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Abstract: It is crucial to design efficient adsorbents for uranium from natural seawater with wide
adaptability, effectiveness, and environmental safety. Porous organic polymers (POPs) provide superb
tunable porosity and stability among developed porous materials. In this work, two new POPs, i.e.,
HCCP-P5-1 and HCCP-P5-2 were rationally designed and constructed by linked with macrocyclic
pillar[5]arene as the monomer and hexachlorophosphate as the core via a macrocycle-to-framework
strategy. Both pillar[5]arene-containing POPs exhibited high uranium adsorption capacity compared
with previously reported macrocycle-free counterparts. The isothermal adsorption curves and kinetic
studies showed that the adsorption of POPs on uranium was consistent with the Langmuir model
and the pseudo-second-order kinetic model. Especially, HCCP-P5-1 has reached 537.81 mg/g, which
is greater than most POPs that have been reported. Meanwhile, the comparison between both
HCCP-P5-1 and HCCP-P5-2 can illustrate that the adsorption capacity and stability could be adjusted
by the monomer ratio. This work provides a new idea for the design and construction of uranium
adsorbents from macrocycle-derived POPs.

Keywords: uranium adsorption; seawater; porous organic polymers; pillar[5]arene; hexachlorophosphate

1. Introduction

With the traditional energy resources depleted, the universal need for nuclear energy
is emerging rapidly as a sustainable energy source with no emission of greenhouse gases
and unlimited energy proficiency [1,2]. Uranium is the main fuel resource for the nuclear
industry and plays a dominating role in the field of energy production [3]. However, as
the major contaminant of nuclear waste, uranium causes long-term harmful effects on
human health and the ecological system [4]. In addition, the estimated quantity of uranium
in seawater is 4.5 billion tons which is about one thousand times greater than terrestrial
uranium [3]. Thus, currently designed and developed new adsorbents with proficient
uranium extraction from aqueous solutions, i.e., seawater and nuclear industry wastewater
have become a burning scientific issue in the field of energy production and environmental
perspective [5,6].

Recently, various approaches were used for uranium extraction from aqueous solu-
tions, i.e., membrane filtration [7], ion exchange [8], electrochemical [9], solvent extrac-
tion [6], and adsorption [10–13]. In these processes, adsorption shows great potential in
uranium separation and recovery because of its environmental friendliness, easy operation,
low cost, and wide adaptability. Furthermore, numerous varieties of adsorbing materi-
als have also been developed and applied for the extraction of uranium, e.g., inorganic
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oxides [14,15], carbon materials [16,17] biomass materials [2,5,18], and metal–organic frame-
works [19–21]. However, these materials exhibited several limitations such as relatively
high expensive, less adsorption capacity, low selectivity, slow adsorption kinetics, and poor
adsorbent stability.

In addition, among developed porous materials, porous organic polymers (POPs)
receive widespread attention with high surface area, excellent porosity, and stability [22–27].
Therefore, it is necessary to design and develop new and efficient porous organic polymer
materials for rapid, efficient, and stable adsorption of uranium. By tailoring the properties
of diverse monomers and linkers, many fascinating POPs have been explored to exhibit
impressive uranium adsorption capability [28–32]. As a new-generation supramolecular
macrocyclic compound, pillar[n]arene has great advantages as a functional monomer to be
incorporated into POPs to afford win–win merits, such as simple synthesis with the inherent
electric-rich cavity, diverse post-synthetic strategies, and multi-stage pore structure i.e.,
fixed and cross-linked pores [33–39]. Despite several pillararene-based POPs that have been
demonstrated with applications potential in the field of adsorption and separation [40–44],
studies on their uranium adsorption properties are still unexplored.

Herein, to obtain stable and efficient pillararene-based POPs adsorbent materials, we
chose highly stable hexachlorophosphonitrile (HCCP) as the linker and pillar[5]arene (P5)
macrocycle as the monomer to fabricate two new POPs (HCCP-P5-1 and HCCP-P5-2) by a
macrocycle-to-framework strategy. The P–O bond formed by the polymerization of HCCP
and the hydroxyl groups of P5 is stable enough to form a highly tolerant framework [11].
Meanwhile, the nitrogen-rich structure in HCCP and the multiple hydroxyl groups bear-
ing in the P5 structure can collaboratively bind to the 5f orbitals of the actinides, which
can confer higher selectivity of the polymer [6]. The structural, physical, and chemical
properties of both POPs have been studied in detail. The adsorption of both POPs for
uranium in pure water and simulated seawater were studied systematically. As a result,
both pillar[5]arene-containing POPs exhibit high uranium adsorption capacity compared
with previously reported macrocycle-free counterparts. Especially, HCCP-P5-1 has reached
537.81 mg/g which is greater than most POPs that have been reported. The distinct differ-
ence between HCCP-P5-1 and HCCP-P5-2 is derived from the ratios between monomer P5
and linker HCCP, which gives rise to a tunable adsorption capacity and stability of both
polymers. We believe this macrocycle-to-framework strategy could provide new insight
into the design and construction of highly efficient uranium adsorbents.

2. Results and Discussion
2.1. Characterization

Both porous organic polymers, i.e., HCCP-P5-1 and HCCP-P5-2 were successfully syn-
thesized by one-step polymerization (Scheme 1). FT-IR and 13C solid-state NMR confirmed
the successful formation of the polymers. As presented in Figure 1a, the infrared spectra
of the POPs and monomers displayed a broad peak at 3300 cm−1 corresponding to –OH,
while a peak at 1234 cm−1 represents the P–O–Ar bond and a weak signal of P-Cl exhibited
at 563 cm−1. Moreover, 13C solid-state NMR spectra (Figure 1b) showed significant signals
at 28.08 ppm, 126.04 ppm, and 146.57 ppm, which implied the presence of pillar[5]arene
macrocycle in both polymers.

Thermal stabilities of HCCP-P5-1 and HCCP-P5-2 were examined by thermal gravi-
metric analysis (TGA) presented in Figure S1. The TGA experiment exhibited four steps of
weight loss. The first step recorded at less than 200 ◦C means the loss of adsorbed water
and residual solvent. The second step of weight loss was noted down at lower 480 ◦C which
is 21% for HCCP-P5-1 and 27% for HCCP-P5-2, respectively. This outcome can be ascribed
to the elimination of the phosphazene moiety. In the third step weight loss was observed at
480 to 550 ◦C which indicated about 9% and 7% for both polymers which may be due to
P–O bond cleavage. In the fourth weight loss step, the HCCP-P5-1 and HCCP-P5-2 were
detected at over 550 ◦C which could be due to carbonization of the residual benzene ring
of the core framework.
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scanning electron microscopy (SEM), and both polymers showed irregular particles and 
loose porous states presented in Figure S2. Further, XRD analysis has no substantial char-
acteristic of diffraction peaks which demonstrated that both POPs exhibited amorphous 
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The morphology of polymers HCCP-P5-1 and HCCP-P5-2 were observed by using
scanning electron microscopy (SEM), and both polymers showed irregular particles and
loose porous states presented in Figure S2. Further, XRD analysis has no substantial
characteristic of diffraction peaks which demonstrated that both POPs exhibited amorphous
solid features (Figure S3).

The hydrophilicity of HCCP-P5-1 and HCCP-P5-2 were recorded by the surface contact
angle test. As shown in Figure 2, both polymers exhibited good hydrophilic capability
which is rather critical for them as absorbent materials. Furthermore, the time for HCCP-
P5-1 to reach the minimum contact angle is shorter compared with that of HCCP-P5-2,
which indicated that HCCP-P5-1 has a higher hydrophilic property with more hydroxyl
groups. This result implied that the hydrophilicity of both polymers can be easily tuned by
adjusting the ratio between monomers P5 macrocycle and HCCP.

The permanent porosity and specific surface area of HCCP-P5-1 and HCCP-P5-2 were
further examined and calculated by using a nitrogen adsorption–desorption isotherm
at 77 K. As shown in Figure 3 and Table 1, the specific surface area of HCCP-P5-1 and
HCCP-P5-2 were recorded at 17.12 m2/g and 23.3 m2/g, respectively, while the main hole
sizes of both polymers were observed as 4.728 nm. Both POPs are mesoporous materials,
and although the BET is relatively low, the multi-hydroxyl structure of POPs makes the
materials have a strong diffusion ability in the water, which accelerates the rapid contact
between POPs and uranium in water. In addition, POPs are rich in nitrogen which makes
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POPs have a strong binding ability with uranium, so POPs have a strong adsorption ability
to uranium although the surface area is small.
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Table 1. Textural and sorption performance.

POPs SBET (m2/g) VTotal (cc/g) a Pore Size (nm)

HCCP-P5-1 17.1 0.043 4.728
HCCP-P5-2 23.3 0.058 4.728

a Total pore volume calculated from nitrogen isotherm at P/P0 = 0.99.

2.2. Adsorption Experiments
2.2.1. Effect of Acidity

The pH effect on the uranium adsorption capacity of both adsorbents HCCP-P5-1 and
HCCP-P5-2 was investigated in the pH range from 3 to 9 which is presented in Figure 4.
The adsorption ability of HCCP-P5-1 decreased from 360 mg/g to 150 mg/g at basic
pH which revealed that deprotonating of the -OH groups of polymers occurred which
decrease coordination capability with uranium. In contrast, HCCP-P5-2 is more stable,
and the adsorption capacity change was recorded from 290 mg/g to 200 mg/g, which is
indeed due to a smaller number of hydroxyl groups. Under acidic conditions, uranium
is present in hydroxides and the prevalent cationic species are mainly UO2

2+, UO2(OH)+,
(UO2)2(OH)2

2+, and (UO2)3(OH)5
5+. Under neutral conditions, uranium can be found in
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neutral species and starts to precipitate as UO3·2H2O and UO2(OH)2·H2O. Under basic
conditions, uranium is mainly present in anionic species in the form of UO2(OH)3− and
UO2(OH)4

2−. In acidic solutions, the hydrolysis process gradually occurs because of the
abundance of OH− ions in the solution and deprotonation takes place.
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Figure 4. Effect of pH on uranium sorption on HCCP-P5-1 and HCCP-P5-2. (C0 = 9.25 ppm,
V = 10 mL, T = 298.15 K, m = 5 mg).

2.2.2. Effect of Sorption Time and Kinetic Studies

The sorption kinetics of adsorbents were scrutinized by using uranium adsorption
in pure water and seawater with diverse times at pH 6 as given in Figure 5. The pseudo-
first, as well as second-order models, were used to study the controlled mechanism of the
adsorption method. The equations are shown as under.
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Figure 5. Effect of contact time on the uranium adsorption of HCCP-P5-1 and HCCP-P5-2
in (a) 9.25 ppm uranium-containing pure water and (b) 20 ppm uranium-containing simulated sea-
water. (V = 400 mL, T = 298.15 K, m = 5 mg).

This is example 1 of the pseudo-first-order model equation:

log(qe − qt) = logqe −
K1t

2.303
(1)
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This is example 2 of the pseudo-second-order model equation:

t
qt

=
1

K2qe2 +
t
qe

(2)

where qt denotes the sum of uranium (mg/g) sorption at time t and qe indicates the quantity
of uranium (mg/g) sorption at equilibrium. K1 (min−1) and K2 (g/(mg·min) is the kinetic
constants for the pseudo-first-order and pseudo-second-order models.

The experimental data of HCCP-P5-1 and HCCP-P5-2 were fitted by the two models.
The respective kinetic constant values were presented in Table 2. (The fitted linear forms
were displayed in Figures S5 and S6). In pure water, the R2 value of HCCP-P5-1 in pseudo-
first-order and pseudo-second-order models are 0.810 and 0.995, respectively. Further,
the values of R2 for HCCP-P5-2 in the two models are 0.821 and 0.997 whereas in the
simulated seawater R2 values of HCCP-P5-1 in pseudo-first-order and pseudo-second-
order models are 0.872 and 0.999, respectively. Moreover, the R2 value of HCCP-P5-2
in the two models is 0.930 and 0.999. These results suggested that the R2 value for the
pseudo-second-order model is significantly high (R2 > 0.99). Hence, it is assumed that
the uranium adsorption kinetics of HCCP-P5-1 and HCCP-P5-2 are pseudo-second-order
processes and chemisorption can be the rate-controlling step.

Table 2. The data were evaluated from pseudo-first-order and pseudo-second-order.

Solution Polymers
Pseudo-First-Order Model Pseudo-Second-Order Model

Qe (mg/g) K1 R2 Qe (mg/g) K2 R2

Pure water
HCCP-P5-1 310.23 0.037 0.810 401.60 4.95 × 10−5 0.995
HCCP-P5-2 207.64 0.047 0.821 271.73 7.50 × 10−5 0.997

Simulated
seawater

HCCP-P5-1 279.37 0.064 0.872 335.57 1.09 × 10−4 0.999
HCCP-P5-2 92.27 0.062 0.930 107.64 3.76 × 10−4 0.999

2.2.3. Effect of Initial Concentration and Isotherm Studies

The effect of the concentration of uranium and isotherm was investigated to gain
more insight into the uranium adsorption capability of polymers, i.e., HCCP-P5-1 and
HCCP-P5-2. As shown in Figure 6, initially sorption amounts of polymer HCCP-P5-1 were
rising with the increasing concentration of C0 of uranium. After the uranium concentration
reached 64 ppm, the sorption amounts of HCCP-P5-1 remained the same at 502 mg/g.
Furthermore, the result for polymer HCCP-P5-2 was fully consistent with HCCP-P5-1 and
recorded a maximum capacity of 432 mg/g. Further, Langmuir and Freundlich’s models
are used to analyze the experimental data for describing the adsorption of solid to the
liquid interface.
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The Langmuir isotherm presumed that the sorption method is monolayer adsorp-
tion present at the particular homogenous site and its linear expression is shown in
the given equation.

qe =
qmKLCe

1 + KLCe
(3)

where the qe represents the amount of equilibrium sorption (mg/g). Ce is the concentration
of uranium (mg/L) at equilibrium while qm is the Langmuir monolayer saturated sorption
amount (mg/L).

Furthermore, Freundlich’s model is an empirical calculation and exponential distribu-
tion of sorption’s site through the characteristic of heterogeneous surface and the linear
formula which is given in the equation.

Where KF (mmol1−1/nL1/ng−1) is the constant for Freundlich’s adsorption capacity
and n (unitless) is a constant for the adsorption intensity of the adsorbent. Langmuir and
Freundlich’s model parameters of HCCP-P5-1 and HCCP-P5-2 are tabulated in Table 3
(fitted linear forms as seen in Figure S7).

Table 3. Value of parameters for langmuir and freundlich.

Polymers
Langmuir Isotherm Freundlich Isotherm

Qm (mg/g) KL R2 KF N R2

HCCP-P5-1 537.81 0.0986 0.976 170.28 0.245 0.793
HCCP-P5-2 473.32 0.0696 0.973 128.81 0.274 0.799

The maximum theoretical sorption amount of the Langmuir model for HCCP-P5-1 and
HCCP-P5-2 were calculated as 537.81 mg/g and 473.32 mg/g, respectively. The compara-
tive study of the two models showed the R2 value of Langmuir’s model is higher (R2 > 0.99)
which demonstrated that the adsorption route is monolayer whereas the adsorption sites
on the surface of the materials are homogeneous.

2.2.4. Mechanism of Uranium Sorption

FT-IR and XPS analysis were used to elucidate the variations of chemical composition
and boding arrangements of HCCP-P5-1 and HCCP-P5-2 earlier and after the adsorp-
tion. For both polymers, a diagnostic new peak of the U–O bond was observed in the
infra-red spectrum (Figure S8) and robust U 4f peaks were noticed in the XPS spectrum
(Figures S8 and S9a) after sorption. This result validated that certain adsorption of ura-
nium occurred on HCCP-P5-1 and HCCP-P5-2. The comparison of the electronic binding
energy of elements showed no substantial shifts except O, N, and P. Furthermore, the
high-resolution O 1s analysis shown in Figure 7b confirmed the existence of two species
of oxygen in HCCP-P5-1 before sorption. The peaks exhibited at 530.0 eV and 531.6 eV
could attribute to unreacted –OH and P–O bonds, respectively. After the sorption of ura-
nium, electron binding energies of the two chemical states increased by 0.33 and 0.4 eV,
respectively, and a new U–O peak seemed at 530.9 eV. Moreover, the high-resolution N
1s spectra (Figure 7c) showed two sorts of nitrogen species in HCCP-P5-1. The signal at
398.2 corresponds to P = N whereas the peak at 400.9 eV belongs to the P–NH2 which is
formed via the isomerization of phosphazene. After the uranium sorption, the binding
energy of electrons of both nitrogen species is enhanced by 2.6 eV and 1.8 eV, respectively.
As shown in Figure 8d, the high-resolution P 2p spectra exhibited significant peaks at
132.9 eV and 133.9 eV, which can be attributed to the synthetic P–N and P–O bonds corre-
spondingly. Further, after the uranium sorption, the electronic binding energies of species
were decreased by 0.4 and 0.5 eV due to the inductive effect. Likewise, the FT-IR spectra
of HCCP-P5-2 after sorption showed a consistent result as the electronic binding energies
of O and N increased and P decreased noticeably (Figure S10). Therefore, both FT-IR and
the XPS analysis certified that HCCP-P5-1 and HCCP-P5-2 have strong connections with
uranyl ions via the N and O atoms.
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2.2.5. The Recyclability of the HCCP-P5-2

To illustrate the recyclability of both polymers, HCCP-P5-2 was taken as an example.
An eluent solvent with ultrapure water, 30% aqueous hydrogen peroxide solution, and
sodium bicarbonate powder was prepared to recycle HCCP-P5-2. After five runs, the
adsorption capability of the HCCP-P5-2 decreased slightly to 88.9% in an aqueous solution
(Figure 8). Even ten cycles later, HCCP-P5-2 remained at 81.0% adsorption efficiency
and 82.5% elution efficiency, indicating that the HCCP-P5-2 showed high adsorption
performance with a robust structural framework. The loss of some of the adsorbent during
the experiment became the main reason for the decrease in adsorption capacity. These
results implied that the HCCP-P5-2 could be used as an excellent adsorbent with a cost-
effective strategy for the extraction and recovery of uranium.

2.2.6. The Uranium Sorption Proficiencies of Other Reported POPs

The adsorption capacities of several representative materials in the uranium solution
were compared and presented in Table 4. The results illustrated that the adsorption
capability of HCCP-P5-1 in solution was superior as compared to reported COF or POPs
adsorption materials.

Table 4. Comparisons of uranium adsorption capacities of different porous organic adsorbents.

No Adsorption qm (mg/g) pH Ref.

1 CCOF-SCU1 50 1.0 [43]

2 COF TCD 158 4.5 [44]

3 MPCOF 214 4.5 [10]

4 COF-TpAb-AO 408 6.0 [13]

5 COF-HBI 211 4.5 [45]

6 COF-IHEP1 112 5.0 [46]

7 PAF-1-CH2AO 300 —— [47]

8 TFPT-BTAN-AO 427 4.0 [48]

9 COF-SO3H 360 5.0 [49]

10 COF-HAP 510 3.0 [50]

11 HCCP-P5-1 537 6.0 This work

12 HCCP-P5-2 473 6.0 This work

3. Materials and Methods
3.1. Materials and Chemicals

P5 macrocycle was synthesized according to the method reported previously [36].
The required chemicals and solvents were acquired from authentic suppliers and utilized
without further purification.

3.2. Synthesis of Polymer HCCP-P5-1 and HCCP-P5-2

P5 (2.0 mmol) and HCCP (2.0 mmol) were dissolved with 2 mL of dioxane solvent in
a Schlenk bottle. Then, 1.68 mL trimethylamine was added, and the mixture was stirred
for 24 h at 80 ◦C under the nitrogen condition. When the reaction has accomplished, the
mixture was cooled down, filtered, and washed frequently with deionized water, ethanol,
and acetone successively. Further, the product was dried in the vacuum oven overnight at
50 ◦C. Finally, HCCP-P5-1 was obtained with more than 55% yield. Moreover, a similar
synthetic procedure has been adopted for the synthesis of the HCCP-P5-2 compound except
that the ratio between P5 and HCCP was changed from 1:1 to 3:5 to decrease the number of
free hydroxyl groups.
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3.3. Materials Characterizations

The Bruker Avance II 400 instrument (Bruker BioSpin, Billerica, MA, USA) and CD3OD,
DMSO-d6, and CDCl3 solvents were used to study 1H NMR spectroscopy while 13C NMR
spectra were investigated by using a Bruker Av500 NMR spectrometer at 126 MHz. The FT-
IR study was examined by a JASCO IR-4100 spectrometer (Jasco Int. Co. Ltd., Tokyo, Japan).
HRMS (high-resolution mass) analyses were deliberate with a mass spectrometer (Agilent
G6224A-TOF, Agilent Technologies UK Ltd., Stockport, UK). The solid-state 13C cross-
polarization with magic angle spinning (CP/MAS) results were collected by a 500 MHz
nuclear magnetic resonance spectrometer (Agilent DD2). X-ray diffraction (XRD) results
were obtained by using diffractometers called Rigku D/max-2400 (40 kV, 200 mA) from
2◦ to 40◦ with a scanning rate of 2◦/min. The FE-SEM analysis was examined by using
an FEI Nova Nano SEM 450 scanning electron microscopy (Thermo Fisher Scientific, Inc.,
Waltham, MA, USA). The results of the adsorption and desorption of gases were obtained
by an analyzer named Quantachrome Autosorb iQ (Quantachrome Instruments, Anton
Paar, Graz, Austria). The TGA (thermogravimetric) analysis was achieved by the thermal
analyzer (Mettler Toledo TGA/DSC 3+, Mettler Toledo, Zurich, Switzerland) under the
N2 condition. Samples were heated from 25–600 ◦C with a 10 ◦C/min heating rate. XPS
spectroscopy (X-ray photoelectron, Thermo Scientific ESCALAB 250Xi) was utilized to
evaluate the elemental species on the surface of the materials.

3.4. Sorption Experiments

The stock solutions of uranium with different concentrations in pure water and sim-
ulated seawater were prepared. The pH of the solutions was adjusted by 3M HNO3 or
1M NaOH solution. The concentrations of uranium during experiments were detected via
ICP-OES (Inductively coupled plasma optical emission) spectroscopy while inductively
coupled plasma mass spectrometry (ICP-MS) was used for extra-low concentrations. The
adsorption experiments were performed under ambient conditions. In addition, the ura-
nium solution without sorbent was scrutinized for respective sorption experiments as a
negative control. The same experiment was repeated three times and the final results were
obtained by taking the average value.

3.4.1. Uranium Sorption Isotherms

To acquire the uranium adsorption isotherms for two adsorbents, 5 mg of HCCP-
P5-1 or HCCP-P5-2 were mixed into aqueous solutions of uranium (10 mL) with various
concentrations. Adsorbents were fully suspended by short sonication and the mixtures
were vigorously stirred overnight. The solutions were filtered via a 0.45 µm membrane
filter. The supernatant was evaluated by using ICP analysis to find the concentration of
uranium remains. The adsorbed quantity at equilibrium (QE, mg g−1) was attained in the
given equation.

qe =
(C0 − Ce)V

m
(4)

Wherever V is the volume of the treated solution (mL), m is the amount of used
adsorbent (g), C0 and Ce are the initial concentration and equilibrium concentration of
uranium correspondingly.

3.4.2. Uranium Adsorption Kinetics from U-Spiked Pure Water

Uranium aqueous solution (400 mL, 9.25 ppm) and adsorbent (5 mg) were added to
an Erlenmeyer flask. The mixture was stirred for 3 h at 25 ◦C. At appropriate time intervals,
aliquots (5 mL) were taken from the mixture, and the adsorbents were filtered by a syringe
with a 0.45 µm membrane filter. The uranium concentrations in the resulting solutions
were analyzed with ICP-OES.
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3.4.3. Uranium Adsorption Kinetics from U-Spiked Simulated Seawater

An amount of 200 mL of the simulated seawater spiked with uranium (20 ppm) and
5 mg adsorbents were mixed in the Erlenmeyer flask. The reaction mixture was strongly
stirred at 25 ◦C. After the reaction time, 5 mL of the aliquots were taken from the mixture
then the adsorbents were filtered by a 0.45 µm membrane filter syringe. The concentrations
of uranium in the resulting solutions were examined by using ICP-OES.

3.4.4. The Recyclability of the Sample

A 5 mg sample was immersed and shaken in 500 mL of 16 ppm U-spiked water
(pH = 6) for 48 h. Further, the U-uptake sample was immersed and shaken in a 100 mL
eluent for 30 min. The eluent solution was prepared with 1000 mL ultrapure water, 11.4 mL
30% aqueous hydrogen peroxide solution, and 106 g sodium bicarbonate powder. The
U-adsorption and the U-desorption amount can be calculated on sed the U-concentration
change in the U-spiked water and eluent solution, respectively.

4. Conclusions

In this research, two new pillar[5]arene- and phosphazene-linked POPs, HCCP-P5-1,
and HCCP-P5-2 were successfully constructed by a macrocycle-to-framework strategy
using P5 macrocycle as the functional monomer and hexachlorophosphates (HCCP) as the
linker. The isothermal adsorption curves and kinetic studies showed that the adsorption of
POPs on uranium was consistent with the Langmuir model and the pseudo-second-order
kinetic model. Both materials displayed a high-efficient uranium adsorption capacity
of 537.81 mg/g of HCCP-P5-1 and 473.32 mg/g of HCCP-P5-2 which were much better
performances than the previously reported POPs adsorption materials to date, especially
those non-macrocycle-incorporated counterparts. In addition, the stability and adsorption
capacity of both polymers can be regulated by the monomer ratio between P5 and HCCP.
HCCP-P5-1 with more P5 has higher uranium adsorption capacity, but HCCP-P5-2 with
a higher HCCP ratio has stronger stability under the conditions of strong acid and alkali.
Even ten cycles later, HCCP-P5-2 remained at 81.0% adsorption efficiency and 82.5% elution
efficiency, which is more suitable for a complex realistic environment. This work is expected
to promote the application of pillararene-based porous polymers in the field of uranium
adsorption and the macrocycle-to-framework strategy could provide new insight into the
design and construction of highly efficient uranium adsorbents.
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Figure S2: SEM micrographs of (a) HCCP-P5-1 and (b) HCCP-P5-2. Figure S3: XRD patterns of
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