOV-21G ovarian
cancers with different ErbB2 levels treated with baicalein. As shown in Figure 1A, treatment
of SKOV-3 (ErbB2high) and TOV-21G (ErbB2low) cells with 50–200 µM baicalein for 48 and
72 h produced significant dose- and time-dependent growth inhibition. The IC50 values
of baicalein treatment for 72 h on SKOV-3 and TOV-21G cells were approximately 54 and
91 µM, respectively. These results show the growth-inhibitory effect of baicalein on ovarian
cancer cells, especially in cells overexpressing ErbB2. Therefore, next, to verify whether the
growth-inhibitory effect of baicalein was derived from an effect on cell cycle progression,
the cell cycle distribution of SKOV-3 cells exposed to baicalein was assessed by PI staining
and analyzed by flow cytometry. The results showed that baicalein treatment resulted in a
significant accumulation of cells in G2/M phase in SKOV-3 cells (Figure 1B). Cells treated
with 200 µM baicalein for 48 h exhibited more pronounced G2/M arrest, with a 1.6-fold
higher percentage of G2/M phase than vehicle controls.
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Figure 1. Effect of baicalein on the proliferation of highly invasive human ovarian cancer cells.
(A) Anti-proliferative effect of baicalein on ErbB2-positive SKOV-3 (ErbB2high) and TOV-21G
(ErbB2low) ovarian cancer cells. Cells were treated with vehicle control (0.15% DMSO, v/v) and
different concentrations (50–200 µM) of baicalein for 48 and 72 h, and the anti-proliferative effect
was evaluated by MTT analysis. The number of viable cells is expressed as a percentage of the
vehicle control. (B) Cell cycle profiles of SKOV-3 cells treated with 100 or 200 µM baicalein for 48 h
were analyzed by flow cytometry. Histograms depicting cell cycle distribution are expressed as the
proportion of SKOV-3 cells accumulating in the G2/M phase after treatment with 100 or 200 µM
baicalein for 48 h. All data are expressed as the mean ± SE of three independent experiments.
*, p < 0.05; **, p < 0.01, compared with the vehicle group.
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2.2. Baicalein Causes ROS Generation and DNA Breakage in Ovarian Cancer Cells

Based on the results presented above, it is speculated that the growth-inhibitory effect
of baicalein on ovarian cancer cells is due to the perturbation of cell cycle checkpoints. Cell
cycle arrest is typically initiated by checkpoint activation in response to DNA damage.
ROS have been reported to be involved in DNA damage leading to cell cycle arrest and/or
apoptosis [5,7]. Therefore, we next tested whether baicalein treatment causes ovarian
cancer cells to generate ROS and cause DNA damage. As shown in Figure 2A, the results
indicated that baicalein treatment produced significant ROS in a dose- and time-dependent
manner in SKOV-3 cells. Furthermore, immunoblotting (Western blotting) data showed
that baicalein treatment increased the phosphorylation of H2AX (γH2AX) at Ser139, a
marker for DNA double-strand breaks (DSBs), in a dose-dependent manner in SKOV-3 and
TOV-21G cells (Figure 2B). Baicalein also time-dependently increased the γH2AX in SKOV-3
cells (Figure 2C). These data suggest that ROS may be involved in baicalein-mediated DNA
damage in ovarian cancer cells.
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Figure 2. Baicalein causes ROS generation and DNA damage in ovarian cancer cells. (A) Baicalein
treatment results in ROS production. SKOV-3 cells were pretreated with H2DCFDA for 1 h and
then treated with 100 or 200 µM baicalein for 2–6 h, and the fluorescence intensity due to ROS
production was measured. (B,C) Baicalein treatment causes DNA double-strand breaks. (B) SKOV-3
and TOV-21G cells were treated with baicalein (50–200 µM) for 48 h or (C) SKOV-3 cells were treated
with baicalein (100 µM) for the indicated times (12–72 h), and the protein levels of phosphorylated
H2AX (a DNA double-strand break marker) were measured by immunoblot analysis. Significance
was defined as *, p < 0.05 and **, p < 0.01 relative to the vehicle control.

2.3. Baicalein Activates the ATM/CHK2/CDC25C Signaling Pathway in Ovarian Cancer Cells

To elucidate the molecular mechanisms controlling baicalein-mediated cell cycle arrest
in the G2/M phase, immunoblot assay was performed on control and treated cells to
evaluate the effect of baicalein on G2/M phase cell cycle regulatory proteins such as CHK2,
CDC25C, CDK1 and cyclin B1. The results showed that baicalein treatment had a significant
dose-dependent effect on the upregulation of CHK2 and the phosphorylation of CHK2
and CDC25C and the downregulation of CDC25C, CDK1 and cyclin B1 in SKOV-3 and
TOV-21G cells (Figure 3A). Likewise, baicalein also significantly affected the expression of
key regulatory proteins associated with the G2/M cell cycle checkpoint in SKOV-3 cells in
a time-dependent manner (Figure 3B). The results showed that baicalein induces G2/M
arrest by modulating G2/M cell cycle regulatory proteins in ovarian cancer cells.
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3. Discussion 

Figure 3. Baicalein modulates cell cycle regulatory proteins in G2/M phase via the
ATM/CHK2/CDC25C signaling axis in ovarian cancer cells. (A) SKOV-3 and TOV-21G cells were
treated with 50–200 µM baicalein for 48 h. (B) SKOV-3 cells were treated with 100 µM baicalein for
12–72 h. Immunoblotting showed the effect of baicalein on the protein levels of phospho-CHK2 and
phospho-CDC25C, as well as the protein levels of CHK2, CDC25C, CDK1 and cyclin B1. β-actin was
used as a loading control.

2.4. Blocking of CHK2 Activity Attenuates Baicalein-Induced G2/M Arrest in Ovarian Cancer Cells

Because baicalein significantly activates the ATM/CHK2/CDC25C signaling axis,
which may lead to G2/M arrest, we next determined whether blocking CHK2 could
attenuate baicalein-induced G2/M arrest to confirm the role of CHK2 activation in baicalein-
mediated G2/M arrest in ovarian cancer cells. SKOV-3 cells were pretreated with a CHK2
inhibitor (Chk2 inhibitor II) for 2 h and then incubated with baicalein for 24 h. The data
showed that the CHK2 inhibitor indeed reduced the extent of CHK2 phosphorylation
(Figure 4A) and protected SKOV-3 cells from baicalein-mediated G2/M arrest (Figure 4B).
These data illustrate the critical role of CHK2 in baicalein-mediated G2/M cell cycle arrest
in ovarian cancer cells.
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Figure 4. Pharmacological inhibition of CHK2 blocks baicalein-mediated G2/M cell cycle arrest.
(A) SKOV-3 cells were pretreated with 30 µM CHK2 inhibitor (Chk2 inhibitor II) for 2 h and then
with 100 µM baicalein for 24 h. The protein levels of phosphorylated CHK2 (Thr68) and total CHK2
in cells after treatment were measured by immunoblot analysis. (B) SKOV-3 cells were pretreated
with 30 µM CHK2 inhibitor (Chk2 inhibitor II) for 2 h and then treated with 200 µM baicalein for
24 h. The percentage of cells accumulated in the G2/M phase after treatment was assessed by flow
cytometry. Significance was defined as *, p < 0.05 and **, p < 0.01.

3. Discussion

Baicalein exerts its anticancer effects in different cancer cells, targeting multiple bi-
ological processes, such as cell proliferation, apoptosis, autophagy, metastasis, cell cycle
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and epithelial-mesenchymal transition [15]. All these results suggest that baicalein exerts
different anticancer effects on the proliferation and survival of different types or properties
of cancer cells. For example, baicalein is known to inhibit the expression of VEGF, HIF-
1α, c-Myc or NF-κB in ovarian cancer cells, thereby inhibiting the metastatic potential of
ovarian cancer cells, while the effect on normal cells is generally less [15,26]. In this study,
our findings demonstrate that baicalein treatment inhibits the viability of highly invasive
human ovarian cancer cells, and that this growth inhibitory effect is partly related to ROS
generation. Accumulated ROS molecules are associated with the induction of double-
strand DNA breaks (DSBs) and the activation of CHK2, thereby triggering G2/M cell cycle
arrest (Figure 5). To our knowledge, this study identifies CHK2 as the key molecular target
of baicalein in human ovarian cancer cells for the first time.
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Figure 5. Schematic illustration of baicalein-induced G2/M cell cycle arrest in ErbB2-positive ovarian
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DNA damage response to ATM signaling to arrest cell cycle progression at the G2/M phase. Blue
font represents an increase, and orange font represents a decrease.

The overexpression of EGFR and/or ErbB2 frequently occur in human ovarian can-
cer; this is associated with more aggressive tumor behavior and poorer patient outcomes.
In a previous study, we found that baicalein inhibited ErbB2-mediated malignant trans-
formation of ErbB2-overexpressing ovarian cancer cells by downregulating ErbB2 gene
expression at the transcriptional level (unpublished results). In Figure 1A, the data show
that the growth-inhibitory effect of baicalein on SKOV-3 (high ErbB2 expression) cells is
higher than that of TOV-21G (low ErbB2 expression) cells. Based on these findings, we
speculate that the growth-inhibitory effect of baicalein on SKOV-3 cells is better than that
on TOV-21G cells, because baicalein can not only upregulate and activate CHK2 to cause
G2/M cell cycle arrest, but also inhibit the expression of ErbB2 to inhibit cell proliferation.

There is evidence that certain chemotherapeutic drugs are selectively toxic to cancer
cells, as human cancer cells appear to produce ROS at a much higher rate than normal
cells, triggering oxidative stress-induced cell death. These chemotherapy drugs push
these already oxidatively stressed cancer cells beyond the cellular limits, leading to further
cellular damage [18]. Baicalein can not only scavenge free radicals in vitro, such as DPPH
(1,1-diphenyl-2-picrohydrazine) radicals, superoxide radicals, hydroxyl radicals and alkyl
radicals but also effectively reduce the damage of cellular oxidative stress induced by
lipopolysaccharide, H2O2 or UV in macrophages, Schwann cells or skin cells [23,27–30].
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On the other hand, baicalein may trigger apoptotic cell death through intracellular ROS
generation and accumulation in bladder and lung cancer cells, suggesting that baicalein
may act as a pro-oxidant to induce caspase-dependent apoptosis [18,19]. Chou et al. (2007)
identified the free radicals formed by certain flavonoids in several intact cellular systems
and showed that the pro-oxidative effect of baicalein to generate hydroxyl radicals may
be through inhibition of 12-lipoxygenase (12-LOX) in human platelet suspension [23]. It is
known that 12-LOX is involved in the regulation of ovarian cancer cell growth and survival,
and the expression level of 12-LOX tends to be significantly elevated in ovarian cancers
(such as the SKOV-3 cells) compared with normal ovarian epithelial cells [31,32]. Therefore,
the pro-oxidative effect of baicalein, a specific inhibitor of 12-LOX, on ovarian cancer cells
may occur through inhibiting the activity of 12-LOX, thereby inducing the accumulation
of hydroxyl radicals. However, more studies are needed to demonstrate the association
of the pro-oxidative effects of baicalein and 12-LOX in causing G2/M arrest in ovarian
cancer cells.

Following the DNA damage, highly coordinated DNA damage response signals,
mainly including ATM- and ATR-mediated signaling pathways, are activated to recognize
DNA breaks and block cell cycle progression to promote DNA repair; alternatively, in
extensive or irreparable DNA-damaged cells, apoptosis is induced by p53 [9,10]. In addition
to our observation that baicalein treatment increased intracellular ROS and DNA double-
strand break levels in ovarian cancer cells resulting in cell arrest, we also found that
baicalein induced apoptosis in TOV-21G cells, but not in SKOV-3 cells. TOV-21G cells are
p53 wild-type cells; however, SKOV-3 cells lack p53 protein and transcript expression due
to a single nucleotide deletion in exon 4 [33]. Therefore, the ATM/p53 signaling axis may
be involved in baicalein-induced apoptosis of TOV-21G cells, and baicalein-induced G2/M
phase arrest of SKOV-3 cells is independent of the ATM/p53/p21 signaling axis.

In conclusion, this study revealed a novel chemotherapeutic effect of baicalein on highly
invasive ErbB2-positive ovarian cancer cells. The results of this study suggest that one of the
baicalein-mediated cytostatic effects is due to DNA damage (especially double-strand DNA
breaks) and activation of CHK2, which is caused in part by the production of ROS.

4. Materials and Methods
4.1. Cell Culture and Chemicals

All ovarian cancer cell lines used were obtained from the American Type Culture
Collection (Manassas, VA, USA). SKOV-3 human ovarian cancer cells were cultured in
McCoy’s 5A medium supplemented with 10% FBS (fetal bovine serum) and TOV-21G
human ovarian cancer cells were cultured in a 1:1 mixture of MCDB 105 Medium plus
Medium 199 supplemented with 15% FBS. All cells were grown at 37 ◦C in a humid-
ified incubator with 5% CO2. Baicalein (5,6,7-trihydroxyflavone) was purchased from
Alfa Aesar (Tewksbury, MA, USA). Chk2 inhibitor II (2-(4-(4-Chlorophenoxy)phenyl)-1H-
benzimidazole-5-carboxamide hydrate), DMSO (dimethyl sulfoxide), McCoy’s 5A medium,
MCDB 105 Medium, MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide)
and NAC (N-acetyl cysteine) were purchased from Sigma-Aldrich (St. Louis, MO, USA).
FBS, H2DCFDA (2′-7′-dichlorofluorescin diacetate), Medium 199 were purchased from
Invitrogen (Carlsbad, CA, USA).

4.2. Cell Viability Assay

Cells (5000/well) were seeded in 96-well plates for 24 h and treated with baicalein
or vehicle (DMSO) at the indicated concentrations, and then incubated for 48 and 72 h.
Following incubation, the media were discarded and the cell viability was measured by the
MTT cell viability assay. Viable cells were stained with 200 µL of MTT solution [5 mg/mL
in 1X PBS buffer (pH 7.4; 137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 1.8 mM KH2PO4)]
at 37 ◦C for 5 h. After incubation, the MTT solution was removed, 200 µL of DMSO was
added to each well, and the plates were shaken for 30 min to lyse MTT-formazan formed by
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metabolically viable cells. Absorbance was measured at 630 nm (MRX Revelation, Thermo
Labsystems, Waltham, MA, USA).

4.3. Flow Cytometric Analysis

The effect of baicalein on cell cycle distribution was assessed by flow cytometry after
staining the cells with propidium iodide (PI). In brief, after baicalein treatment, cells were
fixed with ice-cold 70% ethanol overnight at 4 ◦C. Prior to analysis, the cells were washed
twice with PBS buffer and then incubated with PI solution (50 µg/mL PI in PBS with 1%
Tween-20 and 10 µg RNase) for 1 h at 4 ◦C in the dark. Stained cells were analyzed with a
BD FACSCalibur Instrument (BD Biosciences, San Jose, CA, USA). Cell cycle distribution
data were analyzed using CellQuest (v. 7.5.3) software (BD Biosciences, San Jose, CA, USA).

4.4. Determination of ROS Generation

Cells (1 × 106) were seeded in a 100 mm petri dish and allowed to attach overnight.
The next day, the medium was completely removed, and the cells were washed twice with
PBS and incubated with 10 µM H2DCFDA in serum-free medium for 1 h. H2DCFDA
was then removed, and the cells were washed twice with PBS. These washed cells were
treated with DMSO (vehicle) or 100 and 200 µM baicalein and incubated for 2, 4 and 6 h.
Baicalein-treated cells and control cells were collected and lysed with RIPA lysis buffer.
After cell lysis, the extract was centrifuged at 13,000× g for 10 min at 4 ◦C to collect the
supernatant. Fluorescence readings of DCF (2′-7′-dichlorofluorescein) in the supernatant
were measured using a Hitachi F-2500 fluorescence spectrophotometer (Hitachi High
Technologies America, Schaumburg, IL, USA) at an excitation wavelength of 485 nm and
an emission wavelength of 535 nm. The protein content of the supernatant was measured
using a Bio-Rad protein assay kit (Bio-Rad, Hercules, CA, USA). The relative fluorescence
units of DCF were measured and normalized to the protein content of the cell lysates.

4.5. Immunoblot Analysis

Immunoblotting (Western blotting) was performed as previously described in
Chuang et al. [34]. Antibodies against phospho-CHK2 (Thr-68), phospho-CDC25C (Ser-216),
phospho-H2AX (Ser-139) were obtained from Epitomics (Burlingame, CA, USA). Anti-
bodies against CDC25C, CDK1 and Cyclin B1 were obtained from Millipore (Burlington,
MA, USA). Antibody against CHK2 was obtained from BD Bioscience (Franklin Lakes, NJ,
USA). The antibody to β-actin was from Novus Biologicals (Centennial, CO, USA). HRP-
conjugated secondary antibody was from PerkinElmer Life Sciences (Boston, MA, USA).

4.6. Statistical Analysis

The data are shown as the mean ± SEM of three independent experiments. Com-
parisons were performed by Student’s t-test. Significance was defined as *, p < 0.05 and
**, p < 0.01 relative to the vehicle control.
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