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Abstract: A series of five esters of lasalocid with neopentyl alcohol (LasNeo), geraniol (LasGeran),
2-ethylhexanol (LasEtHex), eicosanol (LasEico) and vanillyl alcohol (LasVanil) were synthesized and
studied by NMR, FT-IR and ESI-MS. Then, their complexes with lithium, sodium and potassium
cations were obtained and examined using FT-IR. The analysis of the products confirmed the synthesis
of new esters with good yields. The newly obtained compounds, as well as their complexes with
monovalent cations, were proved to be stabilized by a strong system of intramolecular hydrogen
bonds. The PM6 semiempirical calculations provided information on the heat of formation (HOF)
and permitted the making of visual representations of the structures of the newly synthesized esters
and their complexes with the investigated cations. All the computational outcomes were consistent
with the spectroscopic data.
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1. Introduction

Polyether antibiotics constitute a very interesting group of substances, showing a
broad spectrum of biological activities, including antibacterial, antiprotozoal and antiviral,
as well as anti-inflammatory and anticancer ones [1–6]. For many years, some of these
compounds, such as lasalocid, salinomycin, monensin and semduramycin, have been
used in agriculture due to their strong activity against parasites of the genus Eimeria,
which causes coccidiosis in birds. Therefore, the introduction of ionophore antibiotics
has contributed to better disease control and improved health levels in industrial poultry
farming [7].

The molecules of ion carrier ionophores have a non-cyclic structure, but thanks to
the presence of a carboxyl group at one end and hydroxyl groups at the other, hydrogen
bonds can be formed inside these molecules to form pseudocyclic structures stabilized by
these bonds. Ether oxygen atoms are directed towards the interior of the molecule, creating
a hydrophilic cavity in which the cation may be complexed [8–13]. Certain polyether
ionophores are capable of transporting only monovalent cations, e.g., monensin A, while
others may also transport divalent cations, e.g., lasalocid acid [14]. In solutions, depending
on the solvent and the ion, lasalocid acid can form complexes with different stoichiometries:
1:1, 2:1 and 2:2 [15].

Nowadays, some ionophore antibiotics, like salinomycin, have aroused much interest
because of their potent activity against cancer cells, including cancer stem cells [16,17]. For
the first time, salinomycin was identified as an effective tumor-targeting agent by Gupta
and co-workers [18]. In the following years, salinomycin has been proved to be effective
against colon, prostate and gastric cancers and lung adenocarcinoma [19]. Moreover, it
has been shown that semisynthetic derivatives of salinomycin have biological activity
comparable to that of the unmodified ionophore [20–22].
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Of note, in 2021, Esben B. Svenningsen and co-workers confirmed the broad-spectrum
of antiviral activities of polyether ionophores, including salinomycin, monensin and lasa-
locid, against the SARS-CoV-2 pandemic [23].

Increasing interest in ionophore antibiotics and the discovery of their new applications
have stimulated the search for their new derivatives showing biological activity. These
new derivatives should show physicochemical properties at least in one aspect superior to
those of the original structure. In this study, our aim was to improve the hydrophobicity of
the ionophore molecule. To achieve this, we decided to obtain esters of lasalocid acid with
selected alcohols. The newly obtained derivatives were expected to increase its solubility
in biological membranes and improve ion transportation, which may be the subject of
future research.

2. Results and Discussion
2.1. ESI Mass Spectrometry

The mass spectra of LasNeo, LasGeran, LasEtHex, LasEico and LasVanil are shown
in Figure 1. The MS spectra were recorded using the technique of electrospray ionization
(ESI) at a very low cone voltage (10 V) so that clear molecular peaks corresponding to the
formed complexes could be observed (Table 1).
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Figure 1. ESI mass spectra of lasalocid esters, (a) LasNeo, (b) LasGeran, (c) LasEtHex, (d) LasEico,
(e) LasVanil.

Table 1. The main peaks in the ESI mass spectra of the lasalocid complexes at cone voltage 10 V.
Signal values assigned to ester complexes with sodium cation are bolded.

Ester Main Peaks (m/z)

LasNeo 683, 684, 685, 699
LasGeran 629 (w), 749, 765, 766, 767
LasEtHex 725, 726, 227, 741 (w)
LasEico 337 (w), 652, 653, 668 (w), 893, 894, 909
LasVanil 613 (w), 726, 727, 749, 750

(w) weak signal.

In the spectrum shown in Figure 1a, the most intensive signal at m/z = 683 is assigned
to the LasNeo complex with sodium cations. Accordingly, weaker signals at m/z = 684 and
m/z = 685 are assigned to isotopic peaks originating from the ester molecule incorporated
with 13C carbon atoms. Also, very weak signals at m/z = 699 assigned to the LasNeo
complex with the K+ cation can be observed.

However, in the mass spectrum of geraniol lasalocid ester (Figure 1b), the strongest sig-
nal originating from the LasGeran complex with the sodium cation appears at
m/z = 749, and a slightly weaker signal at m/z = 765 is assigned to the LasGeran complex
with the K+ cation, while the weaker signals at m/z = 766 and m/z = 767 are assigned to the
isotopic peaks coming from the ester molecule incorporated with 13C carbon atoms. A very
weak signal at m/z = 629 is attributed to the complex of lasalocid acid with the potassium
cation, which is probably a fragment ion.

In the LasEtHex mass spectrum (Figure 1c), the strongest signal at m/z = 725 was
assigned to the LasEtHex complex with the Na+ cation. Thus, the weaker signals at
m/z = 726 and m/z = 727 are the isotopic peaks originating from the ester molecule
incorporated with 13C carbon atoms. Additionally, a very weak signal visible at m/z = 741
is assigned to the LasEtHex complex with the potassium cation.

In the mass spectrum of LasEico (Figure 1d), the strongest signal at m/z = 893 is
assigned to the LasEico complex with Na+ cations. Therefore, the weaker signals at
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m/z = 894 and m/z = 895 are assigned to an ion containing 13C carbon atoms incorporated
into the ester molecule. Moreover, a very weak signal appeared at m/z = 909, assigned
to the LasEico complex with the potassium cation. The signal at m/z = 652 of a similar
intensity to that at m/z = 893 suggests the probable formation of a fragment ion with the
Las-C4H9 + Na+ structure. The weaker signal at m/z = 653 is the isotopic peak originating
from the ester molecule incorporated with 13C carbon atoms. There is also a very weak
signal at m/z = 668 assigned to the Las-C4H9 + K+ complex. Another very weak signal at
m/z = 377 is consistent with the structure proposed by Lopes et al. [24]. Probably, the ion at
m/z = 377 formed as a result of the internal rearrangement of protons, assisted by sodium.

In the mass spectrum of vanillyl lasalocid ester (Figure 1e), the most intensive signal
at m/z = 726 comes from the LasVanil ester, while the weaker signal at m/z = 727 is the
isotopic peak that originates from the ester molecule incorporated with 13C carbon atoms.
The low-intensity signal at m/z = 749 is assigned to the LasVanil complex with the Na+

cation, while the weaker signal at m/z = 750 is also the isotopic peak from an ion containing
the ester molecule incorporated with 13C carbon atoms. A very weak signal at m/z = 613
is assigned to the complex of lasalocid acid with the sodium cation, which is probably a
fragment ion.

The data obtained through mass spectrometry definitively confirmed the identity
of the synthesized chemical compounds. It is important to highlight that the analyzed
samples were prepared without incorporating specific sodium and potassium salts. The
complex cations that were observed to form likely originated from the glassware used at
the synthesis and purification stages. The observation of their formation demonstrates
the remarkable capability of the derived lasalocid derivatives to form complexes with
monovalent metal cations.

2.2. NMR Measurements

The ∆1H and ∆13C NMR data of the esters with neopentyl alcohol, geraniol, 2-
ethylenohexanol, eicosanol and vanillyl alcohol in chloroform are collected in Table 2.
The numbering of atoms in the molecules is given in Figure 2. The tables with the de-
tailed chemical shifts of lasalocid derivatives are included in Supplementary Materials
(Tables S1–S5). Table 2 has been reduced to ensure better readability.

Table 2. ∆1H NMR and ∆13C NMR chemical shifts (ppm) of LasNeo, LasGeran, LasEtHex, Las Eico
and LasVanil in chloroform.

No of
Atom LasNeo LasGeran LasEtHex LasEico LasVanil

∆1H ∆13C ∆1H ∆13C ∆1H ∆13C ∆1H ∆13C ∆1H ∆13C

1 - 0.95 - 0.59 - 1 - 0.81 - −6.69
2 - 0.26 - 0.05 - 0.13 - 0 - −0.4
3 - 0.4 - 0.51 - 0.54 - 0.61 - −9.07
4 - 0.17 - −0.06 - 0.17 - 0.16 - 0.33
5 0.05 −0.03 0.03 0.02 0.04 0.01 0.04 0.05 0.12 0.99
6 0.1 −0.37 0.06 0.01 0.06 −0.13 0.06 −0.04 0.55 0.61
7 - −0.22 - −0.04 - −0.09 - 0.08 - −2.11

8 0.09; 0.01 −2.13 −0.09;
−0.07 0.64 −0.09;

−0.03 0.05 −0.09;
−0.07 0.44 −0.09;

−0.15 −1.07

9 −0.35 −0.06 −0.39 1.93 −0.31 −0.03 −0.11 −0.04 0.08 −1.23
10 −0.16 −0.32 0 −3.07 −0.16 0.44 0.08 −1 0.2 −2.49
11 0.01 0.04 0.01 0.06 0.01 1.25 0.01 1.25 0.28 0.17
12 0.03 0.66 0.03 0.57 0.03 0.66 0.03 0.6 0.03 0.4
13 - 0.17 - 0.29 - 0.26 - 0.17 - 0.73
14 0.11 −0.1 0.11 −0.09 0.14 −0.09 0.11 −0.11 0.07 0.3
15 0.04 0.73 0.04 0.74 0.04 0.78 0.04 0.76 0 0.49
16 0 0.02 0 −0.54 0 0.15 0.1 0.41 -0.07 −0.29
17 0.14; 0.02 0.32 0.1; 0.29 0.45 0.1; 0.02 0.36 0.1; 0.03 0.34 0.1; 0.02 0.41
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Table 2. Cont.

No of
Atom LasNeo LasGeran LasEtHex LasEico LasVanil

∆1H ∆13C ∆1H ∆13C ∆1H ∆13C ∆1H ∆13C ∆1H ∆13C

18 - 0.34 - 0.4 - −0.81 - −0.83 - 0.41
19 0.4 1.51 0.4 1.6 0.4 1.6 0.4 1.66 0.09 2.35

20 0.03; 0.05 0.58 0.04;
−0.06 0.58 0.05; 0.06 0.6 0.05; 0.26 0.59 0.04; 0.06 0.47

21 0.07 0.29 0.15 −0.4 0.07 −0.38 0.03 −0.15 0.01 0.08
22 - 0.09 - 0.02 - 0.06 - 0.08 - −0.02
23 0.05 - 0.05 - 0.05 - 0.05 - 0.05 -
24 0.01 0.22 0.01 −0.1 −0.26 −0.46 0.05 0.26 0.01 0.21
25 −0.22 0.14 0.05 −0.32 0.05 0.14 −0.28 0.15 0.05 0.12
26 −0.84 0.19 −0.09 0.19 0.02 0.2 0.02 0.2 −0.09 0.21
27 −0.17 - −0.17 - -0.01 - −0.1 - −0.17 -
28 0.2 0.19 0.2 0.77 0.01 −0.05 −0.11 0.41 0.03 0.08
29 0.07 0.05 -0.1 0.03 0.27 0.04 0.15 0.05 0.03 0.08
30 0.06 0.23 0.06 −0.31 0.06 0.09 0.06 0.07 0.02 −0.31
31 1 signal 0.67 1 signal −0.08 1 signal 0.74 1 signal 0.68 1 signal 0.58
32 0.06 0.37 0.1 0.81 0.02 −0.11 0.02 0.37 −0.02 0.3
33 0.08 0.04 0.04 0.13 0 −0.59 0.04 0.14 −0.04 0.1
34 0.08 - 0.38 - 0.18 - 0.1 - 0.2 -
35 0 0.04 −0.04 0.39 −0.11 −1.12 −0.04 0.06 −0.23 −0.67
36 0.04 0.23 0.04 −0.19 0.04 0.37 0.04 0.36 0.04 0.33
37 0.16 - 0.28 - 0.28 - 0.32 - 0.39 -
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Figure 2. Chemical structures of the studied esters: (a) LasNeo, (b) LasGeran, (c) LasEtHex,
(d) LasEico, and (e) LasVanil.

In the 1H NMR spectrum, the signals of protons from the OH groups of lasalocid
derivatives are found at 11.20, 3.40 and 2.40 ppm. The signal at 11.20 ppm is assigned to
the O37H proton of the phenolic group, involved in the middle of a strong intramolecu-
lar hydrogen bond. The positions of proton signals from the remaining hydroxyl (OH)
groups indicate their participation in relatively weak intramolecular hydrogen bonds. In
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the 1H NMR spectrum, the signals from the protons at C8 are split, which implies an
inhibition of rotation of the salicylic part of the molecule. Additionally, the decoupling of
the signals assigned to C17H, C20H and C30H indicates a constriction of the movement of
the chain itself. Most probably, this constriction is induced by the formation of a “head-
to-tail” hydrogen bond and additional intramolecular hydrogen bonds that stabilize the
overall conformation of the molecule. This has been verified through semiempirical and
DFT calculations.

The analysis of the 1H NMR and 13C NMR spectra of LasNeo reveals significant
chemical shifts in the C1′H signals by 0.50 and 5.59 ppm, which proves the formation of an
ester bond with lasalocid, as these are the atoms located directly next to it. We can draw
similar conclusions based on the data presented in the tables in Supplementary Materials.
The chemical shifts of C1’H are clearly visible, and the chemical shifts of C1’H in the 1H
NMR spectra of the other investigated molecules are similar, which proves the formation
of the corresponding esters.

In the 1H NMR spectrum of LasVanil, we observe a clear shift in the signal assigned to
O37H from the phenolic group towards stronger fields by 0.39 ppm, which indicates the
weakening of this hydrogen bond.

A comparable alteration in the chemical shift is noted in the signal attributed to C11H,
indicating a modification in the chemical surroundings, likely brought about by a shift
in the configuration of the neighboring hydrogen bonds. The signal from C31H was also
averaged, underscoring the heightened flexibility of the polyether chain. The signals
originating from the protons C9H, C17H and C20H are split, similarly to those in the LasH
spectrum, indicating that the rotation of the salicylic part is blocked. The locking of rotation
can also be deduced from analysis of the other spectra.

2.3. FT-IR Measurements

The FT-IR spectra of the new lasalocid esters with neopentyl alcohol (LasNeo)
(Figure 3), geraniol (LasGeran) (Supplementary Materials, Figure S6), 2-ethylenohexanol
(LasEtHex) (Supplementary Materials, Figure S7), eicosanol (LasEico) (Supplementary
Materials, Figure S8) and vanillyl alcohol (LasVanil) (Figure 4) and their 1:1 complexes with
monovalent cations in the mid-infrared region are presented in Figures 3 and 4, respectively.

A comparison of the absorption maxima of the individual bands in the FT-IR spectra
of lasalocid esters and their 1:1 complexes with the following cations, Li+, Na+ and K+, is
presented in Table 3.

Table 3. Maxima of the absorption bands observed in the FT-IR spectra of LasNeo, LasGeran,
LasEtHex, LasEico, LasVanil and their complexes.

Compounds and
Complexes

Maximum Absorption of Vibration Bands:

ν(O-H)
in the Hydroxyl
Group (cm−1)

ν(C=O)
in the Carbonyl
Group (cm−1)

ν(C=O)
in the Carboxyl
Group (cm−1)

LasNeo 3438 1712 1652
LasNeo-Li+ 3390 1712 1652
LasNeo-Na+ 3438 1712 1652
LasNeo-K+ 3440 1712 1652

LasGeran 3434 1712 1652
LasGeran-Li+ 3385 1711 1652
LasGeran-Na+ 3459 1709 1652
LasGeran-K+ 3438 1712 1652

LasEtHex 3442 1713 1653
LasEtHex-Li+ 3406 1711 1653
LasEtHex-Na+ 3461 1711 1653
LasEtHex-K+ 3437 1712 1653
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Table 3. Cont.

Compounds and
Complexes

Maximum Absorption of Vibration Bands:

ν(O-H)
in the Hydroxyl
Group (cm−1)

ν(C=O)
in the Carbonyl
Group (cm−1)

ν(C=O)
in the Carboxyl
Group (cm−1)

LasEico 3433 1712 1652
LasEico-Li+ 3369 1712 1653
LasEico-Na+ 3432 1711 1652
LasEico-K+ 3434 1712 1652

LasVanil 3350 1712 1667
LasVanil-Li+ 3446 1706 1666
LasVanil-Na+ 3454 1704 1667
LasVanil-K+ 3349 1711 1666Molecules 2023, 28, x FOR PEER REVIEW 8 of 15 
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Figure 4. The FT-IR spectra of (—) LasVanil and its 1:1 complex with cations: (– –) Li+; (· · · ) Na+;
(-··-) K+; (a) 4000–400 cm−1; (b) 1800–1500 cm−1.

The band assigned to the ν(O-H) stretching vibrations of the hydroxyl groups in
the spectrum of LasNeo (Figure 3a) appears at 3438 cm−1. The analogous bands in the
spectra of LasNeo complexes are in the same positions or are slightly shifted to higher
wavenumbers, such as 3438 cm−1 for LasNeo-Na+ and 3440 cm−1 for LasNeo-K+. The
largest shift in the signal coming from an OH group was observed in the spectrum of
the LasNeo-Li+ complex, moving by 48 cm−1 towards the lower wavenumbers, which
indicates the strengthening of hydrogen bonds formed by OH groups in these complexes
relative to the strength of the hydrogen bonds in the LasNeo ester.

In the FT-IR spectrum of LasNeo (Figure 3b), the absorption maximum of the ν(C=O)
carbonyl band is at 1712 cm−1, and that of the ν(C=O) carboxyl band is at 1652 cm−1.
However, for lasalocid complexes with Li+, Na+ and K+ cations, there are no changes in the
absorption maximum of the band assigned to the vibrations of the ν(C=O) of the carbonyl
group (1712 cm−1) or the band ν(C=O) of the carboxyl group (1652 cm−1).
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For the LasGeran, LasEtHex and LasEico esters and their complexes with the same
cations (Supplementary Materials), we have a more or less similar situation, except for the
LasEico complex with the lithium cation.

In the FT-IR spectrum of LasVanil (Figure 4), the band assigned to the ν(O-H) stretch-
ing vibrations of the hydroxyl groups appears at 3350 cm−1, but in the spectra of the
LasVanil-Li+ and LasVanil-Na+ complexes, the bands corresponding to the ν(O-H) stretch-
ing vibrations of hydroxyl groups are shifted towards higher wavenumbers, which indicates
the weakening of the hydrogen bonds formed by OH groups relative to those in the Las-
Vanil ester. The largest shift in the signal coming from the OH group by 104 cm−1 was
observed in the spectrum of the LasVanil-Na+ complex.

Figure 4b shows the same spectra on an extended scale in the range of
1800–1500 cm−1. In the spectrum of LasVanil, the maximum of the ν(C=O) stretching
vibration of the ketone group is observed at 1712 cm−1, whereas in the spectra of the
complexes with lithium or sodium, it is very slightly shifted to 1706 cm−1 and 1704 cm−1,
respectively, indicating no or weak interactions of this ketone group with the cations stud-
ied. In the spectrum of the potassium cation complex, a shift in the absorption maximum
towards lower wavenumbers only by 1 cm−1 was noted.

2.4. PM6 and DFT Study

The enthalpies of the formations of LasNeo, LasGeran, LasEtHex, LasEico, LasVanil
and the associated species—both complexed and uncomplexed with different monovalent
cations—are compiled in Table 4. These findings indicate that the formation of complexes
between the investigated esters and cations is thermodynamically advantageous.

Table 4. Heat of formation (HOF, kJ/mol) of LasNeo, LasGeran, LasEtHex, LasEico and LasVanil and
their complexes with various monovalent cations calculated by PM6 method.

Complex HOF (kJ/mol) ∆HOF

LasNeopent −1901.97

-
LasGeran −1828.39
LasEtHex −1952.06
LasEico −2182.47
LasVanil −2034.23

LasNeopent Li+ (complexed) −1620.8 −333.97LasNeopent Li+

(uncomplexed) −1286.83

LasNeopent Na+ (complexed) −1711.38 −354.49LasNeopent Na+

(uncomplexed) −1356.89

LasNeopent K+ (complexed) −1603.03 −157.43LasNeopent K+

(uncomplexed) −1445.6

LasGeran Li+ (complexed) −1561.86 −348.61LasGeran Li+ (uncomplexed) −1213.25
LasGeran Na+ (complexed) −1672.57 −389.26LasGeran Na+ (uncomplexed) −1283.31
LasGeran K+ (complexed) −1546.81 −174.79LasGeran K+ (uncomplexed) −1372.02

LasEtHex Li+ (complexed) −1667.27 −330.35LasEtHex Li+ (uncomplexed) −1336.92
LasEtHex Na+ (complexed) −1763.78 −356.8LasEtHex Na+ (uncomplexed) −1406.98
LasEtHex K+ (complexed) −1661.97 −166.28LasEtHex K+ (uncomplexed) −1495.69
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Table 4. Cont.

Complex HOF (kJ/mol) ∆HOF

LasEico Li+ (complexed) −1916.75 −349.42LasEico Li+ (uncomplexed) −1567.33
LasEico Na+ (complexed) −2015.41 −378.02LasEico Na+ (uncomplexed) −1637.39
LasEico K+ (complexed) −1882.66 −156.56LasEico K+ (uncomplexed) −1726.1

LasVanil Li+ (complexed) −1758.32 −339.23LasVanil Li+ (uncomplexed) −1419.09
LasVanilNa+ (complexed) −1877.76 −388.61LasVanil Na+ (uncomplexed) −1489.15
LasVanil K+ (complexed) −1781.33 −203.47LasVanil K+ (uncomplexed) -1577.86

A lower ∆HOF value means a higher energy gain is obtained from cation complexa-
tion. According to the heat of formation values, the complexation of sodium cation is most
preferred, while that of lithium cation is slightly less preferred, which is true for all the
compounds studied. The heat of the formation of the complex with the potassium cation is
more than half less than that of the complex formation with the sodium cation, which indi-
cates that all esters will preferentially form complexes with Na+. This is related to the size
of the cavity formed in the ester molecule. Clearly, the ligand structure exhibits a pseudo-
cyclic nature, and the potential size of the cavity is not theoretically constrained. However,
intramolecular hydrogen bonds play a crucial role in stabilizing the overall structure.

Figures 5 and 6 present the structures of LasNeo and LasNeo–Li+ (Figure 5) and
LasVanil and LasVanil–Li+ (Figure 6) calculated by the DFT methods.
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Figure 5. Calculated (DFT) structure of LasNeo (a) and its 1:1 complex Li+ cation (b). Carbon atoms
are marked in dark gray, hydrogen in light gray, oxygen in red and lithium in yellow.

For all the esters, robust intramolecular hydrogen bonds persisted, even following
the cation complexation, which is in agreement with the findings from the spectroscopic
analysis. However, the configuration of these bonds and the molecular conformation
undergo certain alterations, as indicated by the analysis of the 1H NMR spectra. For
instance, these alterations are evident from the disappearance of the splitting in the signal
assigned to the C31H proton.
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Figure 6. Calculated (DFT) structure of LasVanil (a) and its 1:1 complex with Li+ cation (b). Carbon
atoms are marked in dark gray, hydrogen in light gray, oxygen in red and lithium in yellow.

3. Materials and Methods
3.1. Preparation of Lasalocid Acid

Lasalocid acid was prepared from the animal feed additive (Avatec), which contains
lasalocid sodium salts. Preliminarily, 250 g of the feed additive was pre-extracted in 2 L
of hexane with Soxhlet apparatus for 12 h to remove dyes and other impurities. Then,
relevant extraction in 2 L of methylene chloride with Soxhlet apparatus for the next 12 h
was performed to obtain the sodium salt of lasalocid.

Lasalocid acid was obtained from lasalocid sodium salt by extraction with H2SO4
(pH 1.5) in CH2Cl2 as described previously [25].

3.2. Preparation of the Esters—LasNeo, Las Geran, LasEtHex, LasEico and LasVanil

Lasalocid (0.005 mol) as well as neopentyl alcohol (or geraniol, 2-ethylenohexanol,
eicosanol and vanillyl alcohol) (0.005 mol) were dissolved in 50 mL of dichloromethane.
The reaction mixture was stirred vigorously for 30 min. Subsequently, 0.005 moles of
1,3-dicyclohexylcarbodiimide (DCC) was introduced to the reaction mixture, which was
left stirring overnight at room temperature. The resulting dicyclohexylurea precipitate was
separated through filtration, and the remaining solution was concentrated under reduced
pressure. The purification process consisted of passing the obtained product through a
silica gel column using a CombiFlash NEXGEN 300+ system (Teledyne ISCO) (0 → 30%
CH2Cl2/acetone), which gave us the product as an oil.

After purification, the relevant esters were obtained with the following yields:
LasNeo—31.62%; LasGeran—38.46%; LasEtHex—52.76%; LasEico—46.26%; LasVanil—35.22%.

3.3. Preparation of Complexes

We have synthesized the relevant complexes with the use of: LiClO4, NaClO4 and
KClO4 (Sigma-Aldrich, St. Louis, MI, USA). The solutions were obtained by dissolving the
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salt and the lasalocid ester in acetonitrile at the ratio 1:1. Acetonitrile was of spectroscopic
grade. All the preparations and transfers of solutions were carried out in a carefully
dried glovebox.

3.4. Elementary Analysis

Elementary analysis was carried out on Vario EL III GmbH equipped with a stan-
dard CHN detector. The measurements were repeated triplicate for each ester. For the
derivatives: LasNeo–(C39H64O8) (calculated: C 70.80% H 9.77%, found C 70.91% H 9.65%);
LasGeran–(C44H70O8) (calculated: C 72.71% H 9.72%, found C 72.78% H 9.81%); LasEtHex–
(C42H70O8) (calculated: C 71.70% H 10.06%, found C 71.57% H 10.12%); LasEico–(C54H94O8)
(calculated: C 74.50% H 10.92%, found C 74.63% H 11.07%); LasVanil–(C42H62O10) (calcu-
lated: C 69.33% H 8.61%, found C 69.11% H 8.40%).

3.5. ESI MS Measurements

The electrospray ionization (ESI) mass spectra were recorded with a Waters/Micromass
ZQ mass spectrometer. The measurements were performed for the solutions of LasNeo,
LasGeran, LasEtHex, LasEico and LasVanil (5 × 10−4 mol dm3). The samples were pre-
pared in dry acetonitrile and were infused into the ESI source using a Harvard pump at a
flow rate of 20 mL min−1. Standard ESI mass spectra were recorded at the cone voltages
of 10 and 30 V. The source temperature was 120 ◦C, and the desolvation temperature was
300 ◦C. Nebulization and desolvation were achieved using nitrogen as the working gas
at the flow rates of 100 and 300 dm3 h−1, respectively. The mass spectra were obtained
using the positive ion detection mode, maintaining unit mass resolution with a step size of
1 m/z unit. The ESI experiments covered a mass range from m/z = 100 to m/z = 1300.

3.6. NMR Measurements

Nuclear Magnetic Resonance (NMR) spectra were recorded using a BRUKER Avance
III HD (Bruker, Billerica, MA, USA) magnetic resonance spectrometer, operating at
400.2 MHz for 1H NMR and 100.6 MHz for 13C NMR. The 1H NMR spectra are pre-
sented with chemical shifts relative to Tetramethylsilane (TMS), utilizing the respective
residual solvent peaks as the internal standards (CDCl3 δ 7.26 ppm). Similarly, the 13C
NMR spectra are expressed in chemical shifts relative to TMS, with the internal standard
being the respective residual solvent peak (CDCl3 δ 77.16 ppm). Line broadening param-
eters were set at 0.5 or 1.0 Hz, and the error in chemical shift values was 0.01 ppm. The
assignments of 1H and 13C NMR signals were accomplished independently for each species
on the basis of one- or two-dimensional spectra (COSY, HMQC).

3.7. FT-IR Measurement

The infrared spectra in the mid infrared region were recorded in a chloroform solution.
The mass of each sample was 10 mg. The FT-IR spectra were obtained using a Bruker
IFS 66/s FT-IR spectrophotometer (Bruker, Billerica, MA, USA) equipped with an MCT
detector (125 scans, resolution 2 cm−1).

3.8. Theoretical Calculations

Scigress FJ2.6 (EU 3.1.9) software from Fujitsu, Tokyo, Japan, was employed for the
PM6 semiempirical calculations [26]. In all instances, full geometry optimization was
conducted without applying symmetry constraints. The DFT calculations were executed
using the GAUSSIAN 16 package [27], and the geometries were optimized using Becke’s
three-parameter hybrid method with the Lee, Yang and Parr correlation function (B3LYP),
along with a 6-311G(d) basis set.

4. Conclusions

Lasalocid comprises in its molecular scaffold both the lipophilic as well as the hy-
drophilic counterparts, which permit the complexation of metal cations.
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In order to search for new, alternative lasalocid derivatives showing a superior hy-
drophobicity, we carried out esterification with the compounds of different structures:
neopentyl alcohol, geraniol, 2-ethylenohexanol, eicosanol and vanillyl alcohol. The identity
of pure LasNeo, LasGeran, LasEtHex, LasEico and LasVanil ester molecules was con-
firmed (after purification using flash chromatography). All the new lasalocid derivatives
and their complexes maintained the properties of the original ionophore, and they effec-
tively complexed the monovalent cations. On the basis of quantum chemical calculations
(PM6), we can conclude that the order of preference for complexing cations is as follows:
Na+ > Li+ > K+.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/molecules28248085/s1, Figure S1: Structure of neopenthyl lasalocid ester, Figure S2: Structure
of geraniol lasalocid ester, Figure S3: Structure of 2-ethylhexanol lasalocid ester, Figure S4: Structure
of eicosanol lasalocid ester, Figure S5: Structure of vanillyl lasalocid ester, Figure S6: The FT-IR spectra
of (—) LasGeran and its 1:1 complexes with cations: (– –) Li+; (· · · ) Na+; (-··-) K+; (a) 4000–400 cm−1;
(b) 1800–1500 cm−1, Figure S7: The FT-IR spectra of (—) LasEtHex and its 1:1 complexes with cations:
(– –) Li+; (· · · ) Na+; (-··-) K+; (a) 4000–400 cm−1; (b) 1800–1500 cm−1, Figure S8: The FT-IR spectra
of (—) LasEico and its 1:1 complexes with cations: (– –) Li+; (· · · ) Na+; (-··-) K+; (a) 4000–400 cm−1;
(b) 1800–1500 cm−1, Table S1: 1H NMR and 13C NMR chemical shifts (ppm) of LasNeopent in
chloroform, Table S2: 1H NMR and 13C NMR chemical shifts (ppm) of LasGeran in chloroform,
Table S3: 1H NMR and 13C NMR chemical shifts (ppm) of LasEtHex in chloroform, Table S4: 1H
NMR and 13C NMR chemical shifts (ppm) of LasEico in chloroform, Table S5: 1H NMR and 13C NMR
chemical shifts (ppm) of LasVanillyl in chloroform.
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