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Abstract: A two-step, one-pot synthesis of 3-substituted 1H-dibenzo[e,g]indazoles in good to high
yields via a LiOtBu-promoted intramolecular 1,3-dipolar cyclization of 2′-alkynyl-biaryl-2-aldehyde
N-tosylhydrazones was developed. The N-Ts-hydrazones used were prepared in situ via the reactions
of 2′-alkynyl-biaryl-2-aldehydes and TsNHNH2 (p-methylbenzenesulfonohydrazide). Two types
of signals related to the hydrogen bonds, forming in several products, were observed in the 1H
NMR spectra recorded in DMSO-d6, assigned to N-H bonds in their dimeric species of product
and tautomer.

Keywords: N-tosylhydrazones; 1H-dibenzo[e,g]indazoles; intramolecular cycloaddition; lithium
tert-butoxide; hydrogen bonds

1. Introduction

1,3-dipolar cycloadditions of azides to alkynes, as the most important representative
reactions in click chemistry and bio-orthogonal chemistry, have attracted enormous atten-
tion in the past decades [1–5]. Besides azides, diazo compounds’ 1,3-dipoles could also be
used in 1,3-dipolar cycloadditions to react with alkynes, providing diverse pyrazole-based
skeletons [6,7]. Recently, numerous elegant works, involving cycloadditions between diazo
compounds (or their N-tosylhydrazone precursors) and alkynes, were reported [8–20].
However, the design of N-tosylhydrazones for intramolecular 1,3-dipolar cycloadditions to
construct π-extended pyrazole-based skeletons is rarely reported.

Nowadays, indazole derivatives comprising a pyrazole ring represent one of the
most important heterocyclic scaffolds in the pharmaceutical industry [21–23], possessing
a variety of biological activities, such as antimicrobial [24], anti-inflammatory [25], and
anti-HIV [26] properties. 1H-indazoles, as one of the tautomeric forms of indazole, have
more thermodynamic stability than 2H-indazoles [27].

Since the synthesis of 2H-dibenzo[e,g]indazoles has already been reported [28], in
the present work, we opted for a synthetic method towards 1H-dibenzo[e,g]indazoles,
providing more possibilities of indazole-based derivatives in a further exploration of
pharmaceutical molecules or larger polycyclic aromatic compounds (PACs).

In 1975, Jones’s group reported a pyrolytic method towards 1H-dibenzo[e,g]indazole
from 2′-ethynyl-biaryl-2-aldehyde N-tosylhydrazone sodium-salt in a quantitative yield [29]
(Scheme 1a). In 2013, Zhan’s group synthesized 3-phenyl-substituted 1H-dibenzo[e,g]indazole
(2a) in a 60% yield from a ring-expansion strategy of 9-(phenylethynyl)-9H-fluoren-9-ol [30]
(Scheme 1b). We note that only one example was given in each of the cited references, and
either high temperatures or complicated starting materials were required.
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mized to a one-pot two-steps manner starting from 2′-alkynyl-biaryl-2-aldehydes (1) 
(Scheme 1c). In addition, in order to explain the observed two types of N-H signals in the 
1H NMR spectra in DMSO-d6, the formation of dimeric species is proposed, which is sup-
ported by the X-ray structure of one product with the studies of DFT (density functional 
theory) calculations using the Gaussian 09 program [34] with an SMD solvation model 
[35]. 

 
Scheme 1. The syntheses of some 1H-dibenzo[e,g]indazoles from different starting materials [29,30]. 

2. Results and Discussion 
2.1. Synthesis 
2.1.1. Optimization of Model Reaction Conditions 

Our investigations started from hydrazone 1a′, easily available from biarylaldehyde 
1a and TsNHNH2 (p-methylbenzenesulfonohydrazide) in methanol at room temperature. 
When the reaction of hydrazone 1a′ (1.0 equiv.) and LiOtBu (1.5 equiv.) in tetrahydrofuran 
(THF) was heated at 100 °C for 2 h, 3-phenyl-1H-dibenzo[e,g]indazole (2a) could be iso-
lated in an 89% yield (Table 1, entry 1). When the temperature was progressively dimin-
ished at 50 °C, 45 °C, 35 °C, or 25 °C, the yields of 2a did not significantly decrease except 
for 25 °C (Table 1, entries 2–5). Repeating the reaction in THF at 45 °C for 1 h, the yield of 
2a could be maintained in an 88% yield (Table 1, entry 6). Since hydrazone 1a′ was 

Scheme 1. The syntheses of some 1H-dibenzo[e,g]indazoles from different starting materials [29,30].

Based on our previous studies on the use of N-tosylhydrazones in cyclizations [31–33],
herein we report a one-pot synthetic method towards 3-substituted 1H-dibenzo[e,g]indazoles
(2) from 2′-alkynyl-biaryl-2-aldehyde N-tosylhydrazones, which was then optimized to a
one-pot two-steps manner starting from 2′-alkynyl-biaryl-2-aldehydes (1) (Scheme 1c). In
addition, in order to explain the observed two types of N-H signals in the 1H NMR spectra
in DMSO-d6, the formation of dimeric species is proposed, which is supported by the X-ray
structure of one product with the studies of DFT (density functional theory) calculations
using the Gaussian 09 program [34] with an SMD solvation model [35].

2. Results and Discussion
2.1. Synthesis
2.1.1. Optimization of Model Reaction Conditions

Our investigations started from hydrazone 1a′, easily available from biarylaldehyde
1a and TsNHNH2 (p-methylbenzenesulfonohydrazide) in methanol at room temperature.
When the reaction of hydrazone 1a′ (1.0 equiv.) and LiOtBu (1.5 equiv.) in tetrahydrofuran
(THF) was heated at 100 ◦C for 2 h, 3-phenyl-1H-dibenzo[e,g]indazole (2a) could be isolated
in an 89% yield (Table 1, entry 1). When the temperature was progressively diminished
at 50 ◦C, 45 ◦C, 35 ◦C, or 25 ◦C, the yields of 2a did not significantly decrease except for
25 ◦C (Table 1, entries 2–5). Repeating the reaction in THF at 45 ◦C for 1 h, the yield of 2a
could be maintained in an 88% yield (Table 1, entry 6). Since hydrazone 1a′ was prepared
in methanol, we then examined the reaction of hydrazone 1a′ in this solvent, rather than in
THF, but the yield of 2a decreased to 68% (Table 1, entry 7).
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Table 1. Optimization of the model’s reaction conditions in the case of compound 2a.
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We also examined the formation of 2a from 1a using other inorganic alkali, such as 
NaOtBu, KOtBu, Li2CO3, Na2CO3, K2CO3, and Cs2CO3. As shown in Table 2, the use of 
NaOtBu and KOtBu resulted in the formation of 2a in 81% and 85% yields, respectively 
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Entry a Base Yield of 2a (%) 
1 LiOtBu 88 
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Entry b Solvent ◦C/h Yield of 2a (%) d

1 THF 100/2 89
2 THF 50/2 88
3 THF 45/2 88
4 THF 35/2 85
5 THF 25/2 77
6 THF 45/1 88
7 MeOH 45/1 68

a Reaction conditions: 1a (1.5 mmol), TsNHNH2 (1.1 equiv.) in 5.0 mL of MeOH at room temperature. b Reaction
conditions: 1a′ (1.0 mmol), LiOtBu (1.5 equiv.) in 5.0 mL of THF or MeOH. c Reaction conditions: 1a (1.0 mmol),
TsNHNH2 (1.1 equiv.) in 5.0 mL of THF at 45 ◦C for 1 h, then LiOtBu (1.5 equiv.) and additional 2.5 mL of THF at
45 ◦C for 1 h. d Isolated yields. The green background highlights the optimal conditions.

Therefore, the condensation between biarylaldehyde 1a and TsNHNH2 in THF at
45 ◦C was further examined to explore the possibility of developing a two-step, one-pot
procedure 1a → 2a. It was found that 1a could be totally converted into hydrazone 1a′ after
1 h (TLC monitoring). Moreover, when LiOtBu (1.5 equiv.) and 2.5 mL of THF were added
to the reaction mixture of entry 6, 2a could be obtained in an 88% yield after additional
heating for 1 h. We also tried a one-step process at 45 ◦C: by adding TsNHNH2 and LiOtBu
at the same time, 79% of 2a could be acquired. Thus, the one-pot/two-step process in entry
6 was considered as the optimized condition.

We also examined the formation of 2a from 1a using other inorganic alkali, such as
NaOtBu, KOtBu, Li2CO3, Na2CO3, K2CO3, and Cs2CO3. As shown in Table 2, the use of
NaOtBu and KOtBu resulted in the formation of 2a in 81% and 85% yields, respectively
(entries 2 and 3), similar to the yield of LiOtBu (entry 1). However, in the presence of
Li2CO3, Na2CO3, K2CO3, and Cs2CO3, 2a only formed in 9–14% yields (entries 4–7). These
results support the proposed mechanism depicted in Scheme 2 (vide infra), in which a
tert-butoxide anion (tBuO−) made a main contribution to the intramolecular cyclization by
promoting the formation of the diazo zwitterion A.

Table 2. Optimal alkali bases used in the synthesis of compound 2a.

Entry a Base Yield of 2a (%)
1 LiOtBu 88
2 NaOtBu 81
3 KOtBu 85
4 Li2CO3 9
5 Na2CO3 9
6 K2CO3 11
7 Cs2CO3 14

a Reaction conditions: 1a (1.0 mmol), TsNHNH2 (1.1 equiv.) in 5.0 mL of THF at 45 ◦C for 1 h, then base (1.5 equiv.)
and additional 2.5 mL of THF at 45 ◦C for 1 h. The yields were isolated yields. The green background highlights
the optimal conditions.
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Scheme 2. Proposed mechanism of 2a formation.

2.1.2. Substrates’ Expansion under Optimized Conditions

Thus, the extension of the above optimized methodology as a one-pot/two-step
synthesis of 3-substituted-1H-dibenzo[e,g]indazoles 2b–p starting from 2′-alkynyl-biaryl-
2-aldehydes 1b–p via an intramolecular 1,3-dipolar cycloaddition is depicted in Chart 1.
The corresponding p-Ts-hydrazones of 1b–p, as crucial transformations, exhibited their
quantitative feasibility by being modulated with the influence of alkyne-substituents R1

and Ar-substituents R2 and R3.
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yields. In the case of the substrate having chloro and silyl groups (1m), the corresponding 
product 2m could be also obtained in an 82% yield. More interestingly, three pyridyl-
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yields, respectively. 
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The proposed mechanism of 3-phenyl-1H-dibenzo[e,g]indazole (2a) formation is de-

picted in Scheme 2. In the presence of tBuO−, diazo zwitterion A forms from hydrazone 
1a′; then, an intramolecular nucleophilic cycloaddition occurs in the 1,3-dipole C to afford 
D, which, then, allows aromatization to take place to give the final product 2a. 

2.3. Structural Analysis 
2.3.1. X-ray Data of Compound 2a 

A suitable single crystal of compound 2a was obtained through a slow evaporation 
from its petroleum ether/dichloromethane (5:1 v/v) solution [36]. The X-ray crystal data 
(Figure 1) indicate that the existence of intermolecular NH-N hydrogen bonds promotes 

Chart 1. Extension of the optimized methodology as one-pot/two-step synthesis of 3-substituted-1H-
dibenzo[e,g]indazoles 2b–p a. a Reaction conditions: 1 (1.0 mmol), TsNHNH2 (1.1 equiv.) in 5.0 mL of
THF at 45 ◦C for 1 h, then LiOtBu (1.5 equiv.) and additional 2.5 mL of THF at 45 ◦C for 1 h. In each
case, the yield refers to the effective amount of isolated compound.
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Aromatic alkynyl substrates bearing either electron-donating groups (R1−X = p-
methoxy (1b), R1−X = p-methyl (1c)) or electron-withdrawing groups (R1−X = p-fluoro
(1d), R1−X = p-chloro (1e)) underwent the condensation reactions smoothly to give 2b–e in
80–88% yields. Moreover, pyridyl-(1i), thienyl-(1j), and silyl-(1k) substituted substrates
showed a good tolerance, providing 2i–k in 78–93% yields. However, the substrate having
an alkyl alkynyl group (1l) showed a slightly lower reactivity, giving 2l in a 61% yield.

In addition, the introduction of methyl (1f), chloro (1g), and trifluoromethyl (1h)
groups at the position of R2 showed a similar reactivity to 1a in producing 2f–h in 83–86%
yields. In the case of the substrate having chloro and silyl groups (1m), the corresponding
product 2m could be also obtained in an 82% yield. More interestingly, three pyridyl-fused
analogues of 2a, 2n–p were also successfully synthesized in 88%, 90%, and 75% yields,
respectively.

2.2. Proposed Mechanism

The proposed mechanism of 3-phenyl-1H-dibenzo[e,g]indazole (2a) formation is de-
picted in Scheme 2. In the presence of tBuO−, diazo zwitterion A forms from hydrazone
1a′; then, an intramolecular nucleophilic cycloaddition occurs in the 1,3-dipole C to afford
D, which, then, allows aromatization to take place to give the final product 2a.

2.3. Structural Analysis
2.3.1. X-ray Data of Compound 2a

A suitable single crystal of compound 2a was obtained through a slow evaporation
from its petroleum ether/dichloromethane (5:1 v/v) solution [36]. The X-ray crystal data
(Figure 1) indicate that the existence of intermolecular NH-N hydrogen bonds promotes
the formation of a 2a dimer. The length of the NH–N hydrogen bond in the 2a dimer is
2.103 Å, and the N-N distance of the NH–N hydrogen bond is 2.845 Å.
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including a 2a dimer-anti, a 2a/2a tautomer dimer-syn, and a tautomer dimer-anti, taking 
two phenyl groups as reference, centered on a six-membered H-bonding chelate. We se-
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dimers with DFT using the Gaussian 09 program at a B3LYP-D3(BJ)/ma-TZVP [37–39] 
level. An SMD solvation model was employed with the default settings. The basis set su-
perposition error (BSSE) was corrected using the counterpoise (CP) method of Boys and 
Bernardi [40]. The calculation results disclose that the binding energies for the formation 
of the 2a dimer-anti, 2a/2a tautomer dimer-syn, and tautomer dimer-anti are −8.29 
kcal/mol, −8.50 kcal/mol, and −8.79 kcal/mol, respectively (Figure 2). Considering the 
slight differences of binding energies among these three types of dimers, the observed two 
types of N-H signals in the 1H NMR spectra in DMSO-d6 are assigned to N-H hydrogen 
atoms in 2a (14.27 ppm) and 2a tautomer (13.98 ppm) in dimeric species, respectively 

Figure 1. X-ray crystal structure of compound 2a. Carbon atoms are shown in gray, nitrogen atoms in
purple, and N-H hydrogen atoms in white. The hydrogen atoms on the benzene rings are omitted for
clarity. (a) View face-on to the aromatic rings showing the hydrogen bonds in the 2a dimer. Annotated
with the NH–N hydrogen bonds’ length and N-N distance. (b) View of a unit cell. The blue lines
show the NH–N hydrogen bonds in the 2a dimer. The red lines show the NH–N hydrogen bonds
between 2a and another omitted molecule.

2.3.2. DFT Calculation of Dimeric Species of 2a and Its Tautomer

In a DMSO-d6 solvent, two types of proton peaks assigned to the N-H bond were
observed in the 1H NMR spectra of 2a, 2d, 2f, 2h, 2i, 2j, 2l, 2n, 2o, and 2p. On the basis of a
DFT calculation, it is favorable to form the dimeric species with a definitely lower energy
than that of the sum of the two isolated monomers resulted from the hydrogen bond in the
solution; thus, there are expected to be three types of dimers, as shown in Chart 2, including
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a 2a dimer-anti, a 2a/2a tautomer dimer-syn, and a tautomer dimer-anti, taking two phenyl
groups as reference, centered on a six-membered H-bonding chelate. We selected 2a as
the representative sample for calculating the binding energies of these three dimers with
DFT using the Gaussian 09 program at a B3LYP-D3(BJ)/ma-TZVP [37–39] level. An SMD
solvation model was employed with the default settings. The basis set superposition error
(BSSE) was corrected using the counterpoise (CP) method of Boys and Bernardi [40]. The
calculation results disclose that the binding energies for the formation of the 2a dimer-anti,
2a/2a tautomer dimer-syn, and tautomer dimer-anti are −8.29 kcal/mol, −8.50 kcal/mol,
and −8.79 kcal/mol, respectively (Figure 2). Considering the slight differences of binding
energies among these three types of dimers, the observed two types of N-H signals in the
1H NMR spectra in DMSO-d6 are assigned to N-H hydrogen atoms in 2a (14.27 ppm) and
2a tautomer (13.98 ppm) in dimeric species, respectively
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2.3.3. Temperature Gradient Experiment of Compound 2a in DMSO-d6

A temperature gradient experiment of compound 2a in DMSO-d6 was performed from
25 ◦C to 125 ◦C; the corresponding 1H NMR spectra are recorded in Figure 3. With the
temperature increasing, it is shown that two 1H sharp signals gradually coalesced into a
unique, broad signal at 14.03 ppm at 125 ◦C, which results from the fast chemical exchange
of 2a and 2a tautomer at relatively higher temperature.
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3. Materials and Methods
3.1. Materials

All commercially available reagents, solvents, and metal salts are analytically pure and
were used without further purification. 1-bromo-2-iodobenzene (CAS 583-55-1), 2-bromo-1-
iodo-4-methylbenzene (CAS 71838-16-9), 2-bromo-4-chloro-1-iodobenzene (CAS 31928-44-
6), 2-bromo-1-iodo-4-(trifluoromethyl)benzene (CAS 481075-58-5), 3-bromo-2-iodopyridine
(CAS 408502-43-2), 4-bromo-3-iodopyridine (CAS 917969-51-8), 3-bromo-4-iodopyridine
(CAS 89167-19-1), ethynylbenzene (CAS 536-74-3), 1-ethynyl-4-methoxybenzene (CAS
768-60-5), 1-ethynyl-4-methylbenzene (CAS 766-47-2), 1-ethynyl-4-fluorobenzene (CAS
766-98-3), 1-chloro-4-ethynylbenzene (CAS 873-73-4), 2-ethynylpyridine (CAS 1945-84-
2), 2-ethynylthiophene (CAS 4298-52-6), ethynyltriisopropylsilane (CAS 89343-06-6), (2-
formylphenyl)boronic acid (CAS 40138-16-7), (4-chloro-2-formylphenyl)boronic acid (CAS
913835-76-4), 4-methylbenzenesulfonohydrazide (CAS 1576-35-8), and dichloroditriph-
enylphosphor palladium (CAS 13965-03-2) were purchased from Bidepharm; tetrahydro-
furan (CAS 109-99-9), triethylamine (CAS 121-44-8), and methyl alcohol (CAS 67-56-1)
were purchased from Aladdin; hept-1-yne (CAS 628-71-7), potassium fluoride (CAS 7789-
23-3), and 1,4-dioxane (CAS 123-91-1) were purchased from Meryer (Shanghai, China);
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cuprous iodide (CAS 7681-65-4) and lithium t-butoxide (CAS 1907-33-1) were purchased
from Macklin (Shanghai, China); the H2O used was ultrapure water.

3.2. General Methods

Column chromatography was performed on silica gel (300–400 mesh). Thin-layer
chromatography (TLC) was performed on 0.2 mm silica gel-coated glass sheets. The NMR
spectra were recorded on a JEOL ECS-400 instrument operating at 400 and 100 MHz for the
1H and 13C nuclei, respectively. All chemical shifts (δH, δC, δF) are given in parts per million
(ppm); all homocoupling patterns (nJH,H) are given in hertz (Hz). No TMS was added; the
chemical shifts were measured against the solvent peak taken as a reference signal; CDCl3,
δH = 7.26 ppm, and δC = 77.16 ppm; DMSO-d6, δH = 2.50 ppm, and δC = 39.52 ppm. The
high-resolution mass spectroscopy (HRMS) spectra were obtained using high-resolution
mass spectrometers with an electrospray ionization (ESI) source. The single-crystal X-ray
diffraction data were obtained using a SuperNova (Agilent Technologies, Oxfordshire, UK)
diffractometer with a Cu Kα radiation at a low temperature (173.15 K). All the NMR charts
for the prepared starting materials and the products are reported in the Supplementary
Materials.

3.3. General Procedure for the Preparation of 2′-Alkynyl-biaryl-2-aldehydes 1a–p

(1) A THF (5.0 mL) and Et3N (5.0 mL) solution containing 1-bromo-2-iodobenzenes
(2.0 mmol), CuI (5.0 mol%, 19.0 mg, 0.1 mmol), and PdCl2(PPh3)2 (5.0 mol%, 70.2 mg,
0.1 mmol) in a 25 mL screw-capped thick-walled Pyrex tube with stirring under N2 was
dropwise added to terminal alkynes (2.4 mmol) at room temperature over 5 min. The ob-
tained mixture was then stirred at room temperature under N2 for 12 h. After the reaction
was completed (TLC monitoring, eluent pure petroleum ether), the reaction mixture was
filtrated through a short pad of celite. The solution was then concentrated under reduced
pressure to remove the volatiles, and the crude residue was purified using column chro-
matography on silica gel (eluent pure petroleum ether) to obtain the desired compounds
Sa–Sp (checked with GC-MS) in 75–95% yields.

(2) A 1,4-dioxane (10.0 mL) and H2O (1.0 mL) solution containing S (1.5 mmol),
phenylboronic acids (1.65 mmol), PdCl2(PPh3)2 (5.0 mol%, 52.7 mg, 0.075 mmol), and KF
(261.0 mg, 4.5 mmol) in a 25 mL screw-capped thick-walled Pyrex tube was stirred under N2
at 100 ◦C in an oil bath for 12 h. After the reaction was completed, the reaction mixture was
cooled to room temperature (TLC monitoring, eluent petroleum ether/ethyl acetate, 15/1
v/v) and filtrated through a short pad of celite. The solution was then concentrated under
reduced pressure to remove the volatiles, and the crude residue was purified using column
chromatography on silica gel (eluent petroleum ether/ethyl acetate, gradient mixture ratio
from 30/1 to 15/1 v/v) to afford product 1a–p in 24–94% yields.

Compounds 1a, 1c, 1e, 1f, 1g are known compounds, which were confirmed by their
1H NMR and 13C NMR spectroscopic data [41].

3.4. Analytical Data of Compound 1a–p

2′-(Phenylethynyl)-(1,1′-biphenyl)-2-carbaldehyde (1a). Pale yellow oil (355 mg, 1.26 mmol,
84% yield). Rf = 0.40 (petroleum ether/ethyl acetate, 10/1 v/v). 1H NMR (400 MHz, CDCl3)
δH 9.94 (s, 1H), 8.09 (dd, 3JH,H = 7.8 Hz, 4JH,H = 1.5 Hz, 1H), 7.68–7.64 (m, 2H), 7.54 (t,
3JH,H = 7.6 Hz, 1H), 7.46–7.38 (m, 4H), 7.25–7.22 (m, 4H), 7.17–7.15 (m, 2H) ppm. 13C NMR
(100 MHz, CDCl3) δC 192.0, 144.4, 140.4, 134.3, 133.6, 132.1, 131.4, 130.4, 128.6, 128.4, 128.3,
127.0, 123.8, 122.8, 93.9, 88.3 ppm.

2′-[(4-Methoxyphenyl)ethynyl]-(1,1′-biphenyl)-2-carbaldehyde (1b). Yellow oil (332 mg,
1.07 mmol, 71% yield). Rf = 0.55 (petroleum ether/ethyl acetate, 10/1 v/v). 1H NMR
(400 MHz, CDCl3) δH 9.93 (s, 1H), 8.08 (dd, 3JH,H = 7.9 Hz, 4JH,H = 1.5 Hz, 1H), 7.66–7.59 (m,
2H), 7.52 (dd app. t, 3JH,H = 7.5 Hz, 1H), 7.43–7.36 (m, 4H), 7.12–7.08 (m, 2H), 6.77–6.74 (m,
2H), 3.74 (s, 3H) ppm. 13C NMR (100 MHz, CDCl3) δC 191.9, 159.8, 144.5, 140.1, 134.3, 133.5,
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132.8, 131.8, 131.4, 130.3, 128.3, 128.2, 128.2, 126.8, 124.1, 114.9, 114.0, 94.0, 87.1, 55.3 ppm.
HRMS (ESI IT-TOF) m/z [M + H]+ Calcd. for C22H17O2 313.1223, found 313.1223.

2′-(p-Tolylethynyl)-(1,1′-biphenyl)-2-carbaldehyde (1c). Pale yellow oil (417 mg, 1.41 mmol,
94% yield). Rf = 0.50 (petroleum ether/ethyl acetate, 10/1 v/v). 1H NMR (400 MHz, CDCl3)
δH 9.93 (s, 1H), 8.08 (dd, 3JH,H = 7.7 Hz, 4JH,H = 1.5 Hz, 1H), 7.66–7.61 (m, 2H), 7.52 (t,
3JH,H = 7.6 Hz, 1H), 7.44–7.36 (m, 4H), 7.07–7.02 (m, 4H), 2.29 (s, 3H) ppm. 13C NMR
(100 MHz, CDCl3) δC 191.9, 144.4, 140.3, 138.7, 134.3, 133.5, 132.0, 131.4, 131.3, 130.3, 129.1,
128.3, 128.3, 126.9, 124.0, 119.7, 94.1, 87.7, 21.6 ppm.

2′-[(4-Fluorophenyl)ethynyl]-(1,1′-biphenyl)-2-carbaldehyde (1d). Pale yellow oil (333 mg,
1.11 mmol, 74% yield). Rf = 0.40 (petroleum ether/ethyl acetate, 10/1 v/v). 1H NMR
(400 MHz, CDCl3) δH 9.93 (s, 1H), 8.08 (dd, 3JH,H = 7.8 Hz, 4JH,H = 1.5 Hz, 1H), 7.67–7.61
(m, 2H), 7.53 (t, 3JH,H = 7.6 Hz, 1H), 7.46–7.38 (m, 4H), 7.16–7.11 (m, 2H), 6.95–6.90 (m,
2H) ppm. 13C NMR (100 MHz, CDCl3) δC 191.9, 162.7 (d, J = 249.6 Hz), 144.3, 140.3, 134.3,
133.6, 133.3 (d, J = 8.3 Hz), 132.0, 131.4, 130.3, 128.6, 128.3, 126.9, 123.6, 118.8 (d, J = 3.6 Hz),
115.7 (d, J = 22.2 Hz), 92.8, 88.0. HRMS (ESI IT-TOF) m/z [M + H]+ Calcd. for C21H14FO
301.1023, found 301.1023.

2′-[(4-Chlorophenyl)ethynyl]-(1,1′-biphenyl)-2-carbaldehyde (1e). Pale yellow oil (436 mg,
1.38 mmol, 92% yield). Rf = 0.40 (petroleum ether/ethyl acetate, 10/1 v/v). 1H NMR
(400 MHz, CDCl3) δH 9.92 (s, 1H), 8.08 (dd, 3JH,H = 7.8 Hz, 4JH,H = 1.5 Hz, 1H), 7.69–7.62
(m, 2H), 7.55 (t, 3JH,H = 7.5 Hz, 1H), 7.49–7.40 (m, 4H), 7.22–7.19 (m, 2H), 7.09–7.07 (m,
2H) ppm. 13C NMR (100 MHz, CDCl3) δC 191.9, 144.3, 140.5, 134.6, 134.3, 133.6, 132.6, 132.1,
131.4, 130.4, 128.8, 128.8, 128.4, 128.4, 127.0, 123.5, 121.3, 92.7, 89.3 ppm.

5′-Methyl-2′-(phenylethynyl)-(1,1′-biphenyl)-2-carbaldehyde (1f). Pale yellow oil (404 mg,
1.36 mmol, 91% yield). Rf = 0.40 (petroleum ether/ethyl acetate, 10/1 v/v). 1H NMR
(400 MHz, CDCl3) δH 9.94 (s, 1H), 8.08 (dd, 3JH,H = 7.9 Hz, 4JH,H = 1.6 Hz, 1H), 7.66–7.61
(m, 1H), 7.53–7.49 (m, 2H), 7.42 (d, 3JH,H = 7.5 Hz, 1H), 7.23–7.20 (m, 5H), 7.16–7.14 (m, 2H),
2.41 (s, 3H) ppm. 13C NMR (100 MHz, CDCl3) δC 192.0, 144.5, 140.3, 138.8, 134.3, 133.5,
131.9, 131.3, 131.3, 131.1, 129.1, 128.3, 128.2, 126.9, 123.0, 120.8, 93.1, 88.5, 21.6 ppm.

5′-Chloro-2′-(phenylethynyl)-(1,1′-biphenyl)-2-carbaldehyde (1g). Pale yellow solid (374 mg,
1.18 mmol, 79% yield). Rf = 0.40 (petroleum ether/ethyl acetate, 10/1 v/v). m.p. 83.7–84.2 ◦C.
1H NMR (400 MHz, CDCl3) δH 9.93 (s, 1H), 8.09 (dd, 3JH,H = 7.8 Hz, 4JH,H = 1.5 Hz, 1H), 7.67
(td, 3JH,H = 7.4 Hz, 4JH,H = 1.5 Hz, 1H), 7.58–7.54 (m, 2H), 7.42–7.39 (m, 3H), 7.26–7.21(m,
4H), 7.16–7.13 (m, 2H) ppm. 13C NMR (100 MHz, CDCl3) δC 191.4, 142.9, 142.1, 134.5, 134.3,
133.8, 133.1, 131.4, 131.2, 130.3, 128.8, 128.6, 128.4, 127.3, 122.5, 94.8, 87.3 ppm.

2′-(Phenylethynyl)-5′-(trifluoromethyl)-(1,1′-biphenyl)-2-carbaldehyde (1h). Pale yellow
solid (483 mg, 1.38 mmol, 92% yield). Rf = 0.40 (petroleum ether/ethyl acetate, 10/1 v/v).
m.p. 79.5–80.1 ◦C. 1H NMR (400 MHz, CDCl3) δH 9.92 (s, 1H), 8.11 (dd, 3JH,H = 7.8 Hz,
4JH,H = 1.5 Hz, 1H), 7.75–7.67 (m, 4H), 7.58 (t, 3JH,H = 7.6 Hz, 1H), 7.41 (d, 3JH,H = 7.8 Hz,
1H), 7.28–7.26 (m, 3H), 7.18–7.15 (m, 2H) ppm. 13C NMR (100 MHz, CDCl3) δC 191.1, 142.7,
141.2, 134.3, 133.9, 132.4, 131.6, 131.3, 130.3 (q, J = 32.7 Hz), 129.1, 129.0, 128.5, 127.6, 127.5,
126.9 (q, J = 3.8 Hz), 125.1 (q, J = 3.5 Hz), 123.9 (q, J = 273.7 Hz), 122.1, 96.4, 87.1 ppm. 19F
NMR (376 MHz, Chloroform-d) δ −62.53. HRMS (ESI IT-TOF) m/z [M + H]+ Calcd. for
C22H14F3O 351.0991, found 351.0991.

2′-(Pyridin-2-ylethynyl)-(1,1′-biphenyl)-2-carbaldehyde (1i). Pale yellow solid (378 mg,
1.34 mmol, 89% yield). Rf = 0.40 (petroleum ether/ethyl acetate, 10/1 v/v). m.p. 104.6–104.9 ◦C.
1H NMR (400 MHz, CDCl3) δH 9.95 (s, 1H), 8.50 (d, 3JH,H = 3.3 Hz, 1H), 8.09 (d, 3JH,H = 7.7 Hz,
1H), 7.74 (dd, 3JH,H = 7.3 Hz, 4JH,H = 1.7 Hz, 1H), 7.66 (td, 3JH,H = 7.5 Hz, 4JH,H = 1.4 Hz, 1H),
7.55–7.39 (m, 6H), 7.15–7.11 (m, 1H), 7.00 (d, 3JH,H = 7.8 Hz, 1H) ppm. 13C NMR (100 MHz,
CDCl3) δC 191.6, 149.9, 143.9, 142.8, 140.6, 136.0, 134.1, 133.5, 132.6, 131.3, 130.3, 129.1, 128.3,
128.3, 127.1, 126.8, 122.8, 122.6, 92.7, 87.8 ppm. HRMS (ESI IT-TOF) m/z [M + H]+ Calcd.
for C20H14NO 284.1070, found 284.1069.
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2′-(Thiophen-2-ylethynyl)-(1,1′-biphenyl)-2-carbaldehyde (1j). Pale yellow oil (363 mg,
1.26 mmol, 84% yield). Rf = 0.40 (petroleum ether/ethyl acetate, 10/1 v/v). 1H NMR
(400 MHz, CDCl3) δH 9.91 (s, 1H), 8.08 (dd, 3JH,H = 7.7 Hz, 4JH,H = 1.5 Hz, 1H), 7.67–7.59 (m,
2H), 7.52 (t, 3JH,H = 7.6 Hz, 1H), 7.45–7.36 (m, 4H), 7.18 (dd, 3JH,H = 5.1 Hz, 4JH,H = 1.2 Hz,
1H), 6.98 (dd, 3JH,H = 3.7 Hz, 4JH,H = 1.2 Hz, 1H), 6.88 (dd, 3JH,H = 5.2 Hz, 3JH,H = 3.6 Hz,
1H) ppm. 13C NMR (100 MHz, CDCl3) δC 191.7, 144.1, 140.1, 134.2, 133.5, 132.0, 131.6, 131.3,
130.3, 128.5, 128.3, 128.2, 127.7, 127.1, 127.0, 123.4, 122.6, 92.0, 87.3 ppm. HRMS (ESI IT-TOF)
m/z [M + H]+ Calcd. for C19H13OS 289.0682, found 289.0682.

2′-[(Triisopropylsilyl)ethynyl]-(1,1′-biphenyl)-2-carbaldehyde (1k). White solid (391 mg,
1.08 mmol, 72% yield). Rf = 0.50 (petroleum ether/ethyl acetate, 10/1 v/v). m.p. 68.0–68.3 ◦C.
1H NMR (400 MHz, CDCl3) δH 9.85 (s, 1H), 8.01 (d, 3JH,H = 7.7 Hz, 1H), 7.61–7.58 (m, 2H),
7.46 (t, 3JH,H = 7.6 Hz, 1H), 7.41–7.34 (m, 3H), 7.31–7.28 (m, 1H), 0.91 (s, 21H) ppm. 13C
NMR (100 MHz, CDCl3) δC 191.6, 144.6, 140.7, 134.1, 133.4, 132.7, 131.0, 130.1, 128.3, 128.1,
128.0, 127.0, 123.9, 105.2, 95.7, 18.5, 11.1. HRMS (ESI IT-TOF) m/z [M + H]+ Calcd. for
C24H31OSi 363.2139, found 363.2138.

2′-(Hept-1-yn-1-yl)-(1,1′-biphenyl)-2-carbaldehyde (1l). Pale yellow oil (99 mg, 0.36 mmol,
24% yield). Rf = 0.50 (petroleum ether/ethyl acetate, 10/1 v/v). 1H NMR (400 MHz, CDCl3)
δH 9.85 (s, 1H), 8.03 (d, 3JH,H = 7.7 Hz, 1H), 7.64–7.60 (m, 1H), 7.50–7.49 (m, 2H), 7.35–7.32
(m, 4H), 7.25 (s, 1H), 2.17–2.13 (s, 2H), 1.33–1.26 (m, 2H), 1.21–1.16 (m, 2H), 1.11–1.05 (m,
2H), 0.83–0.79 (m, 3H) ppm. 13C NMR (100 MHz, CDCl3) δC 192.0, 144.7, 140.2, 134.1, 133.4,
132.0, 131.2, 130.1, 128.1, 128.0, 127.7, 126.7, 124.5, 95.5, 79.5, 30.8, 27.8, 22.2, 19.3, 14.0 ppm.
HRMS (ESI IT-TOF) m/z [M + H]+ Calcd. for C20H21O 277.1587, found 277.1587.

4-Chloro-2′-[(triisopropylsilyl)ethynyl]-(1,1′-biphenyl)-2-carbaldehyde (1m). Pale yellow
oil (422 mg, 1.07 mmol, 71% yield). Rf = 0.50 (petroleum ether/ethyl acetate, 10/1 v/v).
1H NMR (400 MHz, CDCl3) δH 9.77 (s, 1H), 7.98 (d, 3JH,H = 2.6 Hz, 1H), 7.62–7.56 (m, 2H),
7.44–7.37 (m, 2H), 7.34 (d, 3JH,H = 8.2 Hz, 1H), 7.30–7.28 (m, 1H), 0.92 (s, 21H) ppm. 13C
NMR (100 MHz, CDCl3) δC 190.4, 142.8, 139.5, 135.3, 134.7, 133.3, 132.9, 132.6, 130.0, 128.5,
128.4, 126.9, 124.0, 104.9, 96.4, 18.5, 11.1 ppm. HRMS (ESI IT-TOF) m/z [M + H]+ Calcd. for
C21H24ClOSi 355.1279, found 355.1278.

2-[2-(Phenylethynyl)pyridin-3-yl]benzaldehyde (1n). Pale yellow oil (365 mg, 1.29 mmol,
86% yield). Rf = 0.40 (petroleum ether/ethyl acetate, 10/1 v/v). 1H NMR (400 MHz,
CDCl3) δH 9.96 (s, 1H), 8.69 (dd, 3JH,H = 4.7, 4JH,H = 1.8 Hz, 1H), 8.11 (dd, 3JH,H = 7.8 Hz,
4JH,H = 1.4 Hz, 1H), 7.73–7.67 (m, 2H), 7.59 (t, 3JH,H = 7.5 Hz, 1H), 7.43–7.36 (m, 2H),
7.30–7.19 (m, 5H) ppm. 13C NMR (100 MHz, CDCl3) δC 190.8, 149.7, 142.8, 141.4, 137.5,
136.6, 134.2, 133.7, 131.7, 131.3, 129.1, 128.9, 128.3, 127.7, 122.6, 121.6, 93.7, 87.7 ppm. HRMS
(ESI IT-TOF) m/z [M + H]+ Calcd. for C20H14NO 284.1070, found 284.1069.

2-[3-(Phenylethynyl)pyridin-4-yl]benzaldehyde (1o). Pale yellow oil (386 mg, 1.36 mmol,
91% yield). Rf = 0.40 (petroleum ether/ethyl acetate, 10/1 v/v). 1H NMR (400 MHz, CDCl3)
δH 9.93 (s, 1H), 8.86 (s, 1H), 8.65 (d, 3JH,H = 5.1 Hz, 1H), 8.11 (dd, 3JH,H = 7.9, 1.5 Hz, 1H),
7.71 (td, 3JH,H = 7.5 Hz, 4JH,H = 1.5 Hz, 1H), 7.61 (t, 3JH,H = 7.7 Hz, 1H), 7.43–7.40 (m, 1H),
7.34 (d, 3JH,H = 5.1 Hz, 1H), 7.31–7.20 (m, 6H) ppm. 13C NMR (100 MHz, CDCl3) δC 190.6,
152.5, 148.7, 147.8, 141.1, 133.8, 131.4, 130.7, 129.3, 129.0, 128.4, 127.8, 124.2, 122.0, 120.6,
96.7, 84.9 ppm. HRMS (ESI IT-TOF) m/z [M + H]+ Calcd. for C20H14NO 284.1070, found
284.1069.

2-[4-(Phenylethynyl)pyridin-3-yl]benzaldehyde (1p). Pale yellow oil (378 mg, 1.33 mmol,
89% yield). Rf = 0.40 (petroleum ether/ethyl acetate, 10/1 v/v). 1H NMR (400 MHz,
CDCl3) δH 9.95 (s, 1H), 8.67–8.66 (m, 2H), 8.12 (d, 3JH,H = 7.8 Hz, 1H), 7.71 (td, 3JH,H = 7.4,
4JH,H = 1.4 Hz, 1H), 7.60 (t, 3JH,H = 7.6 Hz, 1H), 7.49 (d, 3JH,H = 5.1 Hz, 1H), 7.44 (d,
3JH,H = 7.6 Hz, 1H), 7.32–7.19 (m, 5H) ppm. 13C NMR (100 MHz, CDCl3) δC 190.8, 150.2,
149.3, 140.1, 135.0, 134.4, 133.8, 131.6, 131.6, 131.4, 129.4, 129.0, 128.4, 127.7, 125.1, 121.5,
98.2, 85.7 ppm. HRMS (ESI IT-TOF) m/z [M + H]+ Calcd. for C20H14NO 284.1070, found
284.1069.
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3.5. General Procedure for the Preparation of 1H-Dibenzo[e,g]indazoles 2a–p

A THF (5.0 mL) solution containing 2′-alkynyl-biaryl-2-aldehydes (1, 282.0 mg, 1.0 mmol)
and p-toluenesulfonhydrazide (204.9 mg, 1.1 mmol) in a 25 mL screw-capped thick-walled
Pyrex tube was stirred at 45 ◦C for 1 h. After the reaction was completed (TLC monitoring,
eluent petroleum ether/ethyl acetate, 1/1 v/v), LiOtBu (120.0 mg, 1.5 mmol) and additional
THF (2.5 mL) were added, and then the mixture was stirred at 45 ◦C for 1 h. After
the reaction was completed (TLC monitoring, eluent petroleum ether/ethyl acetate, 1/1
v/v), the crude residue was directly purified using column chromatography on silica gel
(eluent petroleum ether/ethyl acetate, gradient mixture ratio from 5/1 to 2/1 v/v) to afford
products 2a–p in 61–93% yields.

3.6. Analytical Data of Compound 2a–p

3-Phenyl-1H-dibenzo[e,g]indazole (2a) [30]. White solid (259 mg, 0.88 mmol, 88% yield).
Rf = 0.40 (petroleum ether/ethyl acetate, 1/1 v/v). m.p. 260.4–260.8 ◦C. 1H NMR (400 MHz,
DMSO-d6) δH 14.24–13.95 (s, 1H), 8.78–8.71 (m, 2H), 8.55 (d, 3JH,H = 7.8 Hz, 1H), 8.02 (d,
3JH,H = 8.1 Hz, 1H), 7.74–7.69 (m, 4H), 7.59–7.54 (m, 3H), 7.50–7.40 (m, 2H) ppm. 13C NMR
(100 MHz, DMSO-d6) δC 147.3, 137.2, 135.4, 129.6, 128.6, 128.3, 127.5, 127.4, 127.1, 124.9,
124.1, 124.0, 122.6, 122.3, 121.0, 112.5 ppm.

3-(4-Methoxyphenyl)-1H-dibenzo[e,g]indazole (2b). White solid (285 mg, 0.88 mmol, 88%
yield). Rf = 0.40 (petroleum ether/ethyl acetate, 1/1 v/v). m.p. 204.2–204.7 ◦C. 1H NMR
(400 MHz, DMSO-d6) δH 13.97 (s, 1H), 8.71 (dd, 2JH,H = 16.9 Hz, 3JH,H = 8.1 Hz, 2H), 8.56
(d, 3JH,H = 7.7 Hz, 1H), 8.05 (d, 3JH,H = 7.3 Hz, 1H), 7.74–7.63 (m, 4H), 7.49–7.40 (m, 2H),
7.14 (d, 3JH,H = 8.4 Hz, 2H), 3.84 (s, 3H) ppm. 13C NMR (100 MHz, DMSO-d6) δC 159.3,
147.2, 137.2, 130.9, 129.6, 127.4, 127.3, 127.1, 124.8, 124.0, 123.9, 122.6, 122.4, 121.1, 114.0,
112.6, 55.1 ppm. HRMS (ESI IT-TOF) m/z [M + H]+ Calcd. for C22H17N2O 325.1335, found
325.1334.

3-(p-Tolyl)-1H-dibenzo[e,g]indazole (2c). White solid (262 mg, 0.85 mmol, 85% yield).
Rf = 0.40 (petroleum ether/ethyl acetate, 1/1 v/v). m.p. 199.6–200.0 ◦C. 1H NMR (400 MHz,
DMSO-d6) δH 11.79 (s, 1H), 8.71 (dd, 2JH,H = 17.1 Hz, 3JH,H = 8.1 Hz, 2H), 8.57 (d, 3JH,H = 7.7 Hz,
1H), 8.06 (d, 3JH,H = 7.7 Hz, 1H), 7.73 (t, 3JH,H = 7.5 Hz, 1H), 7.66 (t, 3JH,H = 7.5 Hz, 1H), 7.61
(d, 3JH,H = 7.8 Hz, 2H), 7.48–7.36 (m, 4H), 2.40 (s, 3H) ppm. 13C NMR (100 MHz, DMSO-d6)
δC 145.1, 139.0, 137.8, 131.4, 129.7, 129.4, 129.2, 127.5, 127.4, 127.3, 127.1, 125.6, 124.9, 124.1,
123.9, 122.6, 122.3, 112.3, 20.9 ppm. HRMS (ESI IT-TOF) m/z [M + H]+ Calcd. for C22H17N2
309.1386, found 309.1385.

3-(4-Fluorophenyl)-1H-dibenzo[e,g]indazole (2d). White solid (262 mg, 0.84 mmol, 84%
yield). Rf = 0.40 (petroleum ether/ethyl acetate, 1/1 v/v). m.p. 235.7–236.2 ◦C. 1H NMR
(400 MHz, DMSO-d6) δH 14.31–14.03 (s, 1H), 8.70–8.58 (m, 3H), 8.00 (s, 1H), 7.80–7.62 (m,
4H), 7.43–7.39 (m, 4H) ppm. 13C NMR (100 MHz, DMSO-d6) δC 162.2 (d, J = 245.1 Hz),
146.4, 137.3, 131.8, 131.7, 131.6, 129.6, 127.4, 127.3, 127.1, 124.9, 124.1, 124.0, 122.6, 122.4,
121.0, 115.5 (d, J = 21.5 Hz), 112.6 ppm. HRMS (ESI IT-TOF) m/z [M + H]+ Calcd. for
C21H14FN2 313.1136, found 313.1134.

3-(4-Chlorophenyl)-1H-dibenzo[e,g]indazole (2e). White solid (262 mg, 0.80 mmol, 80%
yield). Rf = 0.40 (petroleum ether/ethyl acetate, 1/1 v/v). m.p. 265.3–265.9 ◦C. 1H NMR
(400 MHz, DMSO-d6) δH 14.18 (s, 1H), 8.76 (dd, 2JH,H = 17.0 Hz, 3JH,H = 8.0 Hz, 2H), 8.53
(dd, 3JH,H = 7.7 Hz, 4JH,H = 1.7 Hz, 1H), 7.96 (d, 3JH,H = 7.5 Hz, 1H), 7.76–7.68 (m, 4H),
7.66–7.64 (m, 2H), 7.53–7.44 (m, 2H) ppm. 13C NMR (100 MHz, DMSO-d6) δC 144.8, 138.5,
133.6, 133.3, 131.3, 129.6, 128.7, 127.6, 127.4, 127.4, 127.1, 127.1, 125.0, 124.1, 123.9, 122.6,
122.4, 121.7, 112.5 ppm. HRMS (ESI IT-TOF) m/z [M + H]+ Calcd. for C21H14ClN2 329.0840,
found 329.0838.

6-Methyl-3-phenyl-1H-dibenzo[e,g]indazole (2f). White solid (265 mg, 0.86 mmol, 86%
yield). Rf = 0.40 (petroleum ether/ethyl acetate, 1/1 v/v). m.p. 235.6–235.9 ◦C. 1H NMR
(400 MHz, DMSO-d6) δH 14.22–13.93 (s, 1H), 8.76–8.52 (m, 3H), 7.94 (d, 3JH,H = 8.3 Hz,
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1H), 7.76–7.52 (m, 7H), 7.19 (d, 3JH,H = 8.4 Hz, 1H), 2.44 (s, 3H) ppm. 13C NMR (100 MHz,
DMSO-d6) δC 147.1, 137.0, 135.6, 134.0, 129.6, 129.5, 128.5, 128.4, 128.2, 127.5, 127.3, 127.1,
124.8, 123.9, 122.5, 122.3, 121.1, 112.6, 21.2 ppm. HRMS (ESI IT-TOF) m/z [M + H]+ Calcd.
for C22H17N2 309.1386, found 309.1385.

6-Chloro-3-phenyl-1H-dibenzo[e,g]indazole (2g). White solid (276 mg, 0.84 mmol, 84%
yield). Rf = 0.40 (petroleum ether/ethyl acetate, 1/1 v/v). m.p. 286.9–287.3 ◦C. 1H NMR
(400 MHz, DMSO-d6) δH 13.77 (s, 1H), 8.73–8.69 (m, 2H), 8.51 (d, 3JH,H = 7.6 Hz, 1H),
7.92 (d, 3JH,H = 8.6 Hz, 1H), 7.75–7.64 (m, 4H), 7.60–7.52 (m, 3H), 7.40 (dd, 3JH,H = 8.6 Hz,
4JH,H = 2.1 Hz, 1H) ppm. 13C NMR (100 MHz, DMSO-d6) δC 129.8, 129.5, 129.2, 128.7, 128.5,
128.1, 127.4, 127.0, 125.8, 124.3, 124.2, 123.6, 122.3, 111.7. HRMS (ESI IT-TOF) m/z [M + H]+

Calcd. for C21H14ClN2 329.0840, found 329.0838.

3-Phenyl-6-(trifluoromethyl)-1H-dibenzo[e,g]indazole (2h). White solid (300 mg, 0.83 mmol,
83% yield). Rf = 0.40 (petroleum ether/ethyl acetate, 1/1 v/v). m.p. 276.9–277.3 ◦C. 1H
NMR (400 MHz, DMSO-d6) δH 14.29–14.10 (s, 1H), 8.88–8.84 (m, 1H), 8.72–8.65 (m, 1H),
8.55–8.47 (m, 1H), 8.07–8.02 (m, 1H), 7.71–7.51 (m, 8H) ppm. 13C NMR (100 MHz, DMSO-d6)
δC 147.7, 138.0, 135.0, 129.8, 129.5, 128.8, 128.6, 128.4, 128.1, 127.6, 127.0, 126.0, 125.0 (q,
J = 31.7 Hz), 124.1, 123.3 (d, J = 6.7 Hz), 122.8, 122.3, 121.1 (d, J = 15.7 Hz), 111.7 ppm.
19F NMR (376 MHz, DMSO-d6) δ −60.08. HRMS (ESI IT-TOF) m/z [M + H]+ Calcd. for
C22H14F3N2 363.1104, found 363.1102.

3-(Pyridin-2-yl)-1H-dibenzo[e,g]indazole (2i). White solid (230 mg, 0.78 mmol, 78% yield).
Rf = 0.40 (petroleum ether/ethyl acetate, 1/1 v/v). m.p. 209.3–209.7 ◦C. 1H NMR (400 MHz,
DMSO-d6) δH 14.44–14.28 (s, 1H), 9.04–9.02 (m, 1H), 8.86 (d, 3JH,H = 4.9 Hz, 1H), 8.79–8.58
(m, 3H), 8.06–7.97 (m, 2H), 7.78–7.67 (m, 2H), 7.52–7.49 (m, 3H) ppm. 13C NMR (100 MHz,
DMSO-d6) δC 154.3, 148.8, 147.1, 137.8, 137.0, 129.7, 127.5, 127.5, 127.4, 127.3, 127.0, 125.6,
125.2, 124.3, 124.0, 123.7, 123.1, 122.3, 120.9, 113.5. HRMS (ESI IT-TOF) m/z [M + H]+ Calcd.
for C20H14N3 296.1182, found 296.1181.

3-(Thiophen-2-yl)-1H-dibenzo[e,g]indazole (2j). White solid (273 mg, 0.91 mmol, 91% yield).
Rf = 0.40 (petroleum ether/ethyl acetate, 1/1 v/v). m.p. 255.4–255.9 ◦C. 1H NMR (400 MHz,
DMSO-d6) δH 14.40–14.17 (s, 1H), 8.71–8.56 (m, 3H), 8.34–8.31 (m, 1H), 7.76–7.73 (m, 2H),
7.66 (t, 3JH,H = 7.7 Hz, 1H), 7.56 (d, 3JH,H = 3.6 Hz, 1H), 7.52–7.46 (m, 2H), 7.32–7.30 (m,
1H) ppm. 13C NMR (100 MHz, DMSO-d6) δC 140.4, 137.4, 136.1, 129.6, 128.0, 127.7, 127.5,
127.3, 127.1, 126.9, 125.1, 124.1, 124.0, 122.6, 122.3, 120.8, 113.2. HRMS (ESI IT-TOF) m/z [M
+ H]+ Calcd. for C19H13N2S 301.0794, found 301.0793.

3-(Triisopropylsilyl)-1H-dibenzo[e,g]indazole (2k). White solid (348 mg, 0.93 mmol, 93%
yield). Rf = 0.40 (petroleum ether/ethyl acetate, 1/1 v/v). m.p. 87.8–88.3 ◦C. 1H NMR
(400 MHz, CDCl3) δH 12.12 (s, 1H), 8.75 (d, 3JH,H = 7.6 Hz, 1H), 8.58–8.53 (m, 2H), 8.27 (d,
3JH,H = 7.8 Hz, 1H), 7.64–7.46 (m, 4H), 1.78 (hept, 3JH,H = 7.5 Hz, 3H), 1.12 (d, 3JH,H = 7.7 Hz,
18H) ppm. 13C NMR (100 MHz, CDCl3) δC 130.5, 129.1, 128.7, 127.3, 127.2, 126.5, 126.0,
125.3, 124.0, 123.6, 123.4, 123.2, 18.8, 12.7 ppm. HRMS (ESI IT-TOF) m/z [M + H]+ Calcd.
for C24H31N2Si 375.2251, found 375.2251.

3-Pentyl-1H-dibenzo[e,g]indazole (2l). White solid (176 mg, 0.61 mmol, 61% yield). Rf = 0.40
(petroleum ether/ethyl acetate, 1/1 v/v). m.p. 188.5–188.9 ◦C. 1H NMR (400 MHz, DMSO-
d6) δH 13.69–13.49 (s, 1H), 8.78–8.67 (m, 2H), 8.44 (d, 3JH,H = 7.5 Hz, 1H), 8.24–8.15 (m, 1H),
7.69–7.52 (m, 4H), 3.19 (t, 3JH,H = 7.6 Hz, 2H), 1.82–1.80 (m, 2H), 1.42–1.32 (m, 4H), 0.87
(t, 3JH,H = 7.1 Hz, 3H) ppm. 13C NMR (100 MHz, DMSO-d6) δC 147.3, 137.1, 129.4, 127.6,
127.3, 127.1, 124.4, 124.0, 123.1, 122.2, 121.1, 112.4, 31.2, 28.9, 27.7, 21.9, 13.9 ppm. HRMS
(ESI IT-TOF) m/z [M + H]+ Calcd. for C20H21N2 289.1699, found 289.1698.

10-Chloro-3-(triisopropylsilyl)-1H-dibenzo[e,g]indazole (2m). White solid (335 mg, 0.82 mmol,
82% yield). Rf = 0.40 (petroleum ether/ethyl acetate, 1/1 v/v). m.p. 191.1–191.7 ◦C. 1H
NMR (400 MHz, CDCl3) δH 11.96 (s, 1H), 8.68 (s, 1H), 8.52 (d, 3JH,H = 7.9 Hz, 1H), 8.47 (d,
3JH,H = 9.0 Hz, 1H), 8.23 (d, 3JH,H = 7.7 Hz, 1H), 7.58–7.50 (m, 3H), 1.76 (hept, 3JH,H = 7.5 Hz,
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3H), 1.15 (d, 3JH,H = 7.6 Hz, 18H) ppm. 13C NMR (100 MHz, DMSO-d6) δC 133.3, 129.0,
128.7, 128.5, 127.6, 126.9, 125.7, 125.5, 125.1, 124.0, 123.9, 122.8, 18.9, 12.7 ppm. HRMS (ESI
IT-TOF) m/z [M + H]+ Calcd. for C24H30ClN2Si 409.1861, found 409.1860.

3-Phenyl-1H-benzo[f ]pyrazolo[3,4-h]quinoline (2n). White solid (260 mg, 0.88 mmol, 88%
yield). Rf = 0.40 (petroleum ether/ethyl acetate, 1/1 v/v). m.p. 265.7–266.2 ◦C. 1H NMR
(400 MHz, DMSO-d6) δH 14.39–14.16 (s, 1H), 9.02–8.92 (m, 1H), 8.78–8.56 (m, 3H), 8.29–8.14
(m, 2H), 7.79–7.62 (m, 2H), 7.55–7.42 (m, 4H) ppm. 13C NMR (100 MHz, DMSO-d6) δC 148.6,
148.2, 147.4, 145.9, 144.6, 139.9, 139.7, 134.6, 131.7, 130.1, 129.9, 129.6, 128.9, 128.5, 128.0,
127.9, 127.6, 127.4, 126.0, 124.1, 123.8, 123.4, 122.4, 122.3, 120.8, 120.5, 120.1, 113.4, 112.5 ppm.
HRMS (ESI IT-TOF) m/z [M + H]+ Calcd. for C20H14N3 296.1182, found 296.1181.

3-Phenyl-1H-benzo[f ]pyrazolo[3,4-h]isoquinoline (2o). White solid (266 mg, 0.90 mmol,
90% yield). Rf = 0.40 (petroleum ether/ethyl acetate, 1/1 v/v). m.p. 277.9–278.4 ◦C. 1H
NMR (400 MHz, DMSO-d6) δH 14.37–14.12 (s, 1H), 9.22 (s, 1H), 8.82–8.72 (m, 1H), 8.56–8.52
(m, 3H), 7.85–7.59 (m, 7H) ppm. 13C NMR (100 MHz, DMSO-d6) δC 146.9, 145.1, 144.1,
137.7, 135.1, 132.5, 129.6, 129.4, 128.7, 128.5, 127.7, 127.5, 124.7, 122.4, 117.5, 110.6. HRMS
(ESI IT-TOF) m/z [M + H]+ Calcd. for C20H14N3 296.1182, found 296.1181.

3-Phenyl-1H-benzo[h]pyrazolo[4,3-f ]isoquinoline (2p). White solid (221 mg, 0.75 mmol,
75% yield). Rf = 0.40 (petroleum ether/ethyl acetate, 1/1 v/v). m.p. 324.3–324.8 ◦C. 1H
NMR (400 MHz, DMSO-d6) δH 14.46–14.20 (s, 1H), 10.06–9.95 (m, 1H), 9.04–8.87 (m, 1H),
8.56–8.48 (m, 2H), 7.86–7.55 (m, 8H). HRMS (ESI IT-TOF) m/z [M + H]+ Calcd for C20H14N3
296.1182, found 296.1181. The 13C NMR spectroscopic data could not be recorded due to
the poor solubility in deuterated solvents, such as DMSO-d6, CDCl3.

4. Conclusions

In conclusion, we have developed a one-pot two-steps synthetic method towards
3-substituted 1H-dibenzo[e,g]indazoles in good to high yields via a LiOtBu-promoted in-
tramolecular cyclization of 2′-alkynyl-biaryl-2-aldehyde N-tosylhydrazones under mild
conditions. The starting 2′-alkynyl-biaryl-2-aldehyde N-tosylhydrazones were prepared in
situ through the reactions of 2′-alkynyl-biaryl-2-aldehydes with TsNHNH2
(p-methylbenzenesulfonohydrazide). In addition, two types of N-H signals were observed
in the 1H-NMR spectra in DMSO-d6, which are assigned to hydrogen atoms of N-H in 2a
and 2a tautomer in their dimeric species, respectively.
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//www.mdpi.com/article/10.3390/molecules28248061/s1: the general procedure for the synthesis
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