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Abstract: The study of natural products as potential drug leads has gained tremendous research
interest. Quercetin is one of those natural products. It belongs to the family of flavonoids and, more
specifically, flavonols. This review summarizes the beneficial pharmaceutical effects of quercetin,
such as its anti-cancer, anti-inflammatory, and antimicrobial properties, which are some of the
quercetin effects described in this review. Nevertheless, quercetin shows poor bioavailability and
low solubility. For this reason, its encapsulation in macromolecules increases its bioavailability
and therefore pharmaceutical efficiency. In this review, a brief description of the different forms
of encapsulation of quercetin are described, and new ones are proposed. The beneficial effects of
applying new pharmaceutical forms of nanotechnology are outlined.
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1. Introduction

Flavonoids [1] (Scheme 1a) are a family of organic compounds found mostly in plants
and in the food that humans consume. They exert many important biological actions, with
favorable antioxidant effects. Flavonoids can be classified into different classes, depending
on the substitutes of carbons of the rings [2]. One of these classes is flavonols. Flavonols
are flavonoids with a keto group. Flavonols occur in vegetables and fruits such as onions,
tomatoes, and apples. One of the most studied flavonols is quercetin (Scheme 1b).

Quercetin [3,4] is an organic compound that belongs to the family of flavonoids,
with a wide range of medical properties [5,6]. Some of these include anti-allergy, anti-
inflammatory, anticancer, anti-tumor, and antiviral properties as well as cardiovascular
protection. It has also been found that quercetin plays a vital role in plants [7]. Specifically,
quercetin has antioxidant and antimicrobial activities, and as a result, it contributes to
photosynthesis, growth, and seed germination. Moreover, the presence of quercetin in
various regions of the brain contributes to combatting against various neurological diseases
such as Alzheimer’s and Parkinson’s [8]. Until now, there is no specific treatment for
these diseases, but flavonoids—and especially quercetin—have been used for treatment in
animal models.
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Scheme 1. Basic skeleton using Chem Draw of (a) 2-phenyl chromane flavonoid (PubChemCID: 
94156), (b) quercetin (PubChemCID: 5280343), (c) isoquercetin (PubChemCID: 5280804), (d) querce-
tin derivative that is effective against MDR cancer cells [1], and (e) quercetin-glutamic acid [2]. 
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The skeletal formula of quercetin [9] was acquired using Chem Draw to find some 
physicochemical and toxicity properties through the SwissADME [10], pkCSM [11], and 
preADME [12] platforms. This procedure is very important for computational drug de-
sign. Some potential biological compounds fail to reach clinical trials due to their unfa-
vorable (ADME) parameters [13–17].  

Quercetin’s molecular weight is <500 g/mol, its number of hydrogen-bonding donors 
is less than five, its number of hydrogen-bonding acceptors is less than 10, and its lipo-
philicity [18] is less than five. As a result, it obeys Lipinski’s Rules of Five. Also, Veber’s 
Rule [19] is qualified, because the number of rotatable bonds is less than seven. Quercetin 
has not been predicted to be hepatotoxic, and it has no skin sensitization [20]. Due to the 
fact that its blood brain barrier index (BBB) [21] is less than one, it is considered as inactive 
to the central nervous system (CNS). Also, it might be better absorbed from the intestinal 
tract on oral administration. It has very low solubility in water (about 1 µg/mL) and low 

Scheme 1. Basic skeleton using Chem Draw of (a) 2-phenyl chromane flavonoid (PubChemCID:
94156), (b) quercetin (PubChemCID: 5280343), (c) isoquercetin (PubChemCID: 5280804), (d) quercetin
derivative that is effective against MDR cancer cells [1], and (e) quercetin-glutamic acid [2].

The skeletal formula of quercetin [9] was acquired using Chem Draw to find some
physicochemical and toxicity properties through the SwissADME [10], pkCSM [11], and
preADME [12] platforms. This procedure is very important for computational drug design.
Some potential biological compounds fail to reach clinical trials due to their unfavorable
(ADME) parameters [13–17].

Quercetin’s molecular weight is <500 g/mol, its number of hydrogen-bonding donors
is less than five, its number of hydrogen-bonding acceptors is less than 10, and its lipophilic-
ity [18] is less than five. As a result, it obeys Lipinski’s Rules of Five. Also, Veber’s Rule [19]
is qualified, because the number of rotatable bonds is less than seven. Quercetin has not
been predicted to be hepatotoxic, and it has no skin sensitization [20]. Due to the fact
that its blood brain barrier index (BBB) [21] is less than one, it is considered as inactive to
the central nervous system (CNS). Also, it might be better absorbed from the intestinal
tract on oral administration. It has very low solubility in water (about 1 µg/mL) and low
bioavailability. Its low bioavailability has led researchers to synthesize various complexes
with quercetin engulfed in transfer vehicles.

The SwissTarget platform was employed in order to assess quercetin’s inhibitory
activity. Inhibitory activity has been observed against a plethora of enzymes such as
monoamine oxidase A, monoamine oxidase B [22], and thrombin or lipoxygenase [23].
Lipoxygenases belong to the category of oxidoreductases and are widely found in plant
organisms, fungi, and animals. Such enzymes are not commonly found in yeasts and
bacteria and are not elements of a typical prokaryotic cell.

Bioavailability is the ability of a compound to be active inside the organism and to
enter systemic circulation. Quercetin is lipophilic, with poor water solubility. Therefore, its
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bioavailability is low, and for that reason, a common strategy to increase its bioavailability
is for it to be engulfed in biomolecules and form soluble complexes.

2. Polydynamic Biological Activity of Quercetin
2.1. Mental Activity

Quercetin can play a significant role in mental health diseases [24] such as depres-
sion and anxiety. Mice studies have demonstrated that some natural products including
quercetin possess anxiolytic properties when administered orally. Moreover, they are
unlikely to have side effects serious enough to prevent their pharmacological utility, so
they could constitute the starting point for the development of more selective anxiolytic
agents [25]. Due to its antioxidant activity, quercetin can lower nitric oxide and some other
compounds that are vital for these diseases. According to SwissADME, quercetin can
inhibit CYP isoenzymes. As a result, it can protect the organism from pathogenic factors.

2.2. Ultraviolet (UV) Activity

One study has shown that quercetin encapsuled with polymer nanoparticles can
be efficient for sun protection [26]. In recent years, ultraviolet (UV) radiation has been
considered a public threat for health worldwide, as it is responsible for acute and chronic
skin diseases, such as burns, premature aging skin, and carcinogenesis. Skin cancer is the
most common type of cancer that is diagnosed worldwide. It can cause a high degree of
mortality when it develops into its most severe form, that of melanoma. Thus, necessary
protection is required during exposure to sunlight. Today, sunscreens are used to protect us
from early photoaging, photosensitivity, skin cancer, and free radical damage. The main
goal of sunscreens is to protect the human skin from UVA and UVB radiation. Recent
studies have shown that compounds from natural plants may act as sun protectors [27].
Quercetin is one of those natural products that can reduce the damage from UV radiation.

2.3. Antiviral Activity

Viral diseases are still a problem even after the discovery and use of antiviral drugs
for more than 60 years now, due to the toxicity of some new antiviral preparations and the
development of resistant viral strains. The human immunodeficiency virus (HIV) [28] is
another disease that started to spread throughout the world. HIV has two categories, HIV
type 1 and HIV type 2 (HIV-2). HIV was first recognized in 1981 in the USA. The origin of
this virus is primate lentiviruses, which exist in chimpanzees. These animals became the
host of the virus, which is then transmitted to humans after mutations [29]. Quercetin and
isoquercetin (Scheme 1c) have antiviral activities against many types of viruses, including
human immunodeficiency virus. Many scientists have suggested quercetin as an antiviral
drug due to the fact that it can inhibit the first stages of the virus infection. Quercetin
has also been found to exert important pharmacological activity against several other
viruses [30]. One such activity is against the Severe Acute Respiratory Syndrome Coron-
avirus 2 (SARS-CoV-2) [31,32], which recently emerged as a global threat to human health.
It is the main cause of the COVID-19 pandemic that caused more than 6,000,000 deaths
worldwide. Quercetin has been found to be able to interfere with SARS-CoV-2 and reduce
the inflammation provoked by COVID-19 (Scheme 2). Also, blood tests have indicated
that quercetin can reduce the time during which the molecular test appears positive by
reducing the viral charge [33].
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Scheme 2. Three-dimensional (3D) structure of spike protein bound to ACE2 (PDB ID: 6M0J). The
dotted circle identifies the amino acids that constitute the respective binding sites for the Induced
Fit Docking (IFD) experiments (above). The interactions were developed from the IFD experiments
for quercetin with spike proteins of SARS-CoV-2 from the three studied binding sites (bottom). This
image was sketched using Maestro software Version 10.2.
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2.4. Anticancer Activity

Cancer is a serious disease that hurts many developed and developing countries. There
are more than 100 types of cancer. Most often, a specific type of cancer is characterized
by the type of cell in which it is formed. The most basic types of cancer are carcinoma,
sarcoma, leukemia, lymphoma, multiple myeloma, melanoma, and brain and spinal cord
tumors [34].

Quercetin has been found through in vitro experiments to exhibit anti-tumor activity
against prostate [35,36], liver [37], breast [38], and pancreatic [39] cancer and melanoma [40].
Quercetin’s anticancer effects on hepatocellular carcinoma [41] have been studied not
only in vitro but also in vivo. Although the exact mechanism of action remains elusive,
quercetin’s anticancer effect may arise by regulating some enzymatic activities or also by
modulating oxidative stress and some cellular pathways.

Chemoprevention involves treating cancer before it becomes aggressive, but it does
have its downsides. This approach can potentially lead to side effects and toxicity. Quercetin
has demonstrated synergistic effects in addressing tumors with multidrug resistance by
blocking the expulsion of drugs facilitated by transporter proteins. It is used as a low-
toxicity medicine. Studies have shown that the anticancer activity of quercetin can be
improved by encapsulating quercetin inside nanoparticles. In vitro and in vivo studies have
shown successful tumor treatment using quercetin nano-formulations. These approaches
can reduce side effects. Some examples include polymeric nanoparticles, non-responsive
polymeric nanoparticles, and stimuli-responsive polymeric nanoparticles. There are also
examples of inorganic nanoparticles with quercetin—specifically, silica nanoparticles, gold
nanoparticles, and metal oxide nanoparticles [42].

2.5. Anti-Inflammatory Activity

Moreover, quercetin has been shown to exert anti-inflammatory activity. Inflammation
is a multifactorial and complex biological response of body tissues to harmful stimuli, so
as to restore the organism to homeostatic balance. Inflammation is found in some areas
of the body and refers to the tissues of an organ or a tissue or a whole organ, etc. (e.g.,
arthritis, tendonitis, stomatitis, peritonitis, etc.). Rheumatoid arthritis is an example of
an autoimmune inflammatory disease [43]. This disease affects more women than men,
and it was discovered many years ago. The symptoms of this disease are stiffness and
swelling that appear in the feet, fingers, and toes. In vitro [44] studies have shown that
quercetin may be a good drug candidate for the treatment of this disease, because it can
inhibit neutrophil activity. It can also inhibit the activation of NLRP3 inflammasomes [31].
Lipoxygenases (LOXs) are a group of monomeric oxidant metalloproteins, containing a
non-heme-coordinated iron atom (non-heme ion Fe) [45,46]. Moreover, several in vitro
experiments have shown that quercetin can inhibit soybean lipoxygenase [3], which is
involved in inflammation.

2.6. Neurological Activity

Alzheimer′s disease (AD) [47] is a fatal complex neurodegenerative disease that affects
more than 24 million people worldwide [48]. The disease is characterized by multiple
pathological features and is clinically associated with cognitive impairment, language
loss capacity, and dementia. Current treatment options include results with moderate
improvement of memory and cognitive function; however, they do not prevent progressive
neurodegeneration. Multifunctional compounds capable of simultaneously interacting
with the ingredients of many pathologies have been considered as a solution and are being
researched for the treatment of complex pathologies of neurodegenerative diseases [49,50].
Quercetin is one of these compounds that can be used against Alzheimer’s disease due to
the fact that it has a neuroprotective effect against oxidative stress [51].
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2.7. Antioxidant Activity

When found in moderate concentrations, the active forms of oxygen (reactive oxygen
species, ROS) participate in the normal processes of the organism, but their production in
large concentrations leads to oxidative stress, disrupting the organism’s cellular oxidation
balance [52,52,53]. Antioxidants are substances that can protect cells against oxidation and
the effects of free radicals, because they annihilate these radicals from the medium. They
also constrain oxidation by oxidizing themselves. Antioxidants suppress various harmful
activities of ROS, so they are used to prevent or treat such diseases. One health problem that
oxidative stress is associated with is obesity. Obesity is one of the major health problems
in the world, and it leads to increased amounts of fat cells. It is characterized by the
overproduction of reactive oxygen stress. Quercetin, along with other natural products, has
been shown to exert beneficial effects against obesity through different molecular pathways.
In vivo experiments using obese rats have been shown to lose weight after treating with
quercetin [54].

Moreover, Jose Angel Maranon Maroto proved that a combination of the polyphenols
resveratrol, quercetin, and catechin has synergic antioxidant power. Polyphenolic com-
pounds of natural origin are recognized as antioxidant agents, which act as free radical
scavengers. Resveratrol is a polyphenolic compound that is present mostly in seeds and in
the skin of grapes and other plant products [55].

2.8. Anti-Cardiovascular Disease

Heart diseases or cardiovascular diseases are those diseases that involve the heart
or blood vessels (arteries and veins) [56]. Though the term technically it refers to any
disease affecting the cardiovascular system, it is usually used to refer to those related to
atherosclerosis (arterial diseases). These diseases present similar causes, mechanisms, and
treatments. Most countries face high and increasing rates of cardiovascular diseases. It has
been shown that they affect adolescents and kids, and for this reason, prevention against
them is mandatory from childhood. When heart problems are diagnosed, the underlying
cause (atherosclerosis) is usually quite advanced. Therefore, more emphasis is placed on the
prevention of atherosclerosis through the modification of risk factors, such as healthy eating,
exercise, and avoiding smoking. The protective effects of quercetin against cardiovascular
diseases include the reduction of blood pressure and arterial pressure. Hypertension is the
most common cause of cardiovascular diseases, such as in cardiac hypertrophy, responsible
for abnormal cardiac growth, which leads to arrhythmia, myocardial infraction, and heart
failure [57]. Many people currently suffer from hypertension, an alerting sign that phar-
macological and natural interventions are needed in order to decrease blood pressure and
inhibit various biochemical pathways that are involved in cardiovascular diseases. Studies
have demonstrated that quercetin can decrease blood pressure via multiple mechanisms
like inhibiting protein kinase C (PKC), a family of protein kinase enzymes implicated in
governing heart failure [58], decreasing oxidative stress, inhibiting angiotensin, converting
enzyme activity, or even modulating cell signaling and gene expression [59].

2.9. Skin Sensitivity

Numerous individuals experience skin wounds, which can be either chronic or tempo-
rary and may affect a substantial area of the skin. Healing processes typically fall into three
categories: primary healing (also known as healing by first intention), which takes place
within 12 to 24 h after the wound forms; secondary healing (or healing by second intention),
observed in wounds with significant loss of soft tissue; and the healing of superficial
wounds, such as those seen in superficial burns and abrasions, involving the epithelium
and the papillary part of the dermis. Natural products, especially those from plants, are a
new strategy for wound healing. Quercetin is used for the treatment for wounds because,
as outlined, it shows anti-inflammatory activity. Rubusniveus [60] is one of the species
against which quercetin was found to have some wound-healing activity [61].



Molecules 2023, 28, 8141 7 of 28

There are a lot of examples of the biological activity of quercetin occurring in in vivo
experiments. One example is in the species of Bergia ammannioides [62], against which
quercetin was found to have antioxidant and anti-inflammatory abilities. Secondly, in
Melilotus officinalis and in Lespedeza capitata [63], quercetin was found to increase the Ha-
CaT human keratinocytes. Furthermore, in Martynia annua and Tephrosia purpurea [64],
quercetin was found to have antioxidant activity. Also, quercetin has protection against
endotoxin-induced inflammatory response [65], surgical-induced osteoarthritis [66], LPS-
induced oxidative stress and inflammation [67], LPS/interferon c-induced nitric oxide
production [68], TNF-α induced inflammation [69], and CCl4-induced inflammation [70].

2.10. Anti-Tuberculosis

Tuberculosis is a fatal infectious disease caused by the Mycobacterium tuberculosis
(Mycobacterium tuberculosis). Despite the availability of effective treatment, tuberculosis
is responsible for a million deaths worldwide per year. The bacterium has developed a
resistance to the drugs on the market, and so the need arises to find other therapeutic
compounds [71,72]. Quercetin can be a good inhibitor for the bacterium [73]. This was
found through in vitro antituberculosis bioassays.

2.11. Antidiabetic Activity

Insulin is a protein hormone that is necessary for the maintenance of normal blood
glucose levels, either by increasing peripheral glucose uptake or by suppressing the produc-
tion of hepatic glucose [74]. Quercetin might be a promising candidate that acts in many
targets of diabetes, and it can regulate many pathways [75,76]. Furthermore, co-crystals
comprised of quercetin and antidiabetic agents like metformin and DPP-IV inhibitors have
been demonstrated to treat diabetes mellitus (DM) by reducing blood glucose levels and
improving glucose tolerance. DM is a chronic disease that is diagnosed as a result of
elevated blood glucose levels caused by inadequate insulin secretion, defective insulin
action, or both [77,78].

2.12. Antimalaria Activity

Malaria is one of the most threatening tropical diseases that leads to millions of deaths
every year. Almost all fatal cases are caused by Plasmodium falciparum and its strains, which
have developed resistance to the drugs in circulation. Therefore, a need has arisen for new
active compounds for the treatment of this disease. Quercetin is a potential antimalaria
drug, as proven through in vitro experiments [79].

2.13. Antichagas Activity

Chagas disease (CD) [80] is a disease that many scientists ignore, and its main bacteria
is the Trypanosoma cruzi (TC). This disease appears mainly in Central and North America,
but in recent decades, the number of CD cases has been increasing in other countries, such
as in the south of the United States of America, in Canada, in the Western Mediterranean,
and in the Western Pacific. It is estimated that about 6 to 7 million people are potentially
infected by TC, which causes about 20,000 deaths per year and is the leading cause of
infectious myocarditis. Quercetin and other flavonol derivatives can be antitrypanosomal
candidates, showing IC50s of 0.6, 0.7, 0.8, and 1.0 µg/mL [81].

2.14. Antifungal Activity

Fungicides have often been observed to pose a risk to human health and can be
harmful to the environment. Thus, there is a need to find alternative solutions to deal with
fungi, with natural compounds that will not affect either human health or the environment.
The Candida parapsilosis species is composed of three other species, i.e., C. parapsilosis sensu
lato, C. orthopsilosis, and C. metapsilosis. These species are found in vegetables and fruits,
and they are known to cause infections worldwide. Quercetin has been shown to have
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antifungal activities through the determination of its minimum inhibitory concentration
(MIC) [82].

2.15. Combination of Quercetin with Other Drugs

There are several examples whereby quercetin and its derivatives have been combined
with other compounds with biological interest and activity. One of these examples is sickle
cell disease. Sickle cell disease and its variants constitute the most common blood disorders,
affecting millions of individuals worldwide. Until now, there has been no treatment for
this disease, and there is no acute method for prevention [83]. Another example is Fragile
X Syndrome. This disease is the most common one implicated in intellectual disability.
Someone who suffers from this disease has many serious medical problems [84]. Examples
of the use of quercetin with other drugs will be described in the Section 3.

2.16. Anti-Rhinitis Activity

Acute rhinitis is one of the most common inflammatory diseases in Western countries.
The major symptoms include nasal obstruction and nasal secretions. In the evolution of
the disease, a frequent complication is acute rhinosinusitis, which can progress to chronic
rhinosinusitis and then to intracranial complications, meaning that it is necessary to treat
the disease as soon as possible. The cause of rhinosinusitis lies in the secretion of pro-
inflammatory cytokines, key factors in initiating inflammation, consequently leading to
local edema and swelling of the mucosa and an increase in nasal and sinus secretions.
Quercetin has proven its antioxidant and anti-inflammatory properties against rhinosi-
nusitis, both in rats and humans, by inhibiting the release of chemical mediators, such as
histamines and leukotrienes, and reacting with relative oxygen species (ROS), which are
also involved in rhinosinusitis [85,86].

2.17. Antidrug Resistance

Multidrug resistance (MDR) is defined as the ability of cancer cells to survive treatment
with a variety of anticancer drugs, similar to the concept commonly applied to antibiotic
treatment [87]. MDR is responsible for over 90% of deaths in cancer patients receiving
chemotherapeutics or targeted drugs. Derivatives of quercetin (Scheme 1d) have been
proven to be possible candidates in treating MDR cancer, as well as viral infections in
humans [88].

Skeletal muscles are tissues that are involved not only in mobility and movement but
also in glucose and lipid metabolism. Muscle atrophy is the loss of skeletal muscle mass due
to increased myofibrillar protein degradation. It occurs under various circumstances such as
injury and during side effects of pharmaceutical therapy and aging. Muscle atrophy causes
falls, and therefore, it has become a serious problem, especially in aging society. Quercetin
glucosides are proven to be perfect candidates in the treatment of muscle atrophy, since they
play an important role in the downregulation of myostatin signaling via phosphorylation,
a possible mechanism responsible for the inhibitory effects of quercetin glucosides [89,90].

All in all, quercetin is commercially available and is one of the most common natural
products. Natural products have become more popular, and they have started to be used
as lead compounds in medicine. They have a lot of advantages in contrast to common
drugs. For instance, they have less side effects. In addition, flavonoids play a significant
role in humans and plants. Efforts that have been made to increase the bioavailability
and solubility of quercetin are outlined in the Results and Discussion section (Section 3).
Basically, vehicles have been used, and quercetin is also administered with other drugs. We
propose that a mixture of quercetin engulfed in vehicles along with other drugs should be
tried (Scheme 3).
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Scheme 3. Quercetin alone bears low bioavailability and solubility. In an attempt to increase both its
bioavailability and solubility, it was encapsulated in vehicles using nanotechnology. In addition, it is
administered with other drugs. We propose that it can be administered with drugs but also given as
an encapsulated molecule in vehicles.

3. Results and Discussion

Quercetin interacts with various biomolecules, including cyclodextrin [91–95]. Cy-
clodextrins are macromolecules that are commonly employed in the food and pharmaceuti-
cal industries, serving diverse purposes within these fields [96].

Cyclodextrins [97,98] are cyclic macromolecules composed of glucopyranose units [99,100].
The outer surface of cyclodextrins is hydrophilic, and the inner is hydrophobic [101]. They
are soluble in water. The most common cyclodextrins are composed of six, seven, and
eight glucopyranose units, which are α-, β-, and γ-cyclodextrins (Scheme 4). Nevertheless,
nowadays, a plethora of cyclodextrin derivatives have been synthesized that are comprised
of less than six glucopyranose units. Larger cyclodextrins have also been achieved with
more than eight glucopyranose units. Indeed, a wide range of cyclodextrins can be gener-
ated by employing different substitutes, leading to a diverse array of these molecules, with
varied properties and applications. CDs can improve the bioavailability of drugs [99,102].
They play a vital role in computational drug design, and there are a lot of medicines with
CD-drug complexes that are already in commercial use [103]. One example of CD-drug
complexes is those with curcumin [101,104,105].
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The synthesis of these complexes was performed by freeze-drying [106]. Moreover, 2D
DOSY NMR experiments have shown the complexation between quercetin and 2HP-β-CD
and 2,6Me-β-CD (Scheme 5). Quantum chemistry studies employing Density Functional
Theory have shown that the binding between quercetin and dimeric assemblies of 2HP-β-
CD and 2,6Me-β-CD (Scheme 5) cyclodextrins is relatively weak, leading to facile quercetin
entrance and exit from the CD vehicle [92]. Fluorescence spectroscopy and molecular
Dynamics experiments have shown that these dimeric assemblies remain stable. The
quercetin-CD complex is stabilized through hydrophobic interactions. However, the 2HP-
β-CD2 dimeric assembly is more stable than 2,6Me-β-CD2, due to stronger binding [91].
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The weak quercetin–CD binding allows quercetin to remain available at the intended
target site, facilitating selective and safe action. Solubility experiments conducted on these
complexes revealed an increase in the solubility of quercetin when encapsulated within
cyclodextrins, particularly noticeable at pH 6.8.
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Furthermore, the systematic exploration and analysis of quercetin-based compounds
that are chemically modified through the incorporation of amino acids was examined.
In silico experiments, in vitro assays in different cancer cells, and NMR spectroscopy
were used to reveal the interactions between these analogues with the Bcl-xl protein. It
was shown that these analogues bind strongly in the protein and remain stable in the
active center. Specifically, the conjugation of quercetin with amino acids, particularly
Que-Glu (Scheme 1e), enhances quercetin’s inhibitory effects on prostate cancer cells. This
approach could offer a promising strategy to improve the therapeutic efficacy of these
compounds [107].

One other approach to increase the bioavailability of quercetin is the use of nanopar-
ticles [8,42]. The encapsulation of quercetin in nanoparticles has shown high solubility.
This has led to the treatment of various diseases. The size of quercetin nanostructures is
between 20 and 50 nm. Studies have shown that quercetin has more antioxidant activity
inside nanostructures than free quercetin does. Even though there are treatments with
quercetin against cancer, there is low availability of quercetin-involved nanoparticles to
treat neurodegenerative diseases [108–112].

One other biomolecule that is used for the encapsulation of drugs is poly-d,l-lactide
(PLA) (Scheme 6). PLA is often used to form complexes with other molecules due to its
high hydrophobicity, biodegradability, and low toxicity. In vitro experiments and fluores-
cence experiments showed that the antioxidant activity of quercetin was retained inside
the polymer. This may lead to the development of nanomedicine and to an antioxidant
drug [113].
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There are several examples in which quercetin and its derivatives are combined with
other compounds with biological interest and activity (Table 1).

Table 1. Examples of quercetin in combination with other compounds in medicinal chemistry.

Additive Treatment of Disease

Vitamin C, vitamin B3, folic acid Sickle cell disease (SCD) [114,115]

Catechin Synergistic inhibition of the platelet function
and dietary use [116]

Kaempferol Prevention and treatment of hereditary
cardiomyopathy [117]

Astragalin Treatment of atopic dermatitits [118]

Statins Reducing cholesterol levels [119]

Doxorubicin Inhibiting liver cancer [120]

Oleuropein Preventing and treating joint disorders [121]

Ibudilast Treatment of Fragile X Syndrome [122]

Zafirlukast Treating amyotrophic lateral sclerosis [123]

Rutin Treating elevated blood lipid level-related
diseases [124]

Polyphosphate Treating osteoporosis [125]

Icaritin Treatment of liver disease [126]

Vitamin D, retinol, and genistein Improvement of skin conditions [127–129]

Maleic anhydride derivatives Treatment of hepatocellular carcinoma [130]

Haloperidol Releaving neuropathic pain [131]

Metformin Preventing against immune diseases [132]

Luteonil and delphinidin Treatment of endometriosis [133]

Myrecetin Curing adenocarcinoma, prostate carcinoma,
and breast cancer [134]

Maroto et al. have developed a combination of resveratrol, quercetin, and catechin
polyphenols in such proportions that it has a synergistic antioxidant power. They have
shown that the preferred embodiment is the combination of antioxidants comprising
resveratrol: quercetin: catechin in a 1:1:2 or 1:1:5 molar ratio. The results of the TOSC
(Total Oxidant Scavenging Capacity) test showed that it was possible to obtain a potent
antioxidant effect without the need to ingest large amounts of resveratrol or the other
individual antioxidants, which is advantageous in order to minimize possible risks of
side effects. The preferred combination is resveratrol: quercetin: catechin in a 1:1:2 molar
ratio. The combination of resveratrol, quercetin, and catechin polyphenols can be used in
different pharmaceutical forms, both solid and semi-solid, and these can be included in a
variety of pharmaceutical, cosmetic, and foodstuff formulations [135].
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In another study, it was found that quercetin can be encapsulated in nanoparticles.
Specifically, quercetin and silica nanogels were synthesized by aging and drying. The
encapsulation was performed in PEGylated and CTAB-modified polymer nanomaterials
(Scheme 7). An IR experiment confirmed the stability of quercetin inside the nanoparticles.
The antioxidant activity of quercetin was tested in Cu(II), which is a metal that can induce
oxidative stress. The entrapment of quercetin within nanoparticles demonstrated its ability
to release its contents when exposed to conditions of Cu(II)-induced oxidative stress
in neuronal and glial cultures. Such research works aim toward the development of
flavonoids in nanomedicine and toward the treatment of Cu(II)-induced oxidative stress in
neurodegenerative diseases [136].
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As mentioned before, quercetin is being extensively studied as a potential cancer treat-
ment because of its notable characteristics, such as its ability to regulate crucial molecular
pathways linked to apoptosis and its effectiveness in inhibiting drug efflux in multidrug-
resistant tumors. To address the limitation of poor bioavailability, new formulations lever-
aging nanotechnology have emerged as a promising solution. Recent in vitro and in vivo
studies have showcased successful tumor treatments using nano-formulations loaded
with quercetin across various cancer models. These formulations exhibit high quercetin
loading percentages in polymeric, lipid, and inorganic nanoparticles. Additionally, the
co-delivery of different therapeutic agents has emerged as a promising strategy to elicit
synergistic effects. Notably, quercetin has been shown to downregulate membrane trans-
porter proteins, leading to increased intracellular concentrations of other chemotherapeutic
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compounds, and ultimately improving therapeutic outcomes. These studies are promising
for the development and the augmentation of a new series of anti-tumor drugs [42].

Additionally, quercetin-sugar derivatives, which are depicted in Scheme 8, have been
synthesized and used for the prevention and treatment of diseases related to the 5HT1A
receptor by inhibiting it, or neuron cell damages, including drug or alcohol dependence,
sleep disorders, panic state, delaying senility, and improving learning and memory [137].
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Scheme 8. A quercetin-sugar derivative that has been used for treating neurological disorders
sketched in ChemDraw.

Another study showed that quercetin encapsulated in liposomes can be a candidate for
the treatment of ischemia [138]. Liposomes can be used as drug carriers like cyclodextrins.
Specifically, the synthesis of quercetin with liposomes was conducted with a thin-film
hydration method. In vivo experiments with rats revealed a potent antioxidant activity of
quercetin with this nano-formulation.

In the case of flavonoids, solvents play a leading role in their activity. The solvent
seems to have an effect on hydrogen bonding through the available donor-acceptor sites in
the flavonoid. Based on this, many studies focus on the solubility of flavonoids, especially
quercetin, in different organic solvents.

Previous studies have shown that C60 fullerene leads to moderate toxicity because
of its low water solubility. This may be harmful to aquatic organisms. One effective way
to prevent this is the combination of C60-quercetin solutions (Scheme 9). As a result, the
solubilization of C60 with quercetin leads to more biodegradable materials [139]. In recent
years, scientists have achieved the synthesis of novel C60 fullerene-flavone derivatives,
starting from quercetin, via cyclopropanation (Bingel reaction) of C60. The products of this
reaction have antioxidant activity and may be used as novel drug leads [140].
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In 2023, Das Saha et al. [141] examined the anticancer potential of quercetin and 5-
fluorouracil-encapsulated (5-Fu) chitosan nanoparticles, since chitosan has been intensively
investigated and used as a carrier in polymeric nanoparticles for drug delivery in both
in vitro and in vivo models [142]. 5-Fu is already a chemotherapeutic drug approved by
the FDA for treating various types of cancers [143], and quercetin has the ability to express
its anticarcinogenic properties via the modification of intracellular signal transduction and
the inhibition of cancer-activating enzymes [144]. These nanoparticles were synthesized
using ionic gelation methods and were tested against cancer cell lines HepG2 (liver cancer),
HCT116 (colorectal carcinoma), and HeLa (cervical cancer) and the normal cell line Hek293
(kidney cells). The results of the performed MTT assays indicated a higher cytotoxic
potential of CS-5Fu-QCT nanoparticles in HCT116 cancer cells and no toxicity on the tested
normal kidney cells compared to quercetin alone, meaning that this type of NP may be
a very effective anticancer agent against colorectal carcinoma, with minimum to no side
effects. The CS-5Fu-QCT NPs’ possible mechanism of action works by causing G0/G1
phase cell-cycle arrest in HCT116 cells and altering the expression of pivotal proteins in the
p53/p21 pathway, thus initiating cell apoptosis [141].

The field of nanotechnology, specifically nanomedicine, is an alternative and promising
tool in the biomedical sciences. Nanomaterials, nanotubes, and nanoparticles offer a new
perspective, and their use and application as carriers can contribute substantially to disease
diagnosis, treatment, and monitoring [145–150]. The characteristics of these materials,
such as their biocompatibility and economic viability, make them satisfactory carriers
applied to multiple therapeutic and diagnostic agents [151,152]. Researchers who are
motivated by the possibilities of nanomaterial, have found the effective interaction of a
nanostructure and quercetin, and particularly the incorporation of a hybrid nanostructure
with quercetin-coated titanate nanotube [153]. Studies report that a hybrid nanostructure,
especially metal-based (High-Z elements) hybrid nanoparticles (MHNs), noble metals,
and organic materials, offer an improvement in the efficacy of radiation therapy and
have demonstrated cytotoxicity against tumor cells [154]. Moreover, there is evidence
demonstrating that despite the unique and easy modification of a titanate nanostructure,
the connection and incorporation of quercetin on it does not alter the morphology of
the nanostructure, and its tubular structure is preserved [153]. Due to these facts, the
investigation and development of incorporated molecules of quercetin in sodium (NaTNT)
and zinc (ZnTNT) titanate nanotubes could interfere in cell proliferation and may be a
powerful tool in a medical revolution.

Finally, the complexation of quercetin with the calixarene supramolecule was con-
ducted (Scheme 10). To examine this complexation, several analytical techniques were used
such as FTIR Analysis, Dynamic and Electrophoretic Light Scattering (DLS), Differential
Scanning Calorimetry (DSC), and High-Resolution Transmission Electron Microscopy (HR-
TEM). At first, quercetin was enclosed within a calixarene. This resulted in a significant
increase of 62,000 times in aqueous solubility. Through solid-state NMR (Scheme 11) and
in vitro and in silico experiments, it was found that the complex effectively hindered the
growth of tumors, leading to a decrease in tumor volume. Next, a gold nanoparticle core
was adorned with calixarene hosts to non-covalently accommodate nanoparticles (GNPs).
The nanocarrier loaded with the NP quercetin significantly increased the cytotoxicity (more
than 50-fold) compared to the original NP in colon cancer, and it also modified its cell
membrane transport mechanism. This enhanced the tumor-targeting properties achieved
through this innovative combination, shedding light on a promising avenue for advanced
cancer therapies [155].
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Scheme 11. 1H−13C CPMAS NMR spectra of quercetin, calixarene mixture, quercetin, and calixarene
complex and GNP-calixarene-quercetin complex sketched in TopSpin 4.2.0. software.

In Table 2, it is shown all the techniques that they were used for the encapsulation of
quercetin in macromolecules.
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Table 2. Overall table of techniques that were used for the encapsulation of quercetin in macro-
molecules [156].

Technique Reason That It Was Used

NMR spectroscopy Structure elucidation of quercetin with cyclodextrins and
observation of their complexation [91,157]

2D-DOSY NMR spectroscopy Evaluation of the complex formation of quercetin with
cyclodextrins [92,158]

Induced Fit Docking (IFD)

Evaluation of how effectively quercetin binds to essential viral
components or enzymes. For instance, quercetin was used for

IFD against acetylcholinesterase and butyrelcholinesterase
[159–162].

Molecular dynamics

To obtain a deeper understanding of the stability and molecular
interactions within the complexes formed by the

“protein-ligand” pairs identified in the docking studies
[92,163–167]

Molecular Mechanics Generalized Born Surface Area
(MM GBSA)

To highlight the strongest binding capability of quercetin
against different macromolecules [92,168]

Differential Scanning Calorimetry (DSC)
Validation of the formation of the complexes. For example, it

was shown that quercetin was well distributed in the
polyvinylpyrrolidone (PVP) matrix [169–173].

Fluorescence spectroscopic studies

Investigation of the interactions between quercetin and
macromolecules. In particular, it was used in the formation of

the dimeric assemblies of quercetin with cyclodextrins
[91,174–180].

Solubility studies Examination of the solubility of quercetin inside
macromolecules in different pHs [155,181,182]

High-performance liquid chromatography (HPLC)
Validation of the purity and identification of the components. It
was used for the determination of quercetin in herbal extracts

[183–186].

Gas chromatography (GC) Analysis of quercetin and its separation from different plants,
materials, etc. [187–189]

UV/Vis spectroscopy
Quantification of quercetin in various contexts, encompassing

pharmaceutical formulations [190], medicinal plants, beverages
[191,192], and food.

Thin-layer chromatography (TLC) Separation of quercetin from other flavonoids in a shared matrix
[193–196]

Electrophoresis Analysis of quercetin [197–201]

Cyclic voltammetry (CV) Determination of the antioxidant activity of quercetin in
lyophilized onion tissue of onion var [202–204]

Pulse voltammetry (DPV) Determination of the antioxidant activity and the
electrochemical parameters of quercetin [205]

Raman spectroscopy Quantitative analysis of quercetin in onion peels [206–210]

Limit of detection (LOD) and limit of quantitation (LOQ) Validation of the analytical method by determining quercetin in
green tea [211]

Transmission Electron Microscopy (TEM) Details for structural properties of quercetin in oil-in-water
nanoemulsions [212,213]

Central Composite Design (CCD) Evaluation of the effects of pH in determining quercetin in the
presence of electroactive tannic acid [214,215]

Rheological measurements Evaluation of the strength of the structure of quercetin with
nanostructured lipid carriers in linseed oil [216]
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Table 2. Cont.

Technique Reason That It Was Used

Liquid Chromatography-Mass Spectroscopy (LC-MS) Identification and quantification of quercetin in human
hepatocytes as in vitro cell models [217]

Fourier-Transform Infrared Spectroscopy (FT-IR) Analyzing the infrared absorption or emission of the molecule
in buckwheat samples [218,219]

Capillary electrophoresis (CE) Analysis of quercetin based on its electrophoretic mobility in
red and white wine samples [197,220]

Enzyme-Linked Immunosorbent Assay (ELISA)
Quantitative analysis of quercetin to determine its

anti-inflammatory effects in lipopolysaccharide stimulated cells
[221–223]

Supercritical Fluid Chromatography (SFC) Separation and extraction of quercetin from sumac fruits
[224,225]

Flow Injection Analysis (FIA)
Subsequent detection of quercetin using normal and hot

platinum microelectrode, showing the utility of Baranski’s
method [226,227]

Solid-Phase Microextraction (SPME)
Extraction and analysis of quercetin, combined with HPLC-UV

detection method, in green and black tea and coffee samples
[184,228,229]

X-ray crystallography
Determination of the three-dimensional structure of quercetin

crystals existing as hydrogen-bonded dimers, contributing to its
unique biological activities [230]

Matrix-Assisted Laser Desorption/Ionization Mass
Spectrometry (MALDI-MS)

Analysis of quercetin utilizing MIL-101(Cr) as surface-assisted
matrix for replacing traditional organic matrices [231–234]

Supercritical Fluid Extraction (SFE) Extraction of quercetin from Hyperici herba [224,235]

Solid-Phase Extraction (SPE)
Preparation of samples for extracting and determining

quercetin’s and quercetin glucosides’ concentration in food
products [236–240]

4. Conclusions

In conclusion, this review delves into the diverse biological and medicinal implications
of quercetin, especially its anti-inflammatory, antioxidant, anti-tumor, and antiviral proper-
ties. The exploration of quercetin′s synergistic potential when combined with other drugs
and natural products holds promise for the development of innovative medications. Such
combinations not only offer the prospect of novel drugs but also present an avenue for miti-
gating side effects and toxicity. Addressing the challenge of quercetin′s poor bioavailability,
researchers have successfully conducted complexation within various macromolecules,
including cyclodextrins, polymers, liposomes, and nanomaterials. Both experimental and
computational efforts have resulted in stable complexes, demonstrating enhanced bioavail-
ability in vitro. Future applications may involve quercetin complexes with cyclodextrins
inside the liposomes, suggesting a wide spectrum of medicinal possibilities (Scheme 12A).
In addition, combined macromolecules like cyclodextrins and calixarenes can be used
to engulf quercetin (Scheme 12B). All these suggested future studies will designate the
capability of quercetin to serve as a lead compound.
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Scheme 12. Future formulations of quercetin in various macromolecules sketched in PowerPoint
installed on Windows 10. Quercetin can be incorporated into various macromolecules such as nan-
otubes, fullerenes, etc., along with their combinations (A). In addition, quercetin can be incorporated
into liposomes in a simple form or complexed in CDs or calixarenes or other forms in which slow or
fast release can be controlled (B).
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