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Abstract: The emergence of Multidrug Resistance (MDR) strains of bacteria has accelerated the
search for new antibacterials. The specific bacterial peptidoglycan biosynthetic pathway represents
opportunities for the development of novel antibacterial agents. Among the enzymes involved, Mur
ligases, described herein, and especially the amide ligases MurC-F are key targets for the discovery of
multi-inhibitors, as they share common active sites and structural features.
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1. Introduction

Microorganisms have existed on Earth for centuries, but it was not until the 17th cen-
tury that Antoni van Leeuwenhoek, a renowned Dutch scientist, made groundbreaking
observations identifying various microorganisms, including yeasts and even red blood
cells [1]. His work marked an important moment in the history of biology, laying the
foundation for microbiology and bacteriology. Following Leeuwenhoek’s discoveries, a
series of events triggered a surge of interest in microbiology, leading to significant advance-
ments in the field. In the years that followed, numerous scientists studied microorganisms,
particularly those that caused major epidemics. In 1835, Agostino Bassi identified Beau-
veria bassiana as the microbial origin of the silkworm disease called muscardine [2]. In
1854, Filippo Pacini isolated and identified the Vibrio cholerae as a pathogen [3]; meanwhile,
Casimir Davaine discovered the anthrax bacillus [4]. These discoveries propelled microbi-
ology forward, driven by the efforts of figures like Robert Koch [5] and Louis Pasteur [6].
The early 20th century marked a significant period in the history of antibiotics. German
scientist Paul Ehrlich created the first effective drugs (Figure 1) against syphilis in 1910 [7],
and, later, Alexander Fleming made a groundbreaking discovery in 1928, observing that
Penicillium notatum had the ability to inhibit the growth of Staphylococcus aureus (S. aureus).
This discovery [8] laid the foundation for the development of penicillin G 3 and other
antibiotics such as sulfanilamide 4 [9,10].
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1. Introduction 
Microorganisms have existed on Earth for centuries, but it was not until the 17th cen-

tury that Antoni van Leeuwenhoek, a renowned Dutch scientist, made groundbreaking 
observations identifying various microorganisms, including yeasts and even red blood 
cells [1]. His work marked an important moment in the history of biology, laying the foun-
dation for microbiology and bacteriology. Following Leeuwenhoek’s discoveries, a series 
of events triggered a surge of interest in microbiology, leading to significant advance-
ments in the field. In the years that followed, numerous scientists studied microorganisms, 
particularly those that caused major epidemics. In 1835, Agostino Bassi identified Beau-
veria bassiana as the microbial origin of the silkworm disease called muscardine [2]. In 
1854, Filippo Pacini isolated and identified the Vibrio cholerae as a pathogen [3]; mean-
while, Casimir Davaine discovered the anthrax bacillus [4]. These discoveries propelled 
microbiology forward, driven by the efforts of figures like Robert Koch [5] and Louis Pas-
teur [6]. The early 20th century marked a significant period in the history of antibiotics. 
German scientist Paul Ehrlich created the first effective drugs (Figure 1) against syphilis 
in 1910 [7], and, later, Alexander Fleming made a groundbreaking discovery in 1928, ob-
serving that Penicillium notatum had the ability to inhibit the growth of Staphylococcus au-
reus (S. aureus). This discovery [8] laid the foundation for the development of penicillin G 
3 and other antibiotics such as sulfanilamide 4 [9,10]. 
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Figure 1. Structure of Salvarsan (1), Neosalvarsan (2), penicillin G (3), and sulfanilamide (4). 

The golden age of antibiotic discovery occurred from the 1940s to the 1960s, with the 
identification of numerous families of antibiotics 5–15 (Figure 2) [11].  
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Figure 1. Structure of Salvarsan (1), Neosalvarsan (2), penicillin G (3), and sulfanilamide (4).

The golden age of antibiotic discovery occurred from the 1940s to the 1960s, with the
identification of numerous families of antibiotics 5–15 (Figure 2) [11].
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Figure 2. Some examples of families of antibiotics. 

However, bacteria developed resistance mechanisms in response to antibiotic treat-
ments [12,13]. This resistance is a significant global health threat, and the World Health 
Organization (WHO) considers it one of the most serious challenges to global health. In-
fections caused by resistant bacteria, coupled with diminishing antibiotic effectiveness, 
have raised alarms [14–16].  

Bacterial resistance can occur through different mechanisms [17–27], including extra-
cellular resistance (biofilms), natural or innate resistance (inherent to specific strains), and 
acquired resistance (mutations or acquisition of resistance genes). Resistance mechanisms 
involve alterations in genes affecting interactions between bacteria and antibiotics, modi-
fications of antibiotic targets, enzymatic mechanisms to prevent antibiotic binding, the 
hindrance of antibiotic entry through bacterial membranes, and the efflux of antibiotics 
from bacterial cells. This modification involves changes in the target’s genetic sequences, 
resulting in decreased efficacy of the antibiotic. For example, this phenomenon has been 
observed in a strain of Mycobacterium leprae resistant to rifampicin 16, an antibiotic of the 
rifamycin family (Figure 3) [27]. 

 
Figure 3. Structure of rifampicin (16). 

Enzymes produced by the bacteria can also inactivate the antibiotic by cleaving it. 
For example, enzymes known as “β-lactamase” are capable of hydrolyzing β-lactam rings 
found in antibiotics such as penicillins 17 (Scheme 1) to inactive compounds 18 [28]. β-
lactams target bacterial wall biosynthesis by inhibiting the transpeptidase activity of pen-

Figure 2. Some examples of families of antibiotics.

However, bacteria developed resistance mechanisms in response to antibiotic treat-
ments [12,13]. This resistance is a significant global health threat, and the World Health
Organization (WHO) considers it one of the most serious challenges to global health. Infec-
tions caused by resistant bacteria, coupled with diminishing antibiotic effectiveness, have
raised alarms [14–16].

Bacterial resistance can occur through different mechanisms [17–27], including extra-
cellular resistance (biofilms), natural or innate resistance (inherent to specific strains), and
acquired resistance (mutations or acquisition of resistance genes). Resistance mechanisms
involve alterations in genes affecting interactions between bacteria and antibiotics, mod-
ifications of antibiotic targets, enzymatic mechanisms to prevent antibiotic binding, the
hindrance of antibiotic entry through bacterial membranes, and the efflux of antibiotics
from bacterial cells. This modification involves changes in the target’s genetic sequences,
resulting in decreased efficacy of the antibiotic. For example, this phenomenon has been
observed in a strain of Mycobacterium leprae resistant to rifampicin 16, an antibiotic of the
rifamycin family (Figure 3) [27].
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Figure 3. Structure of rifampicin (16).

Enzymes produced by the bacteria can also inactivate the antibiotic by cleaving it. For
example, enzymes known as “β-lactamase” are capable of hydrolyzing β-lactam rings found
in antibiotics such as penicillins 17 (Scheme 1) to inactive compounds 18 [28]. β-lactams tar-
get bacterial wall biosynthesis by inhibiting the transpeptidase activity of penicillin-binding
proteins (PBPs), which are involved in the final steps of peptidoglycan synthesis. The open
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form of β-lactams results in the loss of their biological activity against PBP transpeptidases.
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Scheme 1. Hydrolysis by β-lactamase.

The ability of an antibiotic to reach its target within bacteria can also occur via the
bacterial membranes [29–37]. Despite the challenges of bacterial resistance, antibiotics
remain effective against certain pathogenic bacteria. These antibiotics target specific bac-
terial processes, such as DNA replication, RNA polymerase activity, protein synthesis,
and bacterial wall synthesis. For example, antibiotics can inhibit DNA gyrase and RNA
polymerase [38–42], interfere with the metabolism of folic acid [43–47], disrupt protein
synthesis [48–53], and target the bacterial wall synthesis process [54–59]. Efforts to combat
resistance involve the development of new antibiotics targeting novel bacterial processes
and exploring new therapeutic targets. These ongoing efforts are crucial in the fight against
antibiotic-resistant bacteria and the preservation of effective treatment options.

2. The Peptidoglycan Chain

Peptidoglycan, also called murein, is a biopolymer present in all bacteria that provides
protection from the external environment, especially osmotic pressure [60]. A notable differ-
ence between bacteria is that the cell wall is composed of about 95% peptidoglycan chains
for Gram-positive bacteria and about 20% for Gram-negative bacteria, which explains the
effectiveness of some antibiotics compared to others. Its complex chemical structure is de-
fined by a cross-linked network in which a repeating unit contains an N-acetylglucosamine
(NAG) and an N-acetylmuramic acid (NAM) linked by a β-1 bond→ 4 (Figure 4) [61].
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Figure 4. Peptidoglycan structures.

This peptidoglycan forms a three-dimensional network linked by cross-links simply
composed of peptides, a pentaglycine here. This cross-linking is linked on both sides
with two small peptides that are grafted by the carboxylic acid function of MurNAc. The
chemical nature of these peptides differs according to the bacteria; in Gram-positive bacteria,
the unnatural amino acid called meso-diaminopimelic acid (m-DAP) is found, whereas in
Gram-negative bacteria, L-Lysine is present. This structure presents an impressive chemical
diversity and explains the strength of the peptidoglycan chain in bacteria. Indeed, several
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elements that compose it testify to this, such as the MurNAc, a saccharide not present in
eukaryotic cells, amino acids of the D series, and m-DAP.

The biosynthesis of the peptidoglycan chain (Scheme 2) is a complex process that
takes place in every part of the bacterium [62]. It is common to all Gram-positive or Gram-
negative bacteria with some variations for Mycobacterium tuberculosis [63]. Each enzyme
involved in this biosynthesis is important because the inhibition of one would lead to
bacterial lysis and therefore cell death. During this biosynthesis, the formation of several
key intermediates is obtained in each site of the bacterium (cytoplasm, membrane, and
periplasm). The starting point of this synthesis is the conversion of fructose-6-phosphate
(F6P, 19) to uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc, 20). Then, a lactoyl
function is introduced on this substrate, followed by a pentapeptide chain to form uri-
dine diphosphate N-acetylmuramoyl-pentapeptide (UDP-MurNAc-pentapeptide, 21). This
entity, which is nothing but a part of the peptidoglycan-repeating unit, binds to unde-
caprenylphosphate (C55P) of the plasma membrane and is then glycosylated to obtain
Lipid II (22). An enzyme called flippase will allow Lipid II to pass from the internal face
of the membrane to its external face [64]. Finally, this monomer is polymerized in the
periplasm by transglycosylation and transpeptidation steps to end up with the mature
peptidoglycan (23).
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Mur ligases are involved at several parts of this process; their role is to catalyze the
formation of a peptide bond with the corresponding amino acid on the substrate, which is
specific to each of these enzymes. These enzymes have all been identified as non-ribosomal
ATP-dependent proteins in the cytoplasm, and MurA and MurB allow the biosynthesis of
UDP-MurNAc (25) from UDP-GlcNAc (28) (Figure 5).
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MurA or UDP-GlcNAc enolpyruvyltransferase catalyzes the transfer of an enolpyru-
vate moiety from phosphoenol pyruvate (PEP) to UDP-GlcNAc (20) with phosphate release.
The crystallographic structure [65] of MurA as well as its mechanism [66] have been well
identified (Scheme 3). Its mode of action involves an addition–elimination mechanism: the
anti-addition of PEP on UDP-GlcNAc (20) is catalyzed by Asp305 (numbering of MurA from
Escherichia coli) and Cys115 of MurA to form the corresponding tetrahedral intermediate,
and then the syn-elimination allows UDP-GlcNAc enolpyruvate (24) to be obtained.
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Currently, the only antibiotic used that specifically targets MurA is fosfomycin (26)
(Figure 6). It is a PEP analog which binds irreversibly to Cys115 (numbering of MurA from
Escherichia coli) of the active site of MurA, rendering the enzyme inactive and causing
cell death. However, there are many mechanisms of resistance to this compound: mu-
tations of the enzyme, cellular permeability, or an enzymatic action that inactivates the
antibiotic. Similarly, innate resistance of certain species such as Mycobacterium tubercu-
losis or Chlamydia trachomatis exist where an Asp [67] replaces the targeted Cys residue.
Numerous covalent and noncovalent inhibitors have been developed [68]. Avenaciolide
compounds [69] (isolated from Neosartorya fischeri) are tetrahedral intermediate inhibitors,
while quinazolinone analogs [70] are competitive inhibitors. Compound 27 is promising
because it shows good biological activities with an MIC of 16 µg/mL−1 and 32 µg/mL−1

on methicillin-resistant Staphylococcus aureus (MRSA) and Bacillus subtilis (B. subtilis), respec-
tively. Furthermore, it was shown to be specific for MurA enzymes with an IC50 of 2.8 µM
on MurA from Escherichia coli (E. coli) and 7.9 µM on resistant MurA. Compound 28 is
active on Escherichia coli and Staphylococcus aureus, respectively, with an MIC of 1 µg/mL−1

and 8 µg/mL−1 while showing an IC50 on MurA of 47 µM.
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Currently, there is no antibiotic used for the MurB of bacteria. However, few inhibi-
tors have been developed (Figure 7) such as the imidazolinone 29, one of the first inhibi-
tors targeting the MurB substrate site from Escherichia coli. It shows activity against Staph-
ylococcus aureus strains [76]. Compounds 30 and 31 have been identified as multi-inhibitors 
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called Nicotinamide Adenine Dinucleotide Phosphate (NADPH) [71]. This enzyme also
contains an active site with the Flavin Adenine Dinucleotide cofactor (FAD). The crys-
tallographic structure [72,73] of MurB and its mechanism [74,75] have been elucidated
(Scheme 4). The first step of the mechanism involves the formation of the FAD-MurB
complex, which acts as a redox intermediate. Similarly, after the formation of the sec-
ond NADPH-MurB complex, the reduction of FAD by NADPH leads to the reaction
intermediate FADH2 -MurB by transferring the H4 (pro-S) from NADPH to the N of FAD.
After the release of NADP+, UDP-GlcNAc enolpyruvate (24) binds to the enzyme. The
second step is the reduction of the latter by the FADH2 -MurB thanks to the transfer of hy-
drogen in C-3 on the enolpyruvate part. After the release of FAD, the enolate intermediate
obtained is stabilized by the carboxylic acid of the substrate with the enzyme. Finally, the
isomerization of the substrate to the final product UDP-MurNAc (25) requires the presence
of water.
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Currently, there is no antibiotic used for the MurB of bacteria. However, few in-
hibitors have been developed (Figure 7) such as the imidazolinone 29, one of the first in-
hibitors targeting the MurB substrate site from Escherichia coli. It shows activity against
Staphylococcus aureus strains [76]. Compounds 30 and 31 have been identified as multi-
inhibitors of MurA/MurB targeting FAD, with interesting activities on Staphylococcus aureus
strains [77,78].

Finally, the last cytoplasmic steps allowing the formation of UDP-MurNAc pentapep-
tide from the UDP-MurNAc (25) involve MurC-F, which are grouped into a family of
four amino acid ligase enzymes that form a peptide bond in the presence of the corre-
sponding amino acid [79,80]. Other enzymes at the plasma membrane are responsible for
the continuation of this synthesis (Scheme 5). Among them, MurG, a glycosyltransferase,
catalyzes the glycosylation between Lipid I and a GlcNAc unit from UDP-GlcNAc (20) to
form Lipid II. This essential enzyme is highly conserved in all bacterial species. However,
glycosyltransferases are present in a large majority of cells in both prokaryotes and eukary-
otes, which requires a high specificity of potential MurG inhibitors in drug design [81].
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The crystallographic structure of MurG has been solved, as well as its mechanism, by
Walker et al. [82–84]. Other teams have shown that the structure of MurG is able to interact
with other proteins such as MraY [85], and with the MurE-MurF dimer complex [86], which
allows the substrate to evolve with small distances within this protein–protein complex.
Several inhibitors targeting MurG have been developed as the pentacyclic compound
(32) (Figure 8) [87]. In addition, the use of high-throughput screening has allowed the
development of new inhibitors against the MurG, such as the pyrimidinetrione (33) [88,89];
more recently, the diazepanone analog (34) was found to inhibit both MraY and MurG [90].
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3. MurC-F Ligases as New Antibiotic Targets

In the fight against bacterial resistance, another effective way is to go after seldom
exploited targets that do not show any resistance mechanism. In this context, enzymes
involved in bacterial wall biosynthesis meet this criterion. Among some of these enzymes,
resistances have already appeared, such as in the periplasm where penicillin that targets
PBPs has become ineffective with the appearance of β-lactamases or with glycopeptides
that target Lipid II and has become less active. By contrast, Mur ligases have an activity
further upstream in the biosynthesis. These enzymes have many advantages that make
them an innovative therapeutic target: they are essential for bacterial survival, ubiquitous
within prokaryotes with no equivalent in eukaryotes. To date, they are relevant targets in
the development of multi-inhibitors and they do not present any resistance mechanism [91].

MurC-F ligases are responsible for the formation of the Lipid I precursor (UDP-
MurNAc-pentapeptide, 38) from UDP-MurNAc (25) by the successive synthesis of tri-
, tetra-, and penta-peptides by MurC, MurD, MurE, and MurF (Scheme 6) [92]. The
characterization of the protein sequences of MurC-F enzymes has been performed on
different bacterial strains, both Gram-positive and Gram-negative [93]. Even if sequential
differences between species can be observed, each of them shares the same structural
topology, i.e., a protein divided into three different domains with a conserved active site [94].
The main differences in the protein sequences of the Mur ligases are that the amino acid
binding site differs depending on which one is used. The MurC enzyme catalyzes the
addition of the first amino acid of the peptide chain bound to the UDP-MurNAc (25). In
most species, this amino acid is L-Ala, but in very rare cases, other amino acids such as
glycine or L-Ser are used. MurD catalyzes the addition of the second amino acid to the
substrate. Except for some variations in amino acids due to modifications in biosynthesis,
the amino acid is a D-Glu in all species. Studies have shown the importance of having the
D-enantiomer of glutamic acid because L-Glu is not a substrate for MurD. For MurE, which
catalyzes the third amino acid addition, the amino acid is either a meso-diaminopimelic acid
(m-A2pm) in most Gram-negative bacteria and in Bacilli species, while in Gram-positive
bacteria, the amino acid is an L-Lys. Studies have shown that MurE contains a very specific
active site for its own amino acid; if the wrong amino acid were to be incorporated, it would
result in cell lysis. Finally, MurF catalyzes the addition of an unnatural dipeptide D-Ala-D-
Ala. In some resistant bacterial species, a modification of this dipeptide by D-Ala-D-Ser or
by D-Ala-D-Lac can be observed. To date, each of these enzymes has been purified and
studied with the corresponding substrates and co-substrates [95]. This allowed the authors
to propose the active sites of the Mur ligases as well as the reaction mechanism where we
present these parameters.
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The stability parameters of Mur ligases are important to determine the specificity
and kinetic parameters. A characterization study of these parameters was performed on
MurC-F enzymes from Mycobacterium tuberculosis [96]. The specific activities of MurC-
F are calculated by measuring the concentration of the released inorganic phosphate
(Scheme 6B). They are estimated to be 1.2, 0.8, 1.3, and 0.9 µmol/min/mg/protein (µmol of
phosphate formed per minute per milligram of enzyme) for MurC, MurD, MurE, and MurF,
respectively. The stability of each of the proteins showed a great sensitivity according to
the temperature and the pH of the medium. Indeed, the enzymatic activity remains stable
under 40 ◦C with an optimal activity between 35 ◦C and 40 ◦C, while a higher temperature
(between 45 and 70 ◦C) shows a significant decrease in the activity. Moreover, enzymes
are sensitive to the pH of the buffered medium since the optimal pH is estimated between
pH 8 and 8.5. Small variations with a more acidic or basic pH are enough to strongly
decrease the activity. Mur ligases use the energy of the phosphate bond to catalyze the
formation of the amino acid amide bond on the growing peptide chain (Scheme 6). This
mechanism, common to all four Mur ligases, starts with the elaboration of a complex with
the enzyme and its substrates in the following way: first, the ATP binds to the enzyme, and
then the substrate UDP sugar is added, as well as the amino acid at the end. In the active
site, the first step is to activate the carboxylic acid of the substrate UDP sugar with ATP
(Scheme 6A) to form the acyl phosphate intermediate. Two Mg ions2+ will create a bridge
between the negatively charged groups of ATP and the substrate UDP sugar to facilitate the
phosphorylation of the carboxylate group of the substrate. Then, the second step involves
the amino acid, which displaces the phosphate by a nucleophilic attack with the formation
of the tetrahedral intermediate. Finally, the release of the phosphate Pi allows for obtaining
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the peptide substrate. The catalytic activity of a base is necessary to recover the proton from
the amine group. Other studies have shown that the ATP phosphate could replace this base
or the enzyme itself since this would better fit the normal energy scale of the reaction [97].
With MurC-F, therefore, L-Ala, D-Glu, m-A2pm, and the dipeptide D-Ala-D-Ala can be
introduced successively in the presence of ATP (Scheme 6B).

In addition to the mechanistic data of these enzymes, X-ray structures of MurC-F
ligases for several different species have been elucidated [98–101].

Inhibitors of MurC-F Escherichia coli were developed since they have the advantage
of containing multiple active sites per enzyme, allowing researchers to target specific
areas of interest to design molecules that may have biological activity benefits. Moreover,
the increasing emergence of bacterial resistance challenges the conventional approach to
developing antibacterials. Mur ligases are ideal targets for this purpose since they share
similar three-dimensional structures, making them a set of targets for a single compound.

3.1. Inhibitors from “Medicinal Chemistry Approach”

This follows a simple mono-therapeutic model aimed at designing a drug for a specific
target in a particular region or event. This approach has proven effective in the development
of numerous antibiotics. The identification of potential hits (molecules of interest) involves
in silico, in vitro, and in vivo studies [102]. The first characterized inhibitors targeted
domain 3 of Mur ligases and emerged in the 1990s, along with the initial elucidation of
crystallographic structures.

3.1.1. Amino Acid Mimics of Mur Ligases

The exploration of MurC inhibition using analogs of L-Alanine began early, even before
the complete structure of the enzyme was known. Takahashi et al. showed that glycine
could inhibit the addition of L-Alanine to the UDP-MurNAc substrate as a competitive
inhibitor [103]. Several studies a few years later, including those by Parquet [104] et al. and
VillaFranca et al. [105], demonstrated that various L-amino acids, without incorporation
into the natural substrate, could inhibit MurC. D-configurations of amino acids, however,
showed no inhibitory activity. For example, the three following amino acid analogs, 39, 40,
and 41 (Figure 9), were the most potent competitive inhibitors, ranging from millimolar to
minimum activity for 76.
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Inhibitors of MurD using analogs of D- or L-glutamic acid showed similar results
as those for MurC. Van Heijenoort et al. demonstrated weakly active analogs, as seen
with compounds 42 and 43 with residual activities of 58% and 47%, respectively, at a
concentration of 10 mM (Figure 10) [106].

Molecules 2023, 28, x FOR PEER REVIEW 11 of 25 
 

 

al. and VillaFranca et al. [105], demonstrated that various L-amino acids, without incor-
poration into the natural substrate, could inhibit MurC. D-configurations of amino acids, 
however, showed no inhibitory activity. For example, the three following amino acid an-
alogs, 39, 40, and 41 (Figure 9), were the most potent competitive inhibitors, ranging from 
millimolar to minimum activity for 76. 

 
Figure 9. Structure of L-Alanine analogs. 

Inhibitors of MurD using analogs of D- or L-glutamic acid showed similar results as 
those for MurC. Van Heijenoort et al. demonstrated weakly active analogs, as seen with 
compounds 42 and 43 with residual activities of 58% and 47%, respectively, at a concen-
tration of 10 mM (Figure 10) [106]. 

 
Figure 10. Structure of D-glutamic acid analogs and of meso-diaminopimelic acid analogs. 

This same team conducted similar studies on analogs of meso-diaminopimelic acid 
on the MurE enzyme [107]. Among synthetized products, compounds 44 and 45 were the 
best analogs in terms of MurE inhibition, although their activity was weak, with IC50 val-
ues of 2.3 mM and 0.56 mM for 44 and 45, respectively. For MurF, the literature does not 
show results containing derivatives with motifs from the D-Ala-D-Ala dipeptide. 

3.1.2. Heterocyclic Inhibitors 
In 2001, Gobec et al. based their work on this mechanism with MurD and the tetra-

hedral transition state to design phosphino-alanine derivatives, but without significant 
inhibition [108]. In 2007, the same group published small compounds, such as sulfona-
mides of D-glutamic acid. They co-crystallized inhibitors like compound 46 (Figure 11) 
with the MurD enzyme to better understand its binding site [109]. This allowed the group 
to develop other analogs with improved activity and the ability to crystallize the com-
pounds, such as compound 47 with an IC50 of 85 µM [110]. The modification of position 6 
of the naphthalene in 46 allowed the crystallographic structure of the inhibitor/MurD 
complex to show that this position enables interactions between the substituents and the 
di-phosphate binding site of domain 1. Subsequently, Gobec et al., in collaboration with 
Mašič’s group, performed ligand-docking studies, leading to the identification of a new 
interesting structure that could bind to the di-phosphate binding site. These structures 48–
50 contained rhodanine-type heterocycles, such as compounds, which was active with an 
IC50 of 45 µM (for 48). 

Figure 10. Structure of D-glutamic acid analogs and of meso-diaminopimelic acid analogs.

This same team conducted similar studies on analogs of meso-diaminopimelic acid on
the MurE enzyme [107]. Among synthetized products, compounds 44 and 45 were the best
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analogs in terms of MurE inhibition, although their activity was weak, with IC50 values of
2.3 mM and 0.56 mM for 44 and 45, respectively. For MurF, the literature does not show
results containing derivatives with motifs from the D-Ala-D-Ala dipeptide.

3.1.2. Heterocyclic Inhibitors

In 2001, Gobec et al. based their work on this mechanism with MurD and the tetra-
hedral transition state to design phosphino-alanine derivatives, but without significant
inhibition [108]. In 2007, the same group published small compounds, such as sulfon-
amides of D-glutamic acid. They co-crystallized inhibitors like compound 46 (Figure 11)
with the MurD enzyme to better understand its binding site [109]. This allowed the group
to develop other analogs with improved activity and the ability to crystallize the com-
pounds, such as compound 47 with an IC50 of 85 µM [110]. The modification of position
6 of the naphthalene in 46 allowed the crystallographic structure of the inhibitor/MurD
complex to show that this position enables interactions between the substituents and the
di-phosphate binding site of domain 1. Subsequently, Gobec et al., in collaboration with
Mašič’s group, performed ligand-docking studies, leading to the identification of a new
interesting structure that could bind to the di-phosphate binding site. These structures
48–50 contained rhodanine-type heterocycles, such as compounds, which was active with
an IC50 of 45 µM (for 48).
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Subsequent SAR studies resulted in the discovery of analogs with improved biological
activities, such as compounds 49 and 50 with IC50 values in the micromolar range [111–113].
These recent studies enabled the synthesis of a large library of hybrid molecules capable
of binding both to the active site of the amino acid in domain 3 and to the di-phosphate
pocket in domain 1, using in silico analysis and considering that the D-glutamic acid part
must remain. However, no molecule with significant in vivo bacterial activity has been
identified. Additionally, some synthesized compounds, such as those containing the “ene-
rhodanines” heterocycle, may be considered as PAINS (pan-assay interference compounds)
that produce false positives in the biological experimentation used to determine IC50 [114].
MurC presents a unique case where Lee et al. synthesized derivatives of benzylidene
rhodanines [115]. Gobec et al. attempted to develop sulfonamide inhibitors of D-glutamic
acid targeting MurE [116]. Subsequently, they synthesized a second generation of non-D-
glutamic acid sulfonamide inhibitors that mimic it with rigid diacids. These inhibitors were
found to be active on MurD, not MurE [117]. Compounds 51 and 52 (Figure 12), exhibiting
IC50 values of 182 µM and 8.4 µM, respectively, were co-crystallized with the enzyme, and
the structures showed that these inhibitors bind at the D-glutamic acid position, where the
2-cyano-4-fluoro-phenyl occupies the uracil pocket.
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3.2. Inhibitors Mimicking the Natural Substrate UDP-MurNAc-(Peptide)
3.2.1. Phosphinic Inhibitors

One of the first families of inhibitors is the “phosphinic” compounds that target the
natural substrate-binding site in domain 1 of Mur ligases. The phosphinic acid in these
molecules provides a tetrahedral geometry that blocks the enzymatic mechanism, and the
uridine part of the compounds allows them to position themselves in the active site [118,
119]. For MurC, AstraZeneca published the synthesis of two highly active inhibitors, 53
and 54, with respective IC50 values of 49 nM and 60 µM (Figure 13) [120]. Compound 53
forms a stable enzyme/ATP/inhibitor and enzyme/ADP/inhibitor complex, which stops
the enzymatic activity [121]. The first phosphinic inhibitor 55 was synthesized for MurD in
1996 by Blanot et al., which was active with an IC50 in the micromolar range [122]. Similarly,
Merck published other inhibitors in 1998 with similar structures. They showed that adding
the glucosamine part to compound 56 improved its activity, reaching IC50 values in the
nanomolar range [123]. Later, Blanot et al., in collaboration with Gobec’s team, published
simplified inhibitors by retaining only the peptide-phosphinic part, based on compound
57, with an IC50 of 20 nM [124]. Even without improving this inhibitory activity, they still
published active compounds like compound 58, which was the most active with an IC50 of
78 µM.
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For MurE, Merck’s group synthesized compounds 59 and 60 with respective IC50
values of 1.1 µM and 700 µM (Figure 14), similar to compound 56 for MurC [125]. Similarly,
Gobec et al. used 60 as a starting point to add various substituents, but without significant
inhibition, with compound 61 showing the best residual activity at 71% at 1 mM [126].
Docking studies of an analog of 61 showed that this family of molecules is not transition-
state inhibitors but rather competitive inhibitors of the substrate.
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Besides the good enzymatic activities of these phosphinic analogs, none have shown
antibacterial activity, which could be explained by their low cell wall penetration. However,
an important point to consider in the design of these derivatives is that the uridine part is
beneficial for retaining good IC50 values for each of the Mur ligases. Moreover, the total
synthesis of phosphinic compounds proves to be challenging in terms of the number of
steps. Several research groups have explored the laboratory synthesis of various natural
substrates of Mur ligases, which has served as a synthetic tool, knowing that the nucleosidic
synthesis of di-phosphate derivatives is a true challenge [127–131].

3.2.2. Peptidic Inhibitors

In 2003, Fishwick et al. published small peptides as analogs of the UDP sugar substrate
targeting MurD [132]. This peptidic macrocycle 62 was designed based on the enzyme’s
crystallographic structure and the docking of this potential inhibitor in the active site.
Several analogs were synthesized, with compound 63 showing the best activity with an
IC50 of 0.7 µM (5.1 µM for 60) (Figure 15). There are also a few examples where authors
developed peptidic derivatives targeting MurE [133,134].
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Figure 16. Structure of compound 64 targeting MurC, compounds 65 and 66 targeting MurD, and 
compounds 67–70 targeting MurF. 

Figure 15. Structure of peptides 62 and 63 targeting MurD.

On the other hand, several groups of biologists have been interested in peptide
synthesis using the phage display technique with different peptide libraries. Several
studies have identified peptides targeting MurC [135], MurD [136], MurE [137,138], and
MurF [139], inhibiting with weak IC50 values in the mM range.

3.2.3. Heterocyclic Inhibitors

A very rapid technique to obtain inhibitors is to screen molecules through biological
assays. AstraZeneca did this by screening its compound library targeting MurC [140].
Compound 64 was identified as an inhibitor with an IC50 of 2.3 µM (Figure 16). Its action
seems to target the di-phosphate binding site, but the mode of inhibition has not been
clearly elucidated. Moreover, it shows binding affinities to other proteins, such as bovine
serum albumin. For MurD, Obreza’s team synthesized sulfono-hydrazine derivatives that
also mimic the UDP sugar substrate’s di-phosphates [141]. Compound 65 showed the
best IC50 of 30 µM but did not exhibit antibacterial activity. Additionally, the same team
developed other similar analogs, like compound 66, but without improving its activity [142].
For the same enzyme, Gobec’s team performed virtual screening of a molecule library,
which led to the identification of inhibitors [143].
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A research group from Abbott Laboratories conducted a high-throughput affinity
screening of a molecule library targeting MurF, which highlighted molecule 67 as an
attractive candidate [144,145]. Enzymatic studies revealed an IC50 of 8 µM, and through
SAR studies, this result was optimized with compound 68, which had an IC50 of 22 nM.
Compound 67 was co-crystallized with MurF and bound to the active site in place of the
natural UDP sugar substrate in a conformation called “closed” of the enzyme [146,147].
However, these compounds did not exhibit antibacterial activity, even in the presence of
permeable strains, which may indicate non-specific interactions with other proteins. Based
on these results, Gobec’s team decided to take up the structural motif of compound 68
to improve its antibacterial activities [148]. This led to compound 69, which was active
against Staphylococcus pneumoniae strains with an MIC of 16 µg/mL. However, 69 and its
analogs did not exhibit activity against other bacterial strains. The authors published a
second generation of these compounds active against several strains [149], where their
antibacterial action resulted from membrane degradation. Other heterocyclic analogs
were synthesized by Gobec’s laboratory with a few antibacterial activities [150,151]. In
2006, a research group from Johnson & Johnson developed pyrimidine derivatives that
inhibited MurF but showed no in vivo activity [152]. Only from 2007 did the same group
identify, through molecule screening, hydroxyquinoline-type derivatives of interest, such
as compound 70 with an IC50 of 29 µM. Although this compound exhibited activity against
both Gram-positive and Gram-negative bacterial strains, it is possible that compound 70
interacted with other proteins other than MurF [153,154].

3.3. Inhibitors Mimicking the Co-Substrate ATP

There are very few inhibitors of this type in the literature targeting Mur ligases. This
can be explained by the fact that there are many ATP-dependent enzymes, including kinases,
resulting in a very severe lack of selectivity. Therefore, the few synthesized inhibitors were
obtained through screening techniques of molecule libraries. In 2008, Dougherty’s team
from the pharmaceutical group Pfizer carried out a screening of its molecule library and
managed to demonstrate that compound 71 is a competitive inhibitor of ATP, selectively
targeting MurC from only a few enterobacterial strains closely related to Escherichia coli
(Figure 17). However, this compound did not show antibacterial activity [155].
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3.4. Natural Inhibitors

Using the same molecule screening technique (in this case, from plants), a research
group identified natural compounds like 72 and 73 that were found to be active against
MurE (Figure 18) [156–158]. Compound 72 showed an IC50 of 67 µM against MurE from
M. tuberculosis and weakly inhibited the growth of a mutant strain of Mycobacterium tuber-
culosis. As for compound 73, it had an IC50 of 75 µM against MurE and was active against a
panel of Gram-positive and Gram-negative strains. It also acted on efflux by inhibiting a
protein responsible for NorA.
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3.5. Multi-Target Synthetic Approaches

The synthesis of multi-inhibitor compounds involves a “multi-therapeutic” model,
where a molecule is produced to inhibit multiple biological processes by targeting several
enzymes simultaneously. Generally, the choice is made on similar enzymes with close
activities, as demonstrated with the Mur ligases. The reason behind this concept is to
combat bacterial resistance to the purported new antibacterial compound built on these
criteria. The advantage of multi-inhibition is that it leaves no chance for bacteria to react or
adapt when exposed to this toxic agent. In the literature, there are a few relatively recent
examples of multi-targeted Mur ligases that we present. This principle poses a challenge in
developing such compounds while retaining attractive biological properties.

3.5.1. Mimicking the Amino Acid of Mur Ligases

Solmajer et al. and Gobec et al. developed new structures derived from D-glutamic
acid using several in silico approaches, as they had done for classical inhibitors. Among
these previous studies, they also identified multi-active compounds, and SAR studies
were carried out based on these results [159]. The 1,3-phenyl-dicarboxylic acid, which
is the cyclic mimic of D-glutamic acid, seems to play an important role in the binding
to each of the Mur ligases. Initially, the team developed analogs of this type targeting
MurD and MurE, as shown by compound 74 with an IC50 of 270 µM on MurD and
an IC50 of 32 µM on MurE [160]. Subsequently, the group developed other analogs by
modifying the heterocyclic part that fits into the di-phosphate pocket while retaining the
1,3-phenyl-dicarboxylic acid [161]. They synthesized compound 75, which is the best in
the series and capable of inhibiting all four Mur ligases with IC50 values of 41 µM, 60 µM,
93 µM, and 89 µM for MurC, MurD, MurE, and MurF, respectively (Figure 19). Although
these molecules are multi-active, with compound 75 being one of the best multi-inhibitors
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synthesized to date, there is no revealed antibacterial activity. The group attempted to
measure activities on different strains with analogs close to 75 (without the di-carboxylic
acid groups), but the results only showed weak activities.
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3.5.2. Mimicking the Natural Substrate UDP-MurNAc(-Peptide)
Phosphonic Acid Inhibitors

Gobec et al. developed a series of phosphoric acid analogs of hydroxyethylamines as a
bioisostere of the tetrahedral intermediate of the UDP sugar substrate [162]. Compound 76
is the best analog in this series, active against all four enzymes with IC50 values of 26 µM,
530 µM, 160 µM, and 150 µM for MurC, MurD, MurE, and MurF, respectively (Figure 20).
However, these compounds do not show antibacterial activities. These analogs, including
76, are the only phosphorylated derivatives that are multi-active against Mur ligases.
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Heterocyclic Inhibitors

After observing that the N-acyl hydrazone structure has potential in terms of biological
activity in medicinal chemistry, Gobec’s group designed analogs around this structure and
showed that some are active, like compound 77 with IC50 values of 123 µM and 230 µM for
MurC and MurD, respectively (Figure 21) [163]. Moreover, this compound showed weak
antibacterial activities against Escherichia coli and Staphylococcus aureus. The group also
designed other heterocyclic structures to adopt a more closed conformation than with the
natural substrates of enzymes MurD and MurF but still show activities on different strains.

Gobec et al., who synthesized a good number of benzylidenesulfonyl hydrazine
analogs, showed that some of them were multi-inhibitors [164]. They performed SAR
studies to optimize enzymatic activities but without antibacterial activities. Singh’s labora-
tory identified several multi-active structures of Mur ligases through different screenings,
including pulvinones [165] and phenyl dihydrothienopyrazolol [166] with activities against
multiple strains. Recently, they identified a naphthyl-type tetronic acid structure capable
of inhibiting not only all four Mur ligases but also MurA and MurB [167]. Compound 78
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showed the best activities in the series with an IC50 in the range of 20 µM for each enzyme,
and it inhibited the bacterial growth of Escherichia coli and Staphylococcus aureus strains
(Figure 22).
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3.5.3. Mimicking the Co-Substrate ATP

Very recently, Zega et al. identified several compounds with different structures that
exhibit multi-inhibitory activities against MurC to MurF. These compounds were identified
through screening a collection of molecules originally designed to inhibit kinases by the
competitive inhibition of ATP [168]. Compounds 79 and 80 are multi-inhibitors of MurC-F
with IC50 values ranging from 10 to 368 µM (Figure 23). Because these compounds mimic
ATP, the authors conducted kinetic and NMR studies on compound 79 and showed that it
actually binds to the amino acid binding site. They also performed additional biological
analyses with eukaryotic kinases and demonstrated that these molecules are specific and
promising for the development of new antibacterials.
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3.5.4. Natural Analogs

Süssmuth et al. identified feglymycin (81), isolated from Streptomyces strains, as an
active inhibitor of both MurA and MurC [169]. Feglymycin, a 13-mer peptide, exhibited
activity with an IC50 in the range of µM for MurA and in the range of mM for MurC
(Figure 24).
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4. Conclusions

Over the last few decades, the peptidoglycan biosynthetic pathway has emerged as
a promising and attractive target for antibacterial drug discovery. Among the various
enzymes involved, the Mur ligase family has drawn attention due to its exclusive presence
in bacteria (not found in human cells) and as they are essential for bacterial cell wall
biosynthesis. An in-depth understanding of their structures has led to the development
of powerful new antibacterial agents. While each Mur ligase can be considered a unique
antibacterial target, MurC-F ligases have highly conserved amino acid regions in their active
sites. This characteristic can be used in the design of promising Mur ligase multi-inhibitors.
A number of inhibitors from different chemical families were developed against Mur ligases,
with significant inhibitory activity. Modern techniques remain highly utilized in the design
of potentially active molecules, particularly with virtual screening methods [170,171].
However, none has yet been shown to have antibacterial activity. One reason could
be the difficulty for these compounds to cross the bacterial membrane and reach the
cytoplasm where Mur ligases activities are located. Another possibility explaining the lack
of antibacterial activity may be the complexity of the Mur ligase pathway, which is high,
making it difficult for the inhibitor to reach the various sites.

In the future, a better understanding of the protein–protein interactions of the Mur
ligase pathway, combined with the consideration of factors enabling better penetration of
the bacterial wall, will enable the design of Mur ligase inhibitors with proven antibacte-
rial activity.
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112. Tomašić, T.; Zidar, N.; Šink, R.; Kovač, A.; Blanot, D.; Contreras-Martel, C.; Dessen, A.; Müller Premru, M.; Zega, A.; Gobec, S.; et al.
Structure-based design of a new series of D-glutamic acid based inhibitors of bacterial UDP-N-acetylmuramoyl-L-alanine:D-
glutamate ligase (MurD). J. Med. Chem. 2011, 54, 4600–4610. [CrossRef] [PubMed]
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