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Abstract: Platform chemicals, also known as chemical building blocks, are substances that serve as
starting materials for the synthesis of various value-added products, which find a wide range of
applications. These chemicals are the key ingredients for many fine and specialty chemicals. Most of
the transformations of platform chemicals are catalytic processes, which should meet the requirements
of sustainable chemistry: to be not toxic for humans, to be safe for the environment, and to allow
multiple reuses of catalytic materials. This paper presents an overview of a new class of heterogeneous
catalysts based on nanoparticles of catalytically active metals stabilized by a polymer matrix of
hypercrosslinked polystyrene (HPS). This polymeric support is characterized by hierarchical porosity
(including meso- and macropores along with micropores), which is important both for the formation
of metal nanoparticles and for efficient mass transfer of reactants. The influence of key parameters
such as the morphology of nanoparticles (bimetallic versus monometallic) and the presence of
functional groups in the polymer matrix on the catalytic properties is considered. Emphasis is placed
on the use of this class of heterogeneous catalysts for the conversion of plant polysaccharides into
polyols (sorbitol, mannitol, and glycols), hydrogenation of levulinic acid, furfural, oxidation of
disaccharides, and some other reactions that might be useful for large-scale industrial processes that
aim to be sustainable. Some challenges related to the use of HPS-based catalysts are addressed and
multiple perspectives are discussed.

Keywords: porous organic polymer; hypercrosslinked polystyrene; platform chemicals; heterogeneous
catalysts; metal nanoparticles; biomass processing

1. Introduction

In recent decades, the scientific world has developed a clear understanding of the
future of the development of the chemical and fuel industries, in which an important
place will be occupied by platform chemicals synthesized from biomass [1], primarily from
lignocellulose produced from forestry and agriculture waste, the volume of which reaches
200 billion tons per year [2]. In 2004 the US Department of Energy compiled a list of biomass-
derived chemicals with the highest added value. These include the following: 1,4-diacids
(succinic, fumaric, malic acids), 2,5-furandicarboxylic acid, 3-hydroxypropionic acid, aspar-
tic acid, glucaric acid, glutamic acid, itaconic acid, levulinic acid, 3-hydroxybutyrolactone,
and glycerol, as well as sugar alcohols (sorbitol, xylitol, etc.) [3]. This list was updated
in 2010 [4], when ethanol, furfural, 5-hydroxymethylfurfural, isoprene, and lactic acid
were added. All these substances underlie many sequences of chemical transformations
aimed at the synthesis of polymers [5], biofuels [6], and raw materials for the chemical
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industry [7]. The volume of platform chemicals derived from biomass is constantly growing
and today already represents hundreds of billions of US dollars annually [8], which in mass
terms approaches approximately 100 million tons per year [9,10]. Various large chemical
companies, such as DuPont, BASF AG, Dow Chemical, and many others are developing
technologies for the conversion of biomass into platform chemicals and their integration
into existing processes [8]. The current energy crisis is also a driving force for the market
growth of commercially valuable biomass-derived chemicals and is expected to increase
by 16% in 2025 [11], which in monetary terms should reach 867.7 billion US dollars [12].
The most attractive biomass is lignocellulosic, since it does not provide any nutritional
value [13].

To ensure the sustainable processing of biomass, it is necessary to address fundamental
economic, social, and environmental requirements. For example, none of the strategies for
the pretreatment of lignocellulosic biomass have proven to be environmentally friendly
and safe [14]. The strong structure of microcrystalline cellulose makes it difficult to involve
plant biomass directly in conversion processes. The dissolution and destruction of cellulose
macromolecules requires the use of complex and environmentally harmful solvents (ionic
liquids, mineral acids, etc.), expensive and non-regenerable enzymes, and/or “harsh”
reaction conditions (high temperatures and pressures) [15].

One effective solution is heterogeneous catalysts designed for a required range of
reaction conditions [16]. However, the use of catalysts also brings a number of problems
related to their stability under hydrothermal conditions, toxicity, high selectivity to the
target products, etc. [17]. In this regard, an urgent task is to develop new catalytic sys-
tems that are stable under “harsh” conditions of plant biomass conversion, have high
activity and yields of target products, and are safe for humans and the environment. Hy-
percrosslinked polymers are very promising materials, which present many properties of
effective heterogeneous catalysts, like developed specific surface area (from hundreds to few
thousands of m2/g), controlled porosity, possibility of surface functionalization, excep-
tional adsorption properties [18,19], chemical and thermal stability, and low cost [20]. In
addition, some hypercrosslinked polymers can be synthesized from monomers of biological
origin or related compounds [21], for example using lignin, catechol, and starch, which in
combination with a mechanochemical method (without any use of toxic chlorine-containing
solvents) fully complies with the principles of green chemistry [22,23]. The carbonizates of
hypercrosslinked polymers also look promising for use as catalysts [24]. However, despite
the advantages, the use of hypercrosslinked polymers as heterogeneous catalysts is not
always straightforward. The main disadvantages of catalysts based on hypercrosslinked
polymers can be summarized as follows: low mechanical strength, leaching of active metals,
sensitivity to oxidation, restricted temperature (<300–400 ◦C), slow diffusion in micropores,
and difficult access of large molecules to the active centers.

In general, it should be noted that hypercrosslinked polymers are already widely
applied in industry as excellent (ad)sorbents. Their use for the synthesis of heterogeneous
catalysts is a relatively new but dynamically developing area. This article provides an
overview of a new class of heterogeneous catalysts based on nanoparticles of catalytically
active metals stabilized in a polymer matrix of hypercrosslinked polystyrene (HPS), their
synthesis, properties, and application to produce several platform chemicals from renew-
able raw materials. Some transformations of platform chemicals into compounds with high
added value are addressed and multiple perspectives are discussed.

2. Hypercrosslinked Polystyrene (HPS): Synthesis, Properties, and Applications

The year 2019 marked half a century since the synthesis of the first HPS samples,
which are known as the third generation of polystyrene networks, or “Davankov-type
resins” [25–27]. According to the synthesis method proposed by V.A. Davankov, polystyrene
chains are crosslinked in solution with rigid bridges (crosslinking agents)—bis-chloromethyl
derivatives of aromatic hydrocarbons or monochlorodimethyl ether. The latter reacts with
polystyrene in the presence of a Friedel–Crafts catalyst in two stages: (1) introduction
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of chloromethyl groups into polystyrene and (2) binding of phenyl rings by a methyl
group. As a result, a rigid and relatively long bridge is formed, containing a fragment
of the crosslinking agent and two phenyl rings of the original polystyrene [26]. Over the
decades, the synthesis process has been improved and modified. For example, a one-
pot preparation of HPS sorbents was recently proposed, which is based on the in situ
formation of monochlorodimethyl ether (MCDE) through the reaction of methylal with
acid chlorides of organic and inorganic acids, in particular, CH3COCl, (COCl)2, SO2Cl2,
and POCl3 [28]. The application scope of HPS has now expanded enormously. Methods
and strategies for their synthesis have been developed in order to control the microporos-
ity/mesoporosity ratio, to introduce functional groups into the polymer, to improve the
selective sorption of gases, organic aqueous pollutants, etc. This new class of microporous
materials presents high-performance characteristics [29]. Due its multiple advantages, such
as a variety of synthesis methods, ease of functionalization, large specific surface area (SSA),
use of inexpensive reagents [30], mild synthesis conditions, and chemical and thermal
stability, HPS is increasingly attracting research interests [31]. HPS has become a universal
platform for the synthesis of nanoporous materials with specified properties, which, in ad-
dition to traditional application in chromatography, gas adsorption, and sorbents for water
treatment, have begun to be used in drug delivery systems, sensors, and heterogeneous
catalysts [27].

Hypercrosslinked polystyrene is a very rigid polymer network with a special type
of porosity (Figure 1). The pore size is quite small (about 20 Å) and, according to the
IUPAC nomenclature, is on the border of micro- and mesoporosity [32]. The nature of
porosity and specific surface area of HPS strongly depend on the characteristics of the
initial reagents [33], the method of polymer synthesis and is about 600–2000 m2/g or even
more [34–37]. The exceptional sorption properties of HPS are based mainly on hydrophobic
and π–π interactions [38], but through functionalization the possibilities of using HPS as
a sorbent are significantly expanded [39]. Its chemical modification can be carried out
after polymer synthesis, for example, via treatment with concentrated sulfuric acid to
sulfonate the surface [25,40] or by introducing monomers containing functional groups
directly during the synthesis of HPS [41–43].
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Due to its properties, HPS has gained great commercial popularity over the past
decades. Many companies produce it for large-scale sorption processes in the chemical,
food, and water treatment industries, for example, Purolite (Hypersol-Macronet, MN
series), Dow Chemical (Optipore), Lanxess (Lewatit VP OC 1163 and S 7768), and Jiangsu
N&G Environmental Technology (NG-99 and NG-100), and for analytical purposes, such
as International Sorbent Technology (Isolute ENV+), Merck (LiChrolut EN), Spark Holland
(HySphere), Macherey Nagel (HR-P), etc. [26,27]. The range of manufactured HPS includes
neutral sorbents with various porous structure, strong and weakly basic anion exchangers
and cation exchangers, sorbents for high-performance liquid chromatography (HPLC) and
cartridge fillers for solid-phase extraction. Their combined abilities of quickly absorbing
significant amounts of different gases and thermodynamically compatible and incompatible
solvents with their capacity for rapid regeneration makes hypercrosslinked polystyrenes
promising adsorption materials, including for their uses in liquid chromatography and
solid-phase extraction [44].

There is a significant amount of research on the application of HPS-based sorbents
in medicine. Thus, Tolmacheva et al. [45] used HPS Diapak P-3 (Biokhimak, Russia) for
the adsorption of catecholamines (adrenaline, norepinephrine, and dopamine), which can
serve as biomarker of heart disease, diabetes, schizophrenia, etc. The average recovery of
catecholamines from HPS was 89–98%, showing a promise for isolation and concentration
of catecholamines from aqueous media (including biological fluids). Hemosorption is an
actively developing method of removing toxic substances from humans by pumping the
blood stream through a cartridge filled with a sorbent, including one based on HPS [46].
This procedure is used not only for emergencies (poisoning and severe infections), but
also for the treatment of chronic diseases (asthma, allergies, pancreatitis, etc.) [26,47,48].
For example, in [49] a new adsorbent based on hypercrosslinked polystyrene modified
with pyridinyl—HCP (St-DVB-VP)—was used to remove bilirubin and medium/large-
molecular toxins (IL-6 and PTH) from a liver. In addition to good adsorption properties
towards toxins, this sorbent showed a low rate of hemolysis, a low risk of blood clotting,
and acceptable hemocompatibility. Pautova et al. [50] isolated nine aromatic microbial
metabolites from blood, using the microextraction by packed sorbent (MEPS) method
in combination with an HPS-based sorbent. Based on the results obtained, the authors
concluded that the use of HPS in commercial MEPS devices is promising for the analysis
of biological samples for early diagnosis of sepsis and for monitoring the effectiveness
of treatment. The use of HPS for preconcentration of analytes made it possible to reduce
the detection limit of antibiotics of the tetracycline group (tetracycline, oxytetracycline,
chlortetracycline, and doxycycline) by 90–100 times (0.6–2.0 ng/mL) [51]. Tolmacheva et al.
assessed the adsorption properties of a magnetic adsorbent based on hypercrosslinked
polystyrene (HCPS-Fe3O4) towards tetracycline antibiotics [52]. The authors showed that
HCPS-Fe3O4 retains adsorption properties towards tetracyclines and is easily separated
from the solution by applying a magnetic field.

It should be noted that materials with magnetic properties, including sorbents and
catalysts, increasingly find applications in various fields of research and industry [53–57].
From this point of view, magnetic HPS also deserve attention, since they combine the tech-
nological advantages of magnetic materials and HPS’ high adsorption capacities [44,58].
There are several options for the preparation of magnetic HPS: (1) synthesis of a polymer
network in the presence of magnetite nanoparticles (Fe3O4) [59,60]; (2) synthesis of mag-
netic nanoparticles directly in the polymer matrix, for example, via the precipitation of
magnetite [61]; and (3) sorption of presynthesized magnetite nanoparticles on the HPS
surface [44]. Thus, Pastukhov [62] synthesized magnetic composites using the industrial
polymer adsorbents Macronet MN270, 200, 202, and 600 as a basis; these belong to the
class of hypercrosslinked polystyrenes, styrene-divinylbenzene sorbent Amberlite XAD4
and a hypercrosslinked copolymer of styrene and divinylbenzene. Magnetic sorbents were
obtained by immobilizing magnetite nanocrystallites in the pores of HPS via chemical
deposition. It has been shown that synthesized composites based on industrial biporous
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HPS are capable of adsorbing well organic compounds of various classes: aliphatic and
aromatic hydrocarbons, alcohols, and ethers. The sorption value of particularly toxic
organic compounds—dioxane, benzene, and carbon tetrachloride—reaches 0.8 mL/cm3.
Furthermore, based on the industrial sorbent Macronet MN270, but using a different tech-
nique based on the thermal destruction of iron salts, a magnetic composite Fe3O4/HPS
MN270 was synthesized. It was characterized by a high saturation magnetization value
(4.5 emu/g) and a magnetite particle size of 40± 5 nm [63], which was used for the synthesis
of magnetic heterogeneous catalysts. A convenient method has been proposed for produc-
ing a Fe-containing HPS composite based on a waste foam plastic [64]. This is a fast method
that uses readily available reagents and solves the problem of disposing of bulky foam
waste. The resulting product can be used for the sorption of hydrogen sulfide and toxic
organic solvents, as well as the decomposition products of natural residues—putrescine,
cadaverine, indole, and skatole.

Over the last decades, science and industry have accumulated significant knowledge
in the use of HPS as a sorbent for chromatography and technological processes for the
purification of aqueous and organic media. However, new materials appear constantly.
Thus, Gui et al. [65] reported the synthesis of hypercrosslinked polystyrenes (sPSs)–HCL-X
prepared from syndiotactic polystyrene (sPS) aerogels via Friedel–Crafts alkylation. sPSs
have a hierarchical porous structure on three scales: macropores connecting to macropores,
mesopores, and micropores. HCL-X possesses SSA up to 931 m2/g and the ability to
instantly absorb large amounts of organic liquids (up to 61 mL/g). The authors presented
HCL-X as a good candidate for removing oils from oil–water mixtures and for producing
carbonates with hierarchical pores. The functionalization of HPS opens up possibilities for
the synthesis of selective sorbents. For example, Liao et al. [66] reported the synthesis of
hypercrosslinked microporous poly(para-methoxystyrene) (HCPMOS) functionalized with
methoxy groups, capable of selectively extracting Fe3+ from aqueous solutions even at a
very low concentration of 10 ppm. The authors attribute the high selectivity of HCPMOS
towards iron cations to their stronger interactions with methoxy groups as compared to
cations of other metals. A number of methylamine-modified hypercrosslinked resins have
been proposed for the selective sorption of citric acid [67]. During the periodic sorption of
citric acid, the methylamine-modified HM-65-2 resin showed a high adsorption capacity
(136.3) mg/g and a selectivity of 6.98 (citric acid/glucose), which makes this sorbent a
promising candidate for the purification of citric acid and further use in the separation
process with simulating a moving bed (SMB). This method is used to separate one or more
chemical compounds from one or more other chemicals and allows the production of large
quantities of highly purified material at a reduced cost. In the SMB technique instead of
moving the bed, the feed inlet, the solvent or eluent inlet, and product exit positions are
moved continuously, giving the impression of a moving bed, with continuous flow of solid
particles and continuous flow of liquid in the opposite direction of the solid particles. SMB
is increasingly applied as a separation technique in the pharmaceutical industry, production
of fine chemicals, and in the field of bioengineering [68].

A very promising area of practical application of HPS is the adsorption and storage of
gases, primarily carbon dioxide [69]. For example, hypercrosslinked polystyrene micro-
spheres with a specific surface area of 1161 m2/g and a total pore volume of 0.72 cm3/g
are capable of reversibly storing up to 2.27 wt.% H2 at 1 bar/77.3 K and 14.8 wt.% CO2 at
1 bar/273 K [70], which makes them a promising packing material for HPLC, adsorbents for
organic compounds, and materials for gas storage. Pan et al. [71] developed an inexpensive
and efficient method for the synthesis of amino-functionalized hypercrosslinked polymer
nanoparticles (AHCPNPs) with well-defined spherical morphology, high specific surface
area (507.64 m2/g) and excellent CO2 adsorption capacity of 53.65 wt.% (12.21 mmol/g).
The authors showed the possibility of regulating the adsorption properties of AHCPNPs
by selecting diblock copolymers with different molecular weights or adjusting the ratio
of the original diblock copolymers to polystyrene. An interesting fact is that in some
cases, a decrease in SSA after modification of a hypercrosslinked polymer does not lead
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to a decrease in its adsorption properties. Moradi et al. [72] modified the surface of HPS
with amino groups, and the SSA decreased almost twofold—from 806 m2/g to 453 m2/g—
but the ability of the modified polymer to absorb CO2, on the contrary, increased from
301.67 to 414.41 mg/g. In spite of a slight decrease in the sorption capacities of these
adsorbents after recycling, the authors believe that the developed materials are suitable
for industry.

3. Hypercrosslinked Polystyrene in Heterogeneous Catalysis

One of the promising areas for practical use of porous organic polymers, including
hypercrosslinked polystyrenes, is heterogeneous catalytic systems [73]. The large pore
volume, large specific surface area, wide possibilities for functionalization, and the ability
to control the particle size of the active phase are responsible for the rapid growth in the
number of reports on the synthesis of polymer-based catalysts, as evidenced by recent
publications [74–77]. Different catalytic systems based on porous polymers have been
reported, like sulfonated solid acid catalysts for hydrolysis, dehydration, and esterification
processes [78–81], systems for photocatalysis [82,83], hydrogenation [84], and many others.
Despite the multiple problems (structural damage, leaching of active metals, swelling, diffi-
cult access of large substrate molecules to active centers in micropores, etc.), it is expected
that hypercrosslinked polymers will make a significant contribution to the development of
novel heterogeneous catalysts in the coming years [85].

The first reports on the metal nanoparticles stabilized in the microporous structure
of HPS were made by Sidorov et al. [86]. Impregnation of HPS with solutions of cobalt
compounds followed by thermolysis at 200 ◦C led to the formation of discrete spherical
Co nanoparticles with sizes in the range of 1–3 nm. The authors have shown that particle
size is controlled by nano sized HPS cavities, which physically limit the increase in their
size. One of the first examples of polymer-based hypercrosslinked polystyrene catalysts
was a Pt-containing HPS [87]. The microporous structure of HPS made it possible to
obtain Pt-nanoparticles of 1.3 nm. The catalyst was used in the oxidation of L-sorbose
to 2-keto-L-gulonic acid, demonstrating selectivity for the target product of 98% at 100%
conversion. Further studies on the synthesis of catalysts based on commercial HPS, namely
micro/macroporous Macronet NM (Purolite, Llantrisant, UK), and different noble metals,
showed that the catalytic activity of such systems depends, in particular, on the presence
of macropores [88], chemical nature of the precursor of the active phase [89], the presence
of functional groups in the HPS [90], and the type of solvent used for the reaction [91]. In
general, such catalytic systems have shown higher efficiency as compared to the catalysts
with traditional catalytic supports [29].

Further research on HPS-based catalysts is aimed on the synthesis with different active
phase, HPS of different porosities and with functional groups, as well as on expanding the
scope of reactions. Thus, 1% Pd on HPS was used in the hydrodeoxygenation of stearic
acid giving a heptadecane yield of up to 97% [92]. A new method for the synthesis of
Pd-containing catalysts based on biporous HPS (Macronet MN200, Purolite, Llantrisant,
UK) via the reduction of [Pd(π-allyl)Cl]2 with hydrogen in supercritical CO2 has been
proposed [93]. The catalyst showed a high activity in the hydrogenation of benzene and
was used twelve times without a noticeable decrease in the conversion rate. The use of
this catalyst for the hydrogenation of other substrates, like toluene, tetralin, and phenol, is
possible. The industrial amine-functionalized crosslinked copolymer MN100 containing
Rh nanoclusters showed high catalytic activity in the hydroformylation of olefins in super-
critical CO2 over six catalytic cycles without loss of conversion rate [94]. Ru-containing
nanoparticles of mixed composition containing both oxide and metal components dispersed
in HPS matrix (Macronet MN200, Purolite, Llantrisant, UK) were tested in the oxidation
of D-glucose to D-gluconic acid [95]. The maximum selectivity for D-gluconic acid was
99.8% with a D-glucose conversion of 99%. The authors explain the high catalytic activity
by the presence of pores of various sizes, where macropores facilitate mass transfer, and the
presence of small meso/micropores ensures a high stability of the composite by preventing
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the migration of nanoparticles. Sapunov et al. studied the kinetics of the hydrogenation of
D-glucose to D-sorbitol on a similar catalyst {Ru/HPS MN270} and proposed two reaction
paths: (1) classical interaction of the substrate D-glucose sorbed on the catalyst surface
with hydrogen from the reaction medium and (2) interaction of D-glucose with hydrogen
flowing from the surface of the catalyst [96]. Ru-containing HPS-based catalysts modi-
fied with magnetite (Fe3O4) and silica dioxide (SiO2) showed high catalytic activity in
liquid-phase Fischer–Tropsch synthesis with an yield of liquid C6–C12 hydrocarbons up to
82% [97]. Modified Ru-Fe3O4-HPS catalysts with magnetic properties were tested in the
deoxygenation reaction of stearic acid in supercritical n-hexane [98]. The catalyst showed a
selectivity for C17+ of more than 86%, which is significantly higher than similar catalysts
based on Si and Ce oxides. The HPS supported catalyst was found to retain its catalytic
activity and selectivity for at least 10 consecutive cycles, with the catalyst loss estimated to
be less than 0.05 wt.%.

Thus, the application scope of heterogeneous catalytic systems based on HPS is quite
large and should increase with time.

4. HPS-Based Catalysts for the Synthesis and Transformation of Platform Chemicals
4.1. Hydrolytic Hydrogenation of Cellulose to Hexitols

Sugar alcohols, including sorbitol, are included in the list of substances with high
added value obtained from biomass [3]. Sorbitol is a product of glucose hydrogenation
and an industrial raw material [99,100]. It is used in the food, textile, pharmaceutical, and
cosmetology industries for the synthesis of vitamin C, surfactants, resins, glycols, lactic
acid, etc. [101,102]. The main industrial method for producing sorbitol is the hydrogenation
of glucose, which can be obtained from components of plant biomass, like easily hydrolyzed
starch or cellulose [103].

Cellulose has no nutritional value and comes in large quantities as a waste from the
paper, woodworking, and agricultural industries that require disposal. Therefore, using
it as a renewable raw material to produce sorbitol is in accordance with the principles
of green chemistry, and can be economically beneficial. The presence of many hydroxyl
groups in the structure of cellulose determines one of the most effective options for its pro-
cessing, namely, conversion into hexitols through the hydrolytic hydrogenation [104–106],
known as one-pot reactions of hydrolysis and hydrogenation (Figure 2). The products
of hydrolytic hydrogenation of cellulose are mainly hexitols (sorbitol and mannitol) and
some amounts of C2–C5 polyols formed as a result of hydrogenolysis of monosaccharides
and polyols.
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Figure 2. Scheme of hydrolytic hydrogenation of cellulose to hexitols [107].

The study of simultaneous hydrolysis and hydrogenation of plant polysaccharides
began in the 1950s by A.A. Balandin et al., who subjected cellulose to hydrolytic hydrogena-
tion in the presence of mineral acids and Ru-, Pd-, and Pt-containing catalysts [108,109]. For
example, in the invention [110] high yield of sorbitol during the hydrolytic hydrogenation
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of cellulose is claimed in the presence of suspended nickel catalyst at hydrogen pressure of
100–120 atm at 180–200 ◦C for 40–60 min.

Several decades later, this topic was reconsidered due to the concepts of Green Chem-
istry [111]. The number of reports on the hydrolytic hydrogenation and hydrogenolysis
of cellulose began to increase [112,113]. For environmental reasons, in some cases (under
subcritical conditions) the mineral acids as hydrolysis catalysts were replaced by cheap and
environmentally friendly water [114,115]. In the late 1990s, Sasaki et al. [116,117] studying
the kinetics of dissolution and hydrolysis of cellulose in subcritical and supercritical water
showed that in the supercritical region (at a temperature of 374 ◦C and above) the rate
of cellulose hydrolysis is higher than the rate of thermal destruction of glucose, while
in subcritical conditions the rate of glucose destruction significantly exceeds the rate of
hydrolysis of cellulose macromolecules. Thus, the efficiency of the process of hydrolytic
hydrogenation of cellulose carried out in a subcritical water environment will largely be
determined by the activity of the catalyst, its ability to quickly and selectively hydrogenate
hexoses, which is confirmed by the results of experiments without a catalyst. In the latter
case, solutions are formed with an odor and color characteristic of products of the thermal
destruction of glucose.

Large numbers of heterogeneous catalytic systems for the direct conversion of cellulose
to sorbitol have been proposed. An assessment of the activity of various catalysts in the
conversion of biomass into fuel and chemicals showed that catalysts containing noble
metals have the highest efficiency [118]. The ruthenium-based catalyst has the maximum
activity and comes first in the series: Ru >> Pt ≈ Pd ≈ Au > Rh > Ir >> Os. This is
the reason why ruthenium is part of the majority of catalytic systems proposed for the
hydrolytic hydrogenation of cellulose and its oligomers with high potential for practical
application [119–124].

Based on the results obtained in the hydrogenation of mono- and disaccharides with
HPS-based catalysts [95,96], our group proposed the use of Ru/HPS catalysts in the hy-
drolytic hydrogenation of microcrystalline cellulose to produce sorbitol and mannitol [124].

The catalysts were synthesized using the following procedure: HPS was impregnated
according to incipient wetness impregnation with the solution of the calculated amount
of ruthenium (IV) hydroxochloride in a complex solvent consisting of tetrahydrofuran,
methanol, and water at a volume ratio 4:1:1 at room temperature. Then, the catalyst
was dried at 70 ◦C, consecutively treated with solutions of NaOH and H2O2, and then
washed with water until the absence of chloride anions in the washing water. The catalyst
was then dried at 85 ◦C, reduced by hydrogen at 300 ◦C and atmospheric pressure for
2 h, cooled in nitrogen and kept under air. The catalyst particle size was controlled by
sieving (mesh size 60 µm) the initial powdered support. Commercial sorbents HPS MN270
(without functional groups), MN100 (functionalized with amino groups), and MN500
(functionalized with sulfo groups), were purchased from Purolite, UK, and used for the
synthesis. The main characteristics of these sorbents and their structure are indicated in
Table 1.

The obtained catalysts were tested in the reaction of hydrolytic hydrogenation of
cellulose and the results are presented in Table 2.

It was found that the catalyst based on HPS MN270 has the maximum catalytic activity
in this process. Its functionalized analogues showed much worse results. Comparing the
results of nitrogen physical adsorption (Table 3), one can see that the 1% Ru/MN500 catalyst
during the reduction in hydrogen at 300 ◦C underwent significant structural changes,
leading to a more than fivefold decrease in the specific surface area and a huge decrease in
the surface of micropores. This is due to a desulfurization of MN500 at temperatures of
100–150 ◦C [125] affecting the HPS structure.
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Table 1. Main characteristics of MN type sorbents.

Specification
HPS

MN270 MN100 MN500

Structure of the
polymer matrix
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Conversion, %

ηhex., %
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S M

1.0% Ru/MN270 84.3 50.4 50.5 9.3
1.0% Ru/MN100 77.0 12.7 14.9 1.6
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245 ◦C, 6 MPa H2, 30 mL water, 600 rpm, 0.028 mmol Ru on 1 g cellulose, process duration 5 min.

Table 3. Porosity data for the HPS samples and the catalysts.

Sample

Surface Area

Langmuir BET t-Plot

SL, a m2/g SBET, b m2/g St
c, m2/g

MN270 1500 1420 295 d 1140 e

MN100 890 740 195 d 600 e

MN500 650 540 150 d 450 e

1% Ru/MN270 1270 1180 250 d 990 e

1% Ru/MN100 840 730 200 d 590 e

1% Ru/MN500 120 90 80 d 15 e

a SL is the specific surface area (Langmuir model); b SBET is the specific surface area (BET model); c St is the specific
surface area (t-plot); d specific surface area according to a t-plot model; e specific surface area of micropores.

HPS MN270 and MN100 are thermostable as confirmed by thermogravimetry re-
sults [124]. Intensive, multi-stage (probably associated with the rupture of methylene
crosslinks) destruction of HPS MN270 begins at about 450 ◦C. At this temperature the rate
of polymer mass loss attains the maximum of 10%/min. A similar behavior is observed for
HPS MN100. Intensive destruction of this polymer also begins around 450 ◦C. However,
the maximum rate of mass loss is higher and attains 15%/min. HPS MN100 degrades faster,
probably due to the removal of NH2 groups. The results obtained suggest that reducing
the catalyst based on HPS MN270 and MN100 in hydrogen flow at 300 ◦C does not affect
the HPS morphology.
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The main products of hydrolytic hydrogenation of cellulose using a 1% Ru/MN270
catalyst are sorbitol and mannitol; minor products include 1,4-sorbitan, xylitol, erythri-
tol, glycerol, glycols, and some glucose. In addition, trace amounts of glycolic acid, 2-
methylpropane-1,2-diol, 3-methylbutane-1,2-diol, butane-1,4-diol, pentane-1,5-diol, hexane-
diol, 1,2,6-triol, hexane-1,2,5,6-tetriol, hexane-1,2,3,4,5-pentol, hexane-1,2,3,5,6-pentol, cel-
lobiose, cellotriose, cellotetraose, and other products were found in the reaction medium.
The gas phase contains methane and trace amounts of ethane, propane, and isobutane.

Comparing the results obtained with those available in the literature [105,126–133], it
should be noted that in the hydrolytic hydrogenation reaction, the 1% Ru/MN270 catalyst
showed a fairly high and stable yield of hexitols, a high degree of cellulose conversion,
and its use does not require the pretreatment of cellulose (for example, as in most cases,
grinding separately or together with a catalyst) or acid addition to accelerate the hydrolysis
of cellulose.

4.2. Magnetic Catalysts Based on HPS in the Conversion of Plant Polysaccharides

Despite the advantages of homogeneous catalysts, such as high catalytic activity, high
selectivity, etc., when creating new industrial catalysts, preference is often given to hetero-
geneous catalytic systems, which have an important advantage of relatively easy separation
from the reaction mixture for subsequent regeneration and reuse [134]. However, existing
methods of separation (filtration, centrifugation, decantation, etc.) are laborious, time
consuming, and may lead to losses in the catalysts [57], especially if their particles are
small in size and density [135]. These problems can be avoided, or at least their impact
on production costs can be significantly reduced, if the catalyst particles have magnetic
properties [136,137]. Over the past 10–15 years, a large number of magnetic catalysts have
been developed and successfully applied for hydrogenation, oxidation, carbon–carbon
coupling, click reactions, Suzuki–Miyaura reactions, chiral and enzyme catalysis, photo-
catalysis [138,139], in transesterification and esterification reactions for the production of
biodiesel fuel [140], etc. Magnetic catalyst separation has the following advantages: fast
and efficient separation (the process of separating the catalyst by a magnetic field takes
seconds or minutes and the catalyst is completely removed); low energy consumption
of separation process (by both a permanent magnet and an electromagnet); the catalyst
remains inside the reactor and the process can be quickly restarted with minimal catalyst
losses after removing the reaction mixture and introducing a new portion of the substrate
into the reactor; magnetic catalysts exhibit their properties only in the presence of a mag-
netic field and there are thus no additional requirements for the storage, handling, and use
of such catalytic systems; sampling and product separation are greatly simplified if the
reaction takes place in an inert atmosphere; solvent consumption and waste generation
are minimized; the process is easily scaled from laboratory to industrial volumes; and
magnetic properties can be imparted to any catalysts (based on enzymes, metals, solid
acids, etc.) [57]. Magnetic catalysts are currently being actively developed and have great
potential for practical applications in industrial catalytic processes [141]. However, they are
not yet used on an industrial scale for a number of reasons. First, the synthesis of magnetic
metal and metal oxide nanoparticles often requires expensive precursors and toxic organic
solvents, which limits large-scale production [139].

Since HPS has proven to be a suitable catalytic support, we have developed a method
for the synthesis of magnetic Ru-containing catalysts based on commercial HPS sorbent
MN270 (Purolite, UK). The catalyst was prepared using a two-stage procedure. First,
magnetite nanoparticles were synthesized in the pores of HPS through the thermal de-
composition of iron (III) acetate. At the second stage, Ru-containing nanoclusters were
synthesized on the surface of the composite. To achieve this, the composite powder was
impregnated with a solution of ruthenium (IV) hydroxochloride in a complex solvent, dried
and kept in hydrogen at 300 ◦C for 2 h. The resulting magnetic catalysts were tested in the
conversion of plant polysaccharides, namely in the process of direct conversion of micro-
crystalline cellulose into glycols: ethylene glycol (EG) and propylene glycol (PG) [142,143].
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EG and PG are the most important raw materials for the production of drugs, fuels, surfac-
tants, antifreezes, lubricants and solvents, lactic acid, etc. [144,145]) and in the hydrolytic
hydrogenation of inulin to mannitol [146,147].

The process of conversion of cellulose Into EG and PG is quite complex (Figure 3) and
includes several types of reactions, like hydrolysis, isomerization, retro-aldol condensation,
hydrogenation, and hydrodeoxygenation [107]. In this regard, development of highly
selective catalytic system seems to be rather difficult [148].
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Figure 3. Scheme of the cellulose hydrogenolysis to glycols [107]. 
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The magnetic support (Fe3O4/MN270) for the Ru-based catalyst was synthesized
using the following procedure. FeCl3 was dissolved in 95% ethanol. HPS powder
(diameter < 45 microns) was put into the solution in the ratio of 1 g HPS per 2 g FeCl3,
mixed thoroughly and left for 10–15 min. Then sodium acetate was added to this mixture in
an amount corresponding to the FeCl3/CH3COONa ratio of 1/1.5. The mixture was dried
until ethanol was completely removed. The resulting red-brown powder was moistened
with ethylene glycol, placed in a quartz tube and purged by argon. Then, it was heated
up to 300 ◦C and kept in an argon flow for 5 h. The synthesized Fe3O4/MN270 powder
was washed several times with water, then with ethanol, separated from the solvent with a
magnet, and dried to constant weight in an oven at 70 ◦C in ambient air. The synthesis of
3% Ru-Fe3O4/MN270 catalyst was carried out using a procedure described in paragraph
4.1 of this review.

Special attention has been paid to the optimization of magnetite particle forma-
tion inside HPS pores. Thus, the use of iron (III) nitrate as a precursor [149], turned
out to be harmful for the porous structure of HPS (see Table 4). We attributed this
result to the formation of strong oxidants during the thermal destruction of nitrate
(4Fe(NO3)3 → 2Fe2O3 + 12NO2 + 3O2). The table data show that the specific surface area
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of such a sample (Entry 3) is about 50-fold smaller as compared to the sample synthesized
using FeCl3 (Entry 2) as a precursor. It has been shown that the sequential introduction
of iron and ruthenium oxides (Entry 4) into the HPS support, the SSA (BET) decreases
from 1075 to 364 m2/g. Although the proportion of pores with a diameter <6 nm decreases
slightly, the samples retain their micro/mesoporous character.

Table 4. Porosity data for the HPS and the Fe3O4/MN270 samples.

Entry Sample SL, a m2/g SBET, b m2/g St
c, m2/g

1 HPS MN270 1075 1191 265 d; 807 e

2 Fe3O4/MN270 (FeCl3) 450 480 160 d; 289 e

3 Fe3O4/MN270 (Fe(NO3)3) 11 9 30 d; 0 e

4 3% Ru Fe3O4/MN270 364 392 175 d; 189 e

a SL is the specific surface area (Langmuir model); b SBET is the specific surface area (BET model); c St is the specific
surface area (t-plot); d specific surface area according to a t-plot model; e specific surface area of micropores.

Therefore, co-impregnation by iron (III) chloride and CH3COONa was used for the
synthesis of Fe3O4/MN270 composites. The reactions occurring during the synthesis
process can be represented as follows:

FeCl3 + 3CH3COONa = Fe(CH3COO)3 + 3NaCl.

As a result of the exchange reaction, Fe(CH3COO)3 is formed in the pores of HPS. It
is important to use 95% ethanol as a solvent to prevent hydrolysis of the resulting iron
acetate. In the case when hydrolysis does not occur, the subsequent reaction of thermal
decomposition of acetate at 300 ◦C takes place [150]:

6Fe(CH3COO)3 → 2Fe3O4 + 9CH3COCH3 + 9CO2 +
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O2 → 3Fe2O3.

During these reactions, a significantly smaller amount of oxygen is formed, which is
quickly removed by a flow of inert gas, protecting the polymer pore system.

The synthesized composite was characterized by various methods. First, its magnetic
properties were determined and the presence of magnetite nanoparticles with superparam-
agnetic properties in the pores of HPS was confirmed. Figure 4 shows the magnetization
curves of Fe3O4/MN270 obtained at 25 ◦C. The absence of hysteresis in the curves indi-
cates the superparamagnetic nature of the material. In addition, a fairly high saturation
magnetization value of 4.0 ± 0.5 emu/g was confirmed, which allows the catalyst to be
separated from the reaction mixture quickly and fully.
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Powder X-ray diffraction data confirmed the magnetite particles formation. The XRD
pattern of Fe3O4/MN270 displays sharp Bragg reflections whose intensity and positions
are typical for magnetite (Figure 5).
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X-ray fluorescence analysis of the 3% Ru-Fe3O4/MN270 catalyst gave an Fe content of
19.6 wt.%, and a Ru content of 2.7 wt.%.

Based on TEM results, the mean diameter of Ru nanoparticles of 2.0 ± 0.5 nm and
magnetite particles of 40 ± 5 nm was determined.

The synthesized catalyst was used in the hydrogenolysis of microcrystalline cellulose
under optimal reaction conditions [149]: 255 ◦C; 60 bar H2; 55 min; 0.3 g of cellulose;
0.07 g of catalyst; 30 mL H2O; and 0.195 mol of Ca(OH)2 per 1 mol of cellulose. The results
obtained are shown in Table 4.

It was found that the glycol selectivity with the 3% Ru-Fe3O4/MN270 magnetic cata-
lyst is approximately equal to the selectivity of 5% Ru-Fe3O4-SiO2 at the same conversion
level [149]. However, due to the lower ruthenium content of the HPS catalyst, its specific
activity (calculated per gram of Ru) was higher by 35% for EG and 20% for PG.

A comparison of the results for the 3% Ru/MN270 (Table 5, entry 3) and for the 3% Ru-
Fe3O4/MN270 catalysts shows that Fe3O4 promotes hydrogenolysis, increasing the yield
of glycols. According to [151,152], the activity and selectivity of catalytic hydrogenation are
significantly improved when catalytic nanoparticles are supported on iron oxide. Moreover,
an intimate contact of catalytic and magnetic nanoparticles can lead to electron transfer
from the iron oxide to ruthenium surface [153], facilitating hydrogenation [154].

Table 5. Catalytic activity/selectivity in the hydrogenolysis of microcrystalline cellulose.

Catalyst Cellulose
Conversion, %

Selectivity, % Specific Catalytic Activity in
Gram of EG (or PG) g−1 Ru h−1

EG PG EG PG

3% Ru-Fe3O4/MN270 100 22.6 20.0 39.12 34.62
5% Ru-Fe3O4-SiO2 100 19.1 20.9 25.29 27.72
3% Ru/MN270 95 7.2 12.3 7.51 12.71

The reuse of the 3% Ru-Fe3O4/MN270 catalyst in multiple reaction cycles showed
its stability under hydrothermal conditions without any loss of magnetic properties [143].
This is an important advantage for its application in biomass processing, which often is
characterized by incomplete conversion of the initial substrates and the formation of large
number of byproducts; a separation of the catalyst thus becomes a challenge.

This catalyst was also used for the hydrolytic hydrogenation of inulin, a plant polyfruc-
tosan (Figure 6). The high content of inulin in some plants allow this polysaccharide to be
a promising renewable source for the production of chemicals and fuel [155]. For exam-
ple, Jerusalem artichoke (Helianthus tuberosus L.) contains up to 82% inulin and has great
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prospects for cultivation. The main product of the reaction is mannitol, which is used, in
particular, in the treatment of brain diseases [156], as a food additive, in perfumery, and for
the production of varnishes, resins, surfactants, and other products [157,158].
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Heinen et al. [159] studied the conversion of inulin to mannitol using Ru-containing
activated carbon treated with ammonium persulfate as a catalyst. The maximum selec-
tivity for mannitol was 40%. The authors found a certain amount of short-chain inulin
oligomers of the GFn composition (G-glucose, F-fructose) in the solution. The authors
explain their presence in the reaction medium after the reaction completion by the fact that
the formation of hexitols from inulin occurs simultaneously along two paths: hydrolysis
of inulin to monosaccharides with their subsequent hydrogenation and hydrogenation
of Fm fragments of inulin with their subsequent hydrolysis. The GFn fragments formed
during the hydrolysis of inulin do not undergo hydrogenation and accumulate in some
quantities in the catalyst. In [160], the process of hydrolytic hydrogenation of inulin was
studied in the presence of a Ru-containing homogeneous catalyst based on trisulfonated
triphenylphosphine ((TPPTS, P(m-C6H4SO3Na)3)—Ru-TPPTS. It was shown that after hy-
drogenation of the main part of fructose, the hydrogenation of glucose, and, consequently,
the formation of sorbitol becomes more pronounced, and the mannitol/sorbitol ratio in
the final solution decreases. However, with hydrolytic hydrogenation of inulin, the manni-
tol/sorbitol ratio is approximately 30% higher than with the hydrogenation of a mixture
of glucose and fructose. As a result, the authors concluded that the stereoselectivity of
the hydrogenation of D-fructose units in partially hydrolyzed inulin oligomers is higher
than in the hydrogenation of pure fructose. In [161], Ru-containing catalysts based on
a Cs-substituted tungsten phosphate support (Ru/CsxH3-xPW12O40) were proposed for
the hydrolytic hydrogenation of cellulose and inulin. The total yield of hexitols (sorbitol
and mannitol) during the hydrolytic hydrogenation of inulin was 84%. The authors noted
that the new catalyst exhibits high activity, despite the absence of strong internal Brønsted
acid sites.

For the first time, magnetic catalysts based on mesoporous silicon dioxide for this
process were proposed by our group [162]. Testing a new magnetic catalyst based on HPS in
the hydrolytic hydrogenation of inulin to mannitol was carried out under previously deter-
mined optimal conditions: 0.1167 mmol Ru per 1 g of inulin; 30 mL H2O; 150 ◦C; and P(H2)
60 bar, 45 min. The results obtained are presented in Table 6. Inulin conversion was 100%
for both catalysts. It can be seen that the selectivity to mannitol for 3% Ru-Fe3O4/MN270
is slightly higher than for the 5% Ru-Fe3O4/SiO2 [162]. However, considering the lower
ruthenium content in the polymer catalyst, the productivity of 3% Ru-Fe3O4/SiO2 is almost
twice as high.
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Table 6. Selectivities (Sm) and catalytic activities for mannitol production.

Catalyst Sm, %

Specific Catalytic Activity
Calculated as Mass of

Mannitol/Mass of
Catalyst·h−1

Specific Catalytic Activity
Calculated as Mass of

Mannitol/Mass of Ru·h−1

5% Ru-Fe3O4/SiO2 44.3 2.53 50.67
3% Ru-Fe3O4/MN270 48.7 2.78 92.76

The 3% Ru-Fe3O4/MN270 was stable when reused in the hydrolytic hydrogenation of
inulin. It was shown that the selectivity to mannitol and the catalyst activity do not change
after three consecutive reactions, demonstrating excellent stability in the inulin-to-mannitol
conversion. Magnetic properties of the catalyst allow easy separation from the reaction
mixture without any loss.

In general, the results of our study confirm that magnetic catalytic systems based
on HPS are promising in the conversion of plant polysaccharides into substances of high
added value.

4.3. Hydrolytic Oxidation of Cellobiose to Glucaric Acid

Glucaric acid is an important platform compound used to produce detergents, poly-
mers, and other valuable products [163–165]. The glucaric acid market is constantly grow-
ing and should reach USD 1.46 billion by 2027 [166]. Currently, glucaric acid is obtained
by chemical oxidation of glucose with nitric acid, which is a non-selective, expensive, and
environmentally hazardous process [167]. Another option for the synthesis of glucaric
acid is oxidation using heterogeneous catalysts through the stage of formation of gluconic
acid. The main disadvantage of the existing methods for producing glucaric acid is the
use of mono- and disaccharides as raw materials, which have nutritional value (glucose
and sucrose). In this regard, plant biomass, which has no nutritional value, is an ideal
raw material for the synthesis of acids [168]. Thaore et al. [169] conducted a feasibility
study for the production of pure glucaric acid from corn stover by two methods: homo-
geneous oxidation of glucose with nitric acid and oxidation of glucose with air in the
presence of heterogeneous catalysts. The study showed that both options can be eco-
nomically feasible for industrial use since the costs per 1 kg of product were 2.91 and
2.53 US dollars for homogeneous and heterogeneous oxidation. However, the process
using heterogeneous catalysts has about 22% lower environmental impact. In this case,
the main problem is the selection of a stable catalyst, which should present a high yield of
glucaric acid.

Previously reported results on the HPS-based catalysts for the oxidation of monosac-
charides [87,95] suggested that such catalytic systems can be successively applied for
producing aldonic and aldaric acids directly from plant biomass. For this purpose, our
group synthesized a series of catalysts based on hypercrosslinked polystyrene MN270
containing Pt, Pd, Au, and Ru. The synthesized catalysts were characterized and tested in
the conversion of cellobiose to glucaric acid [170].

The synthesis of these catalysts was carried out according to the method given in para-
graph 4.1 of this review. The precursors were ruthenium (IV) hydroxochloride, hydrogen
hexachloroplatinate (IV) hydrate, sodium tetrachloropalladate (II), and gold (III) chloride
hydrate (pure; OJSC Aurat, Moscow, Russia). Thus, using the appropriate precursors, 3%
M/MN270 catalysts were synthesized (M = Pt, Pd, Au, Ru).

Tables 7 and 8 present the results of X-ray fluorescence analysis and of low-
temperature nitrogen adsorption used to characterize the synthesized catalysts. The
elemental analysis data (Table 7) for metal content had values close to the calculated
ones, which indicates the consistency of the method used for the synthesis of HPS-based
catalysts. From the data in Table 8, it follows that the samples had predominant microp-
orosity with a highly developed internal surface. After introducing metal nanoclusters
into the polymer matrix, a change in its characteristics was observed. The specific
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surface area decreased due to blockage of micro-, meso- and macropores by nanopar-
ticles of the active phase. At the same time, the microporous nature of all samples
was preserved.

Table 7. Results of X-ray fluorescence analyses of the synthesized catalysts.

Catalyst M Loading, wt.% M Content from Elemental
Analysis, wt.%

3% Pt/MN270 3.00 2.91
3% Pd/MN270 3.00 2.95
3% Au/MN270 3.00 2.87
3% Ru/MN270 3.00 2.70

Table 8. Results of the studies of the initial sample of HPS and the catalysts via the low-temperature
nitrogen adsorption.

Sample
BET Langmuir t-Plot

SBET, m2/g SL, m2/g St, m2/g V, cm3/g

HPS MN270 1075 1191 265 1, 807 2, 1072 3 0.37
3% Pt/MN270 863 944 184 1, 678 2, 862 3 0.31
3% Pd/MN270 649 758 94 1, 553 2, 647 3 0.22
3% Au/MN270 738 810 141 1, 593 2, 734 3 0.25
3% Ru/MN270 839 921 151 1, 699 2, 856 3 0.28

1 Specific surface area surface of meso- and macropores. 2 Specific surface area of micropores. 3 Total specific
surface area. SL—specific surface area (Langmuir model); SBET—specific surface area (BET model); St—specific
surface area (t-plot); V—volume of micropores.

The synthesized catalysts were characterized via transmission electron microscopy
(TEM). The images and the average diameters of metal clusters were obtained (Figure 7).
The average size of platinum nanoclusters was 2.8 nm; palladium—3.4 nm; and ruthenium—
1.8 nm. The diameter of gold nanoclusters turned out to be approximately an order
of magnitude larger, 32.1 nm. It should be noted that nanoparticles of all metals were
uniformly distributed within the catalyst volume, and there was no metal crust on the
surface of the polymer. We hypothesize that the large size of gold nanoparticles is likely
due to the nature of the precursor, interaction with the hydrophobic polymer matrix of
the support, and the tendency of gold nanoparticles to aggregate. In our recent work,
large gold particles (19.3 ± 8.7 nm) were also obtained using a similar method for the
synthesis of the 0.5%-PdAu/HPS-R catalyst [171]. In [172], with a gold content of 1 wt.% in
the catalyst, the size of Au-containing nanoparticles was also relatively large (10.9 nm or
more). Since our catalyst contains significantly more gold (3 wt.%), the particles formed
are larger.

The synthesized catalysts were tested in the hydrolytic hydrogenation of cellobiose.
The results obtained are presented in Table 9. The maximum yield of gluconic and
glucaric acids was observed with the 3% Pt/MN270 catalyst and attained 16.1% and
41.5% at 100% conversion of cellobiose. Such a high efficiency of the catalyst can be at-
tributed to a much larger number of active centers on its surface as compared to other
catalysts [170].

The 3% Au/MN270 catalyst was less effective in the cellobiose oxidation reaction.
After the end of the experiment, a fairly large amount of glucose and cellobionic acid, as
well as a small amount of gluconic acid, were found in the catalyst. Glucaric acid was
present in trace quantities. The conversion of cellobiose was 86.2%. The low activity of the
Au-containing catalyst could be due to the large particle size of the active phase. Catalysts
containing Pd and Ru showed the worst results: low conversion of the initial substrate and
extremely low yields of gluconic and glucaric acids. The experiment without a catalyst
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showed that the catalyst plays the main role in the cellobiose hydrolysis reaction and that
the degree of hydrolysis obviously depends on the nature of the metal in the catalyst.
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Ru/MN270 [170].

Table 9. Cellobiose conversion and selectivity to the main reaction products for the catalyst with
different active phase.

Catalyst Cellobiose
Conversion, %

Product Selectivity, %

Glucose Cellobionic
Acid Gluconic Acid Glucaric Acid Σ of

Byproducts

3% Pt/MN270 100 4.1 9.4 16.1 41.5 28.9
3% Au/MN270 86.2 24.6 50.1 12.3 0 13.0
3% Pd/MN270 53.3 24.2 40.0 2.8 0 33
3% Ru/MN270 45.4 26.4 0 0 0 73.6
blank (without catalyst) 9.5 14.7 0 0 0 85.3

Cellobiose, 0.2 g; catalyst, 0.05 g; H2O, 20 mL; 145 ◦C; O2, 5 bar; 1 h. Byproducts: acetic acid, succinic acid, oxalic
acid, glycolic acid, glyceric acid, formic acid [173], and products of monosaccharide caramelization.

The process conditions were optimized (temperature of 145 ◦C, an O2 pressure of
5 bar, and a substrate/catalyst mass ratio of 4/1), and the obtained yields of gluconic and
glucaric acids reached 21.6 and 63.4%, respectively, at 100% of cellobiose conversion. The
maximum yield of gluconic acid was observed after 1 h of reaction while the maximum
yield of glucaric acid was after 2 h.

In the process of the conditions optimization for the hydrolytic oxidation of cellobiose,
the obtained qualitative and quantitative results were analyzed and allowed to propose



Molecules 2023, 28, 8126 18 of 34

reaction scheme for the conversion of cellobiose into gluconic and glucaric acids in the
presence of 3% Pt/MN270 (Figure 8).
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Figure 8. Proposed scheme for the conversion of cellobiose into gluconic and glucaric acids in the
presence of the 3% Pt/MN270 catalyst [170].

The study showed that with quadruple use of 3% Pt/MN270, the yields of gluconic
and glucaric acids gradually decreased by 5.5 and 11.0%, respectively, which is likely due
to the gradual degradation of the HPS polymer as a result of oxidation, as evidenced by
the deterioration of porous properties (Table 10). At the same time, TEM results showed
that the average size of Pt particles on the used catalyst remained almost unchanged,
at 2.9 nm.

Table 10. The characterization of the initial catalyst and the catalyst after four reaction cycles.

Sample
BET Langmuir t-Plot

SBET, m2/g SL, m2/g St, m2/g V, cm3/g

3% Pt/MN270 (initial) 863 944 184 1, 678 2, 862 3 0.31
3% Pt/MN270 (used) 324 345 99 1, 224 2, 323 3 0.10

1—specific surface area surface of meso- and macropores; 2—specific surface area of micropores; 3—is the total
specific surface area; SL—specific surface area (Langmuir model); SBET—specific surface area (BET model);
St—specific surface area (t-plot); V is the volume of micropores.

The results obtained are promising for a technology of the catalytic conversion of plant
polysaccharides, primarily cellulose, into aldonic and aldaric acids, which are high value
products widely used in the chemical, food, pharmaceutical, and other industries.

4.4. Hydrogenation of Furfural

Technological advances in the field of biomass conversion make it possible to produce
a wide range of products of different chemical natures, in particular, furfural (FF), which
belongs to the furan group. These compounds are widely used in chemical synthesis
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because they are highly reactive [173,174]. FF can be produced by sequential hydrolysis and
dehydration reactions of xylans that are obtained from biomass. Selective hydrogenation
of furfural is important reaction in the production of furfuryl alcohol (FA), methylfuran,
tetrahydrofurfuryl alcohol, and other compounds (Figure 9).
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Figure 9. Schematic representation of the FF hydrogenation (the target reaction product is highlighted
in red). Reprinted from ref. [175], Copyright 2020, with permission from John Wiley and Sons
(Hoboken, New Jersey, USA).

Furfuryl alcohol is mainly used for the production of special resins, lubricants, plas-
ticizers, polymers and the coatings based on them, etc. [176]. Considering that FF hydro-
genation is a complex multi-stage process that occurs with the formation of a large number
of products, the synthesis and selection of a suitable catalytic system is very important.

The Pd-containing catalysts based on HPS type MN270 were proposed for the FF
hydrogenation. The influence of the precursor nature on the structure, composition, and cat-
alytic properties was studied [177]. Bis(acetonitrile) palladium chloride (PdCl2(CH3CN)2)
and palladium acetate (Pd(CH3COO)2) were used as palladium precursors. All catalysts
under study were synthesized via incipient wetness impregnation. The selected Pd (II)
precursors have different polarities, which influence their compatibility with HPS and, ac-
cordingly, the formation of palladium nanoparticles. The dielectric constants of acetonitrile
and acetate are 36.64 and 6.2, respectively [178]. Our previous work [89] showed that HPS
is extremely hydrophobic, but due to its unusual porosity and high crosslink density, it
can accommodate even completely polar compounds. We believe that the behavior of any
compound introduced into a porous matrix depends on its ability to either propagate along
the pore walls, when both the matrix and the metal compound have similar properties, or
to be repelled from the pore walls (when both are particularly different). This results in
particles of different sizes and arrangements depending on the properties of the metal pre-
cursor. Therefore, the result depends on the balance of hydrophobicity and hydrophilicity
between the metal precursor and HPS [89]. The study using the low-temperature nitrogen
physisorption of initial HPS samples and final catalysts showed that the specific surface
area of HPS after impregnation with Pd precursors decreased, suggesting pore clogging. It
should be noted that the volume of mesopores decreased, while the volume of micropores
remained unchanged. These data indicate the formation of palladium nanoparticles in
HPS mesopores.
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The TEM data (Figure 10) show for the 3% Pd/HPS composite with the PdCl2(CH3CN)2
precursor, a relatively narrow distribution of Pd nanoparticles with an average diameter of
5.4± 1.2 nm (Figure 10a). When using the more hydrophobic precursor Pd(CH3COO)2, a bi-
modal distribution of particles with average particle sizes of 3.7 ± 1.0 nm and
13.8 ± 5.4 nm is seen (Figure 10b). This observation is consistent with the literature,
in that the behavior of metal species in HPS depends on the hydrophobic-hydrophilic
balance. The obtained TEM data are also consistent with the BET results, and confirm Pd
nanoparticles formation in mesopores rather than micropores.
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Figure 10. TEM images of the 3% Pd/HPS (PdCl2(CH3CN)2) (a) and 3% Pd/HPS (Pd(CH3COO)2)
(b). Reprinted from ref. [177], Copyright 2019, with permission from Elsevier (Amsterdam,
The Netherlands).

The results obtained from small-angle X-ray scattering (SAXS) showed that in the case
of 3% Pd/HPS (PdCl2(CH3CN)2), Pd nanoparticles form a monomodal distribution with
an average diameter of 7.5 nm. For the 3% Pd/HPS composite (Pd(CH3COO)2) (b), there
are two fractions: a main fraction of small particles (≈7 nm) and a small amount of larger
particles (10–35 nm) (Figure 11). In general, these results are consistent with the TEM data.
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Figure 11. SAXS data for 3% Pd/HPS catalysts after their impregnation with masking liquids (a).
Volume particle size distributions of Pd particles in the catalysts (b). Reprinted from ref. [177],
Copyright 2019, with permission from Elsevier (Amsterdam, The Netherlands).
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XPS data confirm the Pd0 nature and oxide form of Pd nanoparticles using both pre-
cursors. The XPS spectrum of 3% Pd/HPS(PdCl2(CH3CN)2) is deconvoluted into two com-
ponents: with Pd 3d5/2 binding energies of 335.2 eV and 337.2 eV, which we assign to Pd0

(32%) and Pd2+ (68%), respectively (Figure 12). In the case of 3% Pd/HPS(Pd(CH3COO)2)
Pd 3d spectrum is also deconvoluted into two components: with Pd 3d5/2 binding energies
of 335.2 eV (40%) and 336.7 eV (60%) which we also assign to Pd0 and Pd2+, respec-
tively (Figure 12). The typical values of Pd 3d5/2 binding energy for Pd0 state is about
335.0–335.4 eV and the range of 336–337 eV corresponds to PdO. As the samples were
kept on air before XPS study, some part of metal Pd is present in oxide form. The ratio
of oxide form/metal form is higher in more disperse samples because small particles are
more easily oxidized compared to larger particles. This value could be used to estimate of
the ratio between small and large particles in series of such samples. Also, it could be con-
cluded that the nature of Pd precursor in HPS matrix essentially does not influence the Pd
oxidation state.
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Figure 12. Pd 3d XPS spectra for both Pd/HPS samples and their deconvolution on metal and oxide
form of Pd (black line—raw spectrum; red line—synthetic spectrum; blue line—chemical state of
palladium Pd0; purple line—chemical state of palladium Pd2+). Reprinted from ref. [177], Copyright
2019, with permission from Elsevier (Amsterdam, The Netherlands).

A comparison of the catalytic activity of Pd-containing catalysts showed that a more
dispersed sample (3% Pd/HPS (PdCl2(CH3CN)2) showed higher values of FF conversion
and selectivity towards FA due to the presence of smaller particles catalytically active phase.
After 200 min of the reaction, FA selectivity for both catalysts reached its maximum–87.4%
for 3% Pd/HPS(PdCl2(CH3CN)2) and 83.8% for the 3% Pd/HPS (Pd(CH3COO)2) catalyst
at FF conversion of 55.6% and 36.3%, respectively).

Considering good catalytic properties of Pd–Cu alloys in the hydrogenation of FF to
FA [179] and the advantages of micro/mesoporous HPS supports in a number of hydro-
genation reactions [70,124], we developed new catalysts with Pd–Cu alloy nanoparticles in
the pores of HPS and compared their properties with those of monometallic Pd nanoparti-
cles [175]. The catalyst was synthesized by impregnating HPS with a solution containing
both palladium and copper acetates, followed by treatment with Na2CO3 to precipitate
Pd–Cu mixed oxide nanoparticles in the pores of HPS. These as synthesized samples are
denoted “as”. The reduction of Pd and Cu species was performed prior to the catalytic
reaction in the hydrogen flow at 275 ◦C. The reduced samples are denoted “r”. SAXS
and transmission electron microscopy (TEM) methods were used to estimate the size of
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nanoparticles (Figure 13). The average nanoparticle size determined by using both methods
was about 6–7 nm.
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Figure 13. Volume NP size distribution from the SAXS data (a,b), and a comparison of the NP sizes
from TEM and SAXS data (c,d) for Pd–Cu/HPS-r (a,c) and Pd/HPS-r (b,d). Reprinted from ref. [175],
Copyright 2020, with permission from John Wiley and Sons (Hoboken, New Jersey, USA).

XRD data for Pd/HPS-r shows typical Pd0 reflections for a monometallic sample and
a crystallite size of 6 nm, indicating that the Pd nanoparticles are most likely single crystals.
For bimetallic Pd–Cu nanoparticles in the Pd–Cu/HPS-r sample, the X-ray diffraction
pattern is almost identical, but its reflections are shifted towards large angles, and the peak
positions are between the positions characteristic of the Pd and Cu phases. According to
data from the literature, this peak location indicates the formation of the structure of a
Pd–Cu bimetallic alloy. The absence of reflections from Cu metal, as well as its oxides or
hydroxides, once again confirms the formation of the alloy. The size of Pd–Cu nanoparticles
remains ~6 nm.

XPS showed the enrichment of the surface of nanoparticles with Cu atoms, as well
as the presence of both zero-valent and cationic forms of Pd and Cu, i.e., heterogene-
ity of nanoparticles. This structure of Pd–Cu alloy nanoparticles immobilized in HPS
provides almost 100% conversion and excellent selectivity towards FA (95.2%). These
exceptional performances were attributed to the prevention of furan ring adsorption on
Pd due to neighboring Cu species and facilitated desorption of FA, resulting in higher
selectivity. Controlled adsorption of hydrogen and FF due to the mixed valence states of
Pd and Cu species leads to higher conversion. These factors, as well as the remarkable
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ability to reuse the catalyst in ten successive reactions, make this catalyst promising for
industrial applications.

4.5. Hydrogenation of Levulinic Acid

Levulinic acid (LA) is one of the most valuable multifunctional substances obtained
from biomass. LA is a precursor to many industrially important chemicals and is widely
used in the production of lubricants, chiral reagents, resins, biologically active substances,
adsorbents, electronics, and batteries [7,180]. Due to the presence of two highly active func-
tional groups (carbonyl and carboxyl), LA easily enters oxidation, reduction, esterification,
substitution, and condensation reactions, which makes it a very valuable platform com-
pound [181]. One of the most important reactions involving LA is hydrogenation to form
γ-valerolactone (GVL) (Figure 14), a key reaction in the conversion of plant carbohydrates
into renewable fuels and chemicals [182]. GVL can be used as an environmentally friendly
solvent, an additive to liquid fuels, and also for the synthesis of polymer precursors such
as adipic acid and diols [183,184].
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Today, the mostly used in the LA selective hydrogenation to GVL are bifunctional
catalysts based on inorganic supports containing Lewis acid sites (LAS) and Brønsted
acid sites (BAS). Despite the advantages of bifunctional catalysts in this process, there are
some problems caused by the presence of LAS and BAS in the oxide supports. Thus, the
high acidity of the support may lead to the formation of coke, which can initiate rapid
deactivation of catalysts [186–188]. In addition, during the hydrogenation of LA in an aque-
ous environment, agglomeration and leaching of active metal from the support can occur,
which can affect the catalyst stability and significantly complicates its effective reuse [189].
The stability of catalysts can be increased by using carbon supports, which include poly-
mers with a variety of useful properties: high porosity, the presence of functional groups,
the ability to vary molecular weight, and hydrophilicity. Balla et al. [190] synthesized
uniformly distributed Ni nanoparticles (NPs) with narrow size distribution around 6 nm
embedded in a mesoporous carbon substrate (Ni@C) obtained from an organic copolymer.
The mesoporous carbon support provided various defect sites for the attachment of Ni
particles, and strong interactions between the carbon phase were observed. A total of 100%
conversion of LA was achieved in 4 h at 200 ◦C and 3 MPa in 1,4-dioxane. Balla et al. [191]
also synthesized copper NPs (5.5 nm in diameter) embedded in an ordered mesoporous
carbon (OMC) carrier by a multicomponent assembly method using chelates. The OMC
surface was functionalized with various oxygen-containing functional groups, which en-
hanced the interaction with copper NPs. The synthesized Cu/OMC catalyst demonstrated
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high activity and stability in the hydrogenation of LA to GVL in continuous mode (260 ◦C,
0.1 MPa H2) due to the effects of Cu retention in mesoporous carbon. Sychev et al. [192]
synthesized catalysts based on ruthenium NPs (with a diameter of about 1.5 nm) deposited
on the graphite-like mesoporous carbon material Sibunit-4 (initial and oxidized at different
temperatures). The presence of oxygen-containing functional groups on the surface of the
support was responsible for the distribution of Ru NPs and the acidic properties of the
catalyst. The resulting catalysts containing 1% and 3% (wt.) Ru showed high activity in the
hydrogenation of LA to GVL (GVL yield 98 mol.% at 160 ◦C, 1.2 MPa H2).

Common catalytic supports are carbon nanotubes (CNTs) and graphene (Gs), includ-
ing oxidized ones (GOs) [193]. Zhang et al. [194] used CNTs to support porphyrin (PP)
complexes containing ruthenium. Ru-PP/RGO catalyst was prepared in a similar manner.
Ru-PP/CNTs and Ru-PP/RGO were used for the hydrogenation of LA and its esters giv-
ing GVL. Under optimal conditions (100 ◦C, 3 MPa), a GVL yield of more than 99% was
achieved in 10 h. Sosa et al. [195] synthesized nickel catalysts (10 wt.% Ni) based on CNTs,
which showed high activity in the hydrogenation of LA in a continuous mode in a trickle
bed reactor at 180 ◦C and 30 bar. The influence of the nature of nickel precursor (acetate,
nitrate, and hydroxide) and the arrangement of nickel particles in CNTs was studied and
shown that, depending on the catalyst synthesis conditions, nickel crystallites with diame-
ters from 4 nm to 16 nm were formed. Recently, Wang X. et al. [196] reported a bimetallic
Ni/Ru (Ni:Ru = 10:1) catalyst based on ordered mesoporous carbon (Ni/Ru@WOMC). The
catalyst was obtained by the self-assembly method using organo-solve lignin as a carbon
precursor and Ni2+ as a crosslinking agent followed by the addition of Ru. A close to 100%
yield of GVL in 2-propanol was attained in 4 h of reaction at 80 ◦C.

In recent years, there has been a trend to create carbon supports doped by heteroatoms,
in particular by nitrogen, for the catalytic transformation of LA [197–201]. For example,
Chauhan et al. [198] carried out the hydrogenation of LA using formic acid as a source of
hydrogen. The catalyst, Ru-decorated and N-doped carbon nanoplates, provided 99.8%
LA conversion and 100% GVL selectivity. Wang D. [199] developed N-doped hierarchical
carbons with incorporated Co particles (Co@NC). The Co@NC-700 catalyst (carbonated
at 700 ◦C) provided 100% LA conversion at 190 ◦C and 1.9 MPa H2 for 2 h. Also, the
catalyst showed high stability (up to five reuses), which was likely due to the synergy of
the metal active sites Co, Co-Ox, and Co-Nx. Li et al. [200] developed catalysts containing
ultrafine Ru NPs stabilized in hierarchically porous N-doped carbon nanospheres (HPNCs)
obtained by nano-emulsion self-assembly. The Ru/HPNC catalyst demonstrated excellent
catalytic performance in the hydrogenation of LA to GVL under solvent-free conditions:
GVL yield > 99% in 2 h. Yang et al. [201] synthesized Ru NPs stabilized in three-dimensional
hierarchical carbon nanoflowers containing pyridinic nitrogen (Ru/PNC). The role of
pyridine N compounds was attributed to the formation of electron-rich Ru, which provided
weaker adsorption of LA but stronger adsorption of H2 on Ru. This resulted in high activity
(TOF 5042.5 h−1) and selectivity to GVL > 99%. In addition, a direct correlation was found
between TOFs and surface pyridine-N/Ru0 ratios.

There are also reports of polymer carriers (dendrimers, polystyrenes, metal−organic
frameworks (MOFs), porous organic polymers (POPs), etc.) being used for LA hydrogena-
tion. Polymers are used both for the immobilization of catalytically active complexes [202]
and metal-containing (for example, Co, Cu, Pt, Pd, and Ru) nanoparticles [203–209]. It is
important that natural polymers can be used as active phase carriers to create catalysts for
the hydrogenation of LA. Thus, in the work of Xu et al. [208] the self-assembly method was
applied to synthesize colloidal nanospheres based on lignin containing Co2+ ions. In this
case, heavy metal ions acted as crosslinking agents. After calcination at 500 ◦C, particles of
CoO and metallic Co were formed, providing a 99.8% yield of GVL with 100% conversion
of LA in 60 min at 200 ◦C and 2 MPa H2.

Among polymer carriers, it is worth highlighting polymers containing functional
groups that play the role of acid sites (-SO3H). However, reports on such polymers in
LA transformation are scarce [203,209,210]. For example, Yao et al. [203] developed a
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bifunctional catalyst based on Ru NPs (diameter about 3 nm) immobilized in crosslinked
sulfonated polyether sulfone for the selective hydrogenation of LA to GVL. The combination
of acid and metal centers lead to high activity. Interestingly, the LA conversion, achieved
in 2 h at a temperature of 70 ◦C and a pressure of 3.0 MPa, increased from 87.9% to 92.1%
after the first hydrogenation and gradually to 97.2% in the fourth cycle suggesting in situ
catalyst activation.

Despite a variety of LA hydrogenation catalysts [211], supported ruthenium NPs
remain one of the most common catalytic systems. We have previously shown that HPS
can be successfully used as a support for the creation of Ru [212,213] and Ru−Co [185]
catalysts for the hydrogenation of LA to GVL in an aqueous environment. It was shown
that the HPS support allows to synthesize Ru-containing NPs, predominantly consisting of
RuO2 and exhibiting high activity and selectivity in the LA hydrogenation. At the same
time, HPS functionalized with tertiary amino groups (HPS-NR2) gives tiny Ru-containing
NPs (with a diameter of 1–2 nm), which ensures 100% yield of GVL at a temperature
of 100 ◦C and a partial hydrogen pressure of 2.0 MPa for 100 min of reaction at a LA-
catalyst ratio of 100 g/g. The activity of the catalyst based on non-functionalized HPS
(5%-Ru/HPS), containing NPs with a diameter of about 4 nm, is inferior to the activity of
the 5%-Ru/HPS-NR2 sample: the conversion of LC in the case of 5%-Ru/HPS is 83% in
100 min reactions. For the 3%-Ru/HPS-NR2 catalyst, GVL yields of 77% and 99% can be
achieved under similar conditions at LA-catalyst ratios of 100 g/g and 50 g/g, respectively.
It is interesting to note that in non-functionalized HPS, Ru-containing NPs tended to form
cluster-like aggregates located closer to the outer surface of the polymer granules, to a
greater extent than in the SPH-NR2, which is due to different hydrophobicity of the poly-
mers [212]. In addition, during the study of the kinetic of LA hydrogenation in the presence
of the 5%-Ru/HPS-NR2 catalyst, it was found that the apparent activation energy is about
28 kJ/mol, and it was assumed that the LA hydrogenation in an autoclave-type reactor can
be partially limited by the mass transfer of hydrogen from the gas phase to the aqueous
solution [213].

In a study of bimetallic samples, it was shown that the most promising modifier
metal for ruthenium is cobalt. It was found [183] that bimetallic Ru−Co catalysts based
on HPS-NR2 containing 3% (mass) Ru provide 99% yield of GVL at 120 ◦C and a partial
hydrogen pressure of 2 MPa for 60 min of reaction. Compared to the monometallic
analogue (3%-Ru/HPS-NR2), the most promising bimetallic catalytic system (3%-Ru-0.1%-
Co/HPS-NR2) increases the initial reaction rate by approximately 1.5 fold, probably due
to the redistribution of RuO2 NPs inside the polymer after its impregnation with a cobalt
precursor. It is noteworthy that no chemical reaction products of Co and Ru were detected
on the catalyst surface, which could be a consequence of the low cobalt amount. A study
of the stability of the 3%-Ru-0.1%-Co/HPS-NR2 catalyst showed only slight decrease in
activity: the LA conversion was 82% after three cycles. The results are very promising for
an industrial application.

5. Conclusions

Hypercrosslinked porous materials, in particular hypercrosslinked polystyrene, HPS,
are already widely used in a variety of industrial processes, mainly as excellent adsorbents.
Considerable knowledge has been also accumulated on their application as support for
heterogeneous catalysts, including the processes of biomass processing and transformations
of platform compounds. Platform chemicals, also known as chemical building blocks, are
substances that serve as starting materials for the synthesis of various value-added products.
The volume of platform chemicals derived from biomass is constantly growing due to the
demand of sustainability for chemical industry.

This review focused on the recent advances in this field, giving several examples of
the use of catalysts based on nanoparticles of catalytically active metals stabilized by a
polymer matrix of HPS. The main advantages of HPS-based catalysts could be summa-
rized as following: (1) large specific surface area with macro-, meso-, and microporosity;
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(2) chemical and thermal stability; (3) the possibility of functionalization for controlling
surface hydrophobicity and interaction with metal precursors; (4) the possibility of synthe-
sizing catalytic composites with magnetic properties for easy separation and reuse; (5) the
ability to control morphology of active nano-particles; and (6) low cost of the HPS supports,
which increases economic feasibility of the processes under development.

At the same time, some problems are associated with the HPS as catalytic support.
Drawbacks include: (1) difficult access of big reagent molecules into the small pores of the
catalyst; (2) the absence of surface acid sites, which are important for some reactions, like
hydrolysis; (3) a special attention is required to the nature of the active phase precursor (due
to its interaction with the hydrophobic polymer); and (4) the limited temperature regime
(below 300 ◦C), which could be applied during catalyst synthesis and chemical reactions.
These challenges need to be overcome to extend the industrial applications of HPS-based
catalysts for novel processes of biomass transformations into platform chemicals.
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