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Abstract: The explorations of new three-dimensional (3D) microporous metal halides, especially the
iodoargentate-based hybrids, and understanding of their structure-activity relationships are still quite
essential but full of great challenges. Herein, with the aromatic 4,4′-dpa (4,4′-dpa = 4,4′-dipyridylamine)
ligands as the structural directing agents, we solvothermal synthesized and structurally characterized
a novel member of microporous iodoargentate family, namely [H2-4,4′-dpa]Ag6I8 (1). Compound
1 possesses a unique and complicated 3D [Ag6I8]n

2n− anionic architecture that was built up from
the unusual hexameric [Ag6I13] secondary building units (SBUs). Research on optical properties
indicated that compound 1 exhibited semiconductor behavior, with an optical band gap of 2.50 eV.
Under the alternate irradiation of light, prominent photoelectric switching abilities could be achieved
by compound [H2-4,4′-dpa]Ag6I8, whose photocurrent densities (0.37 µA·cm−2 for visible light and
1.23 µA·cm−2 for full-spectrum) compared well with or exceeded those of some high-performance
halide counterparts. Further theoretical calculations revealed that the relatively dispersed conduction
bands (CBs) structures in compound 1 induced higher electron mobilities, which may be responsible
for its good photoelectricity. Presented in this work also comprised the analyses of Hirshfeld surface,
powder X-ray diffractometer (PXRD), thermogravimetric measurement, energy-dispersive X-ray
spectrum (EDX) along with X-ray photoelectron spectroscopy (XPS).

Keywords: iodoargentate; 3D microporous material; optical behavior; photocurrent response;
theoretical research

1. Introduction

Iodoargentate-based hybrids, combining the advantages of both organic and inorganic
components, continue to captivate researchers by virtue of their rich structural chemistry
and distinctive photophysical properties [1,2]. Among them, 3D microporous architecture
characteristics of regular holes or channels are of special importance and have drawn
increasing attention in recent years, mainly benefiting from their immense breakthrough in
the domains of semiconductor, photocatalysis, adsorption, nonlinear optics, white-light
emission, photochromism/thermochromism and piezoelectricity/ferroelectricity [3–9].

Structurally, the iodoargentate family possesses the myriad SBUs that were built up
from the condensations of flexible primary building units (PBUs) ([AgIx]; x = 2, 3, 4, 6) via
vertex/edge/face-sharing and the short Ag···Ag contact. Some representative examples
include [Ag5I6], [Ag3I7], [Ag5I12], [Ag2I5], [Ag6I11], [Ag4I8], [Ag7I13], [Ag5I9], [Ag10I18]
and [Ag6I12] [1,2]. Up to now, a large number of iodoargentate hybrids based on the
above-mentioned SBUs have been solvothermal harvested and structurally characterized,
whose anionic moieties customarily involve in some low-dimensional motifs (e.g., discrete
polynuclear clusters, infinite chains/ribbons or expanded layers) [10–17]. Comparatively
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speaking, the 3D microporous compounds have rarely been documented which may be
largely attributed to the weak host-guest interactions and poor template-directing effects.
Among the numerous templates, the multi-pyridine derivatives, especially those with
suitable sizes/shapes/configurations, stand out due to their good structural modification
abilities, having been widely exploited in the construction of new microporous metal
halides. Especially, many studies have shown that some of them behave optically active
and their embedding may endow the as-obtained products with certain desired func-
tionalities [5,6,18,19]. This progress has been chiefly witnessed by some photochromic,
thermochromic and photocatalytic materials, as exemplified by [N-Bz-Py]4Ag9I13 (N-Bz-
Py+ = N-benzylpyridinium), [(Me)2-2,2′-bipy]Ag8I10 ((Me)2-2,2′-bipy = 1,1′-dimethyl-2,2′-
bipyridinium), [DMBTz]2Ag5I7 (DMBTz+ = dimethylbenzotriazolium) and [MCMP]Ag3I4
(MCMP+ = 1-methyl-4-(carbomethoxy)pyridinium) [5,6,18,19]. Noticeably, the photoelec-
trochemical research of non-perovskite microporous iodoargentates is still in its infancy.
Therefore, the design and development of a new number of 3D microporous iodoargen-
tates and understanding their photoelectrochemical behaviors remain urgently needed
but challenging.

On the basis of the above consideration, we undertook systematic studies for exploring
new 3D microporous derivatives under the solvothermal condition. Fortunately, by employ-
ing the aromatic 4,4′-dpa ligands as the structural modifiers, we successfully constructed a
novel and complicated hybrid iodoargentate, namely [H2-4,4′-dpa]Ag6I8 (1). The optical
study showed that compound 1 has an optical band gap of 2.50 eV, implying the nature of
semiconductor properties. More attractively, compound [H2-4,4′-dpa]Ag6I8 exhibited good
photoelectric conversion abilities, with the visible light and full-spectrum on/off current
density of 0.37 µA·cm−2 and 1.23 µA·cm−2, respectively. Particularly, such photocurrent
densities were comparable with or largely outperformed those of some high-performance
halide counterparts that may be ascribed to the stronger mobility of photo-induced elec-
trons. Given here also consists of the analyses of the Hirshfeld surface, thermogravimetric
test, PXRD, EDX and XPS.

2. Results
2.1. Structural Description of Compound 1

Compound 1 belongs to the monoclinic crystal system (P21/n space group, No. 14), as
disclosed by single crystal X-ray diffraction analyses. It features a unique 3D [Ag6I8]n

2n−

anionic framework, involving the 1D channels fulfilled by the template cations (Figure 1).
Its asymmetric unit was composed of one formula unit, that is, six crystallographically
inequivalent Ag+ ions, eight I− ions together with one protonated [H2-4,4′-dpa]2+ cations
(Figure 1a). Of note, all atoms in compound 1 are located in the 4e site with one site
symmetry. In the [Ag6I8]n

2n− anionic moiety, all Ag centers adopted the tetrahedral ge-
ometries (Figure 1b), with the relevant Ag−I distances of 2.648(8)–3.126(5) Å. The angles
of I−Ag−I spanned from 88.0(4) to 123.0(7)◦, largely deviating from the ideal tetrahedral
value of 109.5◦. These observed results are reasonable and correlate well with some docu-
mented iodoargentates, such as [N-Bz-Py]4Ag9I13, [emIm]Ag3I4 (emIm = 1-ethyl-3-methyl
imidazole), Hmta[(Hmta)Ag4I4] (Hmta = hexamethylenetetramine), [MCP]Ag4I5 (MCP+ = N-
methyl-3-cyanopyridinium), [Co(bipy)3]Ag3I6 (bipy = 2,2′-bipyridine), [Cd(phen)3]2Ag13I17
(phen = 1,10-phenanthroline) and [Co(5,5′-dmpy)3]Ag5I8 (5,5′-dmbpy = 5,5′-dimethyl-2,2′-
bipyridine) [3,5,8,12,17,20,21]. As for the I atoms, three different coordination modes exist:
I(3) and I(6) atoms act as the bridging fashions; I(2), I(4), I(7) and I(8) atoms take on the µ3-I
styles; while the I(1) and I(5) atoms are µ4-I manners connecting four Ag+ ions.

As depicted in Figure S1a, two [AgI4] tetrahedra shared one edge to produce two
types of [Ag2I4] dimers, which were interfused by I(1) and I(4) atoms to obtain the tetranu-
clear [Ag4I10] subunit (Figure S1b). Then, the [Ag4I10] motif further joined two [AgI4]
tetrahedra through sharing the I(1), I(3), I(5), I(6) and I(7) vertexs to generate the compli-
cated [Ag6I13] moiety (Figure 1c), with the measured Ag···Ag separations in the range
of 2.891(11)−3.299(2) Å. Such a value is evidently shorter than the sum of van der Waals
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radii of Ag (3.44 Å), implying the presence of argentophilic metal-metal interactions [22].
Every two neighboring [Ag6I13] moieties are held together by the I(2) atoms to form the 1D
[Ag6I12]n

6n− chain (Figure 1d), which further linked the adjacent ones by the I(1), I(2), I(5)
and I(8) atoms to promote the final 3D [Ag6I8]n

2n− anionic skeleton characteristic of the 1D
channels (Figure 2a). The channels parallel to the a axis exhibited the peanut-shaped win-
dows with a cross section of 4.25 × 15.28 Å2, which were defined by eight [AgI4] tetrahedra
by corner-sharing (Figure 2b). The protonated [H2-4,4′-dpa]2+ cations as structure-affecting
agents resided in the channels, resulting in the abundant hydrogen bonds with the I
atoms (I(2), I(3), I(5), I(6) and I(7)) of the anionic network (Figure 2c). The C−H···I hydro-
gen lengths and angles are between 3.671(12)–3.991(13) Å and 129.0–170.6◦, respectively
(Table 1). As calculated by the PLATON program, the solvent-accessible volume excluding
guest cations for compound 1 was found to be up to 33.3%. In addition, there also exist the
versatile C−H···π and anion···π interactions in compound 1 (Figures S2 and S3).
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Table 1. Hydrogen bonds (Å) and angles (◦) for compound 1.

C−H···I d(C−H) d(H···I) d(C···I) <(CHI)

N(1)−H(1)···I(5)#9 0.86 2.92 3.691(12) 150.5
N(2)−H(2A)···I(3)#4 0.86 2.87 3.718(10) 170.6
N(3)−H(3)···I(3)#8 0.86 3.05 3.892(12) 165.7
C(1)−H(1A)···I(6)#9 0.93 3.05 3.903(12) 153.9
C(4)−H(4)···I(6)#8 0.93 3.30 3.991(13) 133.2
C(8)−H(8)···I(7)#2 0.93 3.03 3.930(17) 164.7
C(9)−H(9)···I(2)#8 0.93 3.07 3.873(16) 145.5
C(10)−H(10)···I(6)#8 0.93 3.27 3.920(15) 129.0

Symmetry transformations used to generate equivalent atoms: #2 x + 1, y, z; #4 −x + 1, −y + 1, −z; #8 −x + 3/2,
y + 1/2, −z + 1/2; #9 −x + 1, −y + 2, −z.

Although compound [N-Bz-Py]4Ag9I13 and 1 are both 3D microporous materials
decorated by similar template cations (Figure S4), their crystal structures emerge differ-
ently [5]. Concretely, the former features the [Ag9I13]n

4n− anionic fabrication containing
[Ag3I7] and [Ag6I12] two types of SBUs, while compound 1 exhibits the [Ag6I8]n

2n− an-
ion characteristic of unusual [Ag6I13] moieties. Another difference is reflected in their
PBUs: Compound [N-Bz-Py]4Ag9I13 consists of [AgI3] triangles and [AgI4] tetrahedra
two types of building blocks, while only the tetrahedral [AgI4] units appear in 1. In
addition, compared to some other microporous iodoargentates, the uniqueness of com-
pound [H2-4,4′-dpa]Ag6I8 was still impressive. It is worth noting that there are also some
analogs with the same Ag/I ratio as compound 1 isolated by the solvothermal method,
such as [emIm]Ag3I4, [MCMP]Ag3I4, [EtPPh3]Ag3I4 (Et = ethyl; PPh3 = triphenylphos-
phine), [MPBI]Ag3I4 (MPBI+ = 1,3-dimethyl-2-phenylbenzimidazolium), [DMBTz]Ag3I4,
[Hpy]2Ag6I8·DMF (Hpy+ = protonated pyridine; DMF = N,N′-dimethylformamide) and
[V(DMSO)5(H2O)]Ag6I8 (DMSO = Dimethyl sulfoxide) [6,7,14,17,23–25]. Nevertheless,
these documented examples normally crystallized in low-dimensional phrases, including
the one-dimensional (1D) chains/ribbons and two-dimensional (2D) layers. For instance,
compound [emIm]Ag3I4 possesses the layered [Ag3I4]n

n− architecture, while compound
[DMBTz]Ag3I4 is the chain-like structure, which is constructed from the [Ag3I8] and
[Ag3I7] SBUs, respectively [14,17]. More structural discrepancies between compound [H2-
4,4′-dpa]Ag6I8 and some related iodoargentate derivatives are summarized in Table 2.
Undoubtedly, compound 1 represents an unprecedented structural motif, making it unique
in the numerous numbers of the iodoargentate family.

Table 2. The structural comparisons of compound 1 with some related iodoargentate derivatives.

Compound D Template SG PBUs SBUs I Reference

[H2-4,4′-dpa]Ag6I8 3 [H2-4,4′-dpa]2+ P21/n [AgI4] [Ag6I13] µ-2; µ-3; µ-4 This work

[N-Bz-Py]4Ag9I13 3 [N-Bz-Py]+ Cc [AgI3],
[AgI4] [Ag3I7], [Ag6I12] µ-2; µ-3; µ-4 [5]

[(Me)2-2,2′-bipy]Ag8I10 3 [(Me)2-2,2′-bipy]2+ C2/c [AgI4] [Ag8I15] µ-3; µ-4 [18]
[Mg(en)3]Ag2I4 3 [Mg(en)3]2+ P6322 [AgI4] [AgI4] µ-2 [9]

[Co(phen)3]2Ag13I17 3 [Co(phen)3]2+ P213 [AgI4] [Ag6I13], [Ag7I13] µ-2; µ-3; µ-4 [3]
[DMBTz]2Ag5I7 3 [DMBTz]+ C2/c [AgI4] [Ag5I9] µ-1; µ-2; µ-3; µ-4 [19]

[H3(Dabco)2]Ag3I6 3 [H3(Dabco)2]3+ R32 [AgI4] [Ag3I9] µ-2 [26]
Hmta[(Hmta)Ag4I4] 3 Hmta F-43m [AgI3] [Ag4I4] µ-3 [8]

[(Hmta)2Ag8I6]I2 3 Hmta Fm-3m [AgI3] [Ag8I6] µ-4 [8]
[emIm]Ag3I4 2 [emIm]+ Pccn [AgI4] [Ag3I8] µ-2; µ-3 [17]

[MCMP]Ag3I4 3 [MCMP]+ C2/c [AgI4] [Ag6I12] µ-2; µ-3; µ-4 [6]
[EtPPh3]Ag3I4 1 [EtPPh3]+ P21/c [AgI4] [Ag3I7] µ-2; µ-3; µ-4 [23]
[MPBI]Ag3I4 2 [MPBI]+ Pnna [AgI4] [Ag3I8] µ-3 [24]

[DMBTz]Ag3I4 1 [DMBTz]+ P21/c [AgI4] [Ag3I7] µ-2; µ-3; µ-4 [14]
[Hpy]2Ag6I8·DMF 2 [Hpy]+ Pccn [AgI4] [Ag3I8] µ-3 [7]

[V(DMSO)5(H2O)]Ag6I8 2 [V(DMSO)5]2+ P21/c [AgI4] [Ag5I10] µ-2; µ-3; µ-4 [25]

D = dimension; SG = Space group; en = ethylenediamine; Dabco = 1,4-diazabicyclo [2.2.2]octane.
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2.2. Hirshfeld Surface Analyses of Compound 1

As a complementary to X-ray crystallography studies, we further performed the
Hirshfeld surface analyses for compound [H2-4,4′-dpa]Ag6I8, which helped us to clearly
recognize and quantitatively identify the noncovalent interactions across the molecular
structure (Figure 3). The full 2D fingerprint plots, depicted in Figure 3a, covered the region
of 2.0 ≤ de + di ≤ 6.0 Å, showing the contours bounding the effective electron density.
Analyses of decomposed fingerprint plots revealed that the major contributor is due to the
H···I interactions, with the sky-blue points scattering in the range of 2.8 ≤ de + di ≤ 5.4 Å
(Figure 3b). They emerged like a pair of pseudo-symmetric wings, accounting for 38.3%
of the total Hirshfeld surface (top left: 15.5%; bottom right: 22.8%). A high occupy-
ing ratio indicated that hydrogen bond interactions may play an important role in the
stabilization of crystal packing. This has also appeared in the cases of some hydrogen-
plentiful metal halides, such as [Co(5,5-dmpy)3]Ag5I8, [Zn(bipy)3]2Ag2BiI6(I)1.355(I3)1.645,
[Fe(bipy)3]AgBiI6, [Co(bipy)3]2Ag4Bi2I16 and [(Me)2-(Dabco)]2Cu2Bi2I12 [21,27–30]. For
compound 1, the second contributor is derived from the Ag···I, which is represented by
a lean tunnel and comprises 21.0% of full weak interactions (Figure 3c). In addition, the
Ag···H and Ag···Ag contracts, are also non-negligible, with the proportions of 11.0% and
10.5%, respectively (Figure 3d,e). The remaining interatomic contacts, such as I···C, H···H
and H···C, are provided in Figure S5. For example, the percentages of I···C and H···C
contacts are found to be 6.7% and 3.1%, thereby confirming the presence of anion···π and
C−H···π interactions. These results are well consistent with the analyses of single crystal
X-ray diffraction. Comparison of multiple intra/inter-molecular interactions is displayed
as a pie chart (Figure 3f).
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Figure 3. The 2D fingerprint plots of compound 1: (a) Total interactions. (b) The H···I interactions.
(c) The Ag···I interactions. (d) The Ag···H interactions. (e) The Ag···Ag interactions. (f) Contribution
percentage of multiple interactions.

2.3. Characterizations and Optical Behaviors of Compound 1

As displayed in Figure S7, the experimental powder X-ray diffraction (PXRD) pattern
matched well with the simulated result derived from single-crystal X-ray diffraction data,
indicating the high phase purity of our as-grown crystals. Under the nitrogen environment,
we next checked the thermal behavior of compound [H2-4,4′-dpa]Ag6I8, which was de-
picted in Figure 4a. It can be conspicuously seen that compound 1 experienced a two-step
weight loss in the range of 30–1200 ◦C, with the preliminary weight change occurring at



Molecules 2023, 28, 8033 6 of 13

about 380 ◦C. Remarkably, this is in stark contrast with the poor thermal stability demon-
strated by most metal halide hybrids, such as [NH4]2AgI3, [Zn(phen)3]2Ag8I12·7DMF,
[Al(DMSO)6]Ag9I12, [HCP]Ag2I3 (HCP+ = NH-4-cyanopyridinium), [H2-Dabco][Ag2I4
(Dabco)], [Et-btz]AgI2 (btz = benzothiazole) and [(Me)2-(Dabco)]2Cu2Bi2I12, whose decom-
position temperatures were routinely as low as 200 ◦C [4,13,15,20,30–32]. The chemical
compositions of compound [H2-4,4′-dpa]Ag6I8, i.e., C, N, Ag and I elements, were further
confirmed by the EDX and XPS results (Figures S10 and 4b). Analyses of the high-resolution
Ag−3d spectrum showed that it contained two single peaks centered at binding energies
of 373.9 and 367.9 eV, corresponding to the 3d3/2 and 3d5/2 states of Ag+ ions (Figure S11).
The high-resolution I−3d spectrum was also characterized by two single peaks, with the
binding energies located at 630.1 (3d3/2) and 618.6 (3d5/2) eV, respectively (Figure S12).
These observed values are reasonable and are very close to some reported results (e.g.,
[(Me)2-2,2′-bipy]Ag8I10, [MNH]Ag3I5 ([MNH]2+ = methylated nicotinohydrazide) and
[AE2T]2AgBiI8 (AE2T = 5,5′-diylbis(aminoethyl)-[2,2′-bithiophene]) [18,33,34].
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To appreciate the semiconductor behavior of compound [H2-4,4′-dpa]Ag6I8, we then
measured its UV-Vis diffuse reflectance and absorption spectra using a powdered sample
at room temperature. As presented in the inset of Figure 4c, compound 1 has an absorp-
tion at 400–600 nm, with a steep absorption edge at about 496 nm. According to the
Kubelka−Munk function, the optical band gap of compound 1 was estimated to be 2.50 eV
(Figure 4c), suggesting its semiconducting nature. This energy gap was well comparable
to the values of [V(DMSO)5(H2O)]Ag6I8 (2.61 eV), [MCP][Ag4I5] (2.63 eV), [Ag2I2(phen)]
(2.45 eV), [AgI(bpt)] (bpt = 3,5-bis(pyrazinyl)-1,2,4-triazole; 2.53 eV), [Co(phen)3]Ag2I4·3DMF
(2.59 eV) and [Co(phen)3]Ag3I5·DMF (2.58 eV) [13,20,25,35]. In addition, the band gap
of compound [H2-4,4′-dpa]Ag6I8 exhibited a noticeable red shift with respect to the
bulk β-AgI (2.81 eV), which was observed in the majority of iodoargentate hybrids,
including but not limited to [(Me)2-2,2′-bipy]Ag8I10, [(Me)2-2,2′-bipy]2Ag7I11, [H2-
bip]Ag2I3(µ-CHO) (bip = 2,6-bis(1-imdazoly)pyridine), AgI(bpt), [Co(bipy)3]Ag3I6 and
K[Fe(bipy)3]2Ag6I11 [12,16,18,35–37].

Mott-Schottky plots depicted in Figure 4d were tested to further know the optical
behavior of compound [H2-4,4′-dpa]Ag6I8. Evidently, the positive slope indicated the
n-type semiconducting character of compound 1, with the flat-band position of −0.45 eV
versus Ag/AgCl. As is known to all, for n-type semiconductors, the flat band potential
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is customarily 0.20 V lower than the conduction band. Therefore, the conduction band
of compound [H2-4,4′-dpa]Ag6I8 was determined to be −0.25 V vs. normal hydrogen
electrode (NHE). Correspondingly, the valence band was evaluated as approximately
2.25 eV vs. NHE.

2.4. Photoelectric Performances of Compound 1

Considering that the photoinduced current generation can be potentially applied in
the fields of intelligent switch, information storage and communication transmission, we
further executed the photoelectrochemical measurement for compound [H2-4,4′-dpa]Ag6I8.
The photocurrent-time curves with the on/off status were recorded in Figure 5a,b. The
rapid circuit photocurrent responses with negligible decays could be monitored under
the periodic irradiation achieved by a manual shutter. Despite the illumination after sev-
eral cycles, the photoelectric switching performance could be well preserved, indicating
good moisture stability and performance durability. This is markedly different from some
iodoplumbate-based hybrid materials (e.g., [CH3NH3]PbI3), which usually performed
poorly due to the long-term instabilities [38]. Under the visible light condition, the aver-
age photocurrent density reached to 0.37 µA·cm−2 (Figure 5a), which is comparable to
those of some highly reactive iodoargentate-based hybrids, such as AgI(bpt), Ag2I2(phen),
[Co(5,5-dmpy)3]Ag5I8, [La(dpdo)(DMF)14]Ag12I18 (dpdo = 4,4′-bipyridine N,N’-dioxide)
and [Co(bipy)3]2Ag4Bi2I16 [21,29,35,39]. Moreover, the on/off current density of compound
[H2-4,4′-dpa]Ag6I8 could be further enhanced by exposing the designed photoelectrode to
the full-spectrum circumstance, with the observed photocurrent density of 1.23 µA·cm−2

(Figure 5b). Such an enhancement can be attributed to the increased amount of photoex-
cited electrons and holes owing to the expanded spectral range, which has also appeared
in some previous studies [27–29]. These results mean that compound 1 may serve as a
promising light-harvesting and light-detecting candidate. In addition, the comparisons
of photocurrent density between the title compound and some representative analogs in
literature are illustrated in Figure 5c.
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2.5. Theoretical Studies of Compound 1

To gain a deeper correlation of the structure-property relationships, we performed
the density functional theory (DFT) calculations for compound [H2-4,4′-dpa]Ag6I8 with
the assistance of a first-principle approach. The electronic band structure, energy gap
and density of states (DOS) were provided. As shown in Figure 6a, the band gap was
found to be 2.23 eV under the GGA + U method, which agreed well with the experimental
value of 2.50 eV. Noteworthily, this obviously distinguished the results obtained through
conventional GGA, which generally significantly underestimated the true value. Analyses
of band structures showed that the valence bands (VBs) maximum and conduction bands
(CBs) minimum were both located at Γ points. Hence, the title compound can be considered
as the quasi-direct bandgap semiconductor. In addition, the dispersive band seemed like
a pocket at the CBs minimum, which may largely be benefiting the transport of photo-
generated electrons.
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The total DOS of compound [H2-4,4′-dpa]Ag6I8, as well as the partial DOS of C, N, H,
Ag and I atoms, were given in Figures 6b and S15. It can be seen that the VBs maximum
predominantly corresponds to the 2p levels of N and C atoms, suggesting the obvious
covalent interactions of C−N bonds. Furthermore, the contributions of N and C induced a
few isolated bands of the upper VBs near 0 eV. The broad intensity peak near the top of
the VBs was mainly dominated by I−5p and Ag−4d states, which revealed the presence of
strong interactions between Ag and I atoms. The deeper VBs, for example, with energy
less than −4 eV, were mainly contributed by Ag−4d orbits. Taking into account the strong
localization of the d states of Ag, the flat valence band structures were further verified.
Whereas the 4s states of Ag atoms and 5p states of I atoms dominated the DOS around
the bottom of CBs. The s-p hybridization may be responsible for the CB dispersion, which
was found to promote the photo-excited carrier transfers. Thus, from the above-mentioned
calculated results, we can conclude that the electrons in the title compound behaved with
higher carrier mobility than holes.

3. Materials and Methods
3.1. Reagents

Silver iodide (AgI, Adamas), 4,4′-dipyridylamine (4,4′-dpa, Adamas), potassium
iodide (KI, Greagent), hydriodic acid (HI, Adamas) and acetonitrile (CH3CN, Kermel). All
reagents were of analytical grades and were purchased from commercial sources, which
were directly used in the preparation process unless otherwise stated.

3.2. Instruments and Measurements

The purity identifications of the title compound were completed by the powder X-ray
diffractometer (Bruker D8, CuKα radiation) and elemental analyzer (German Elementar
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Vario EL Cube apparatus). The thermogravimetric behavior was evaluated by a NETZSCH
STA449F3 unit with a heat rate of 10 K/min (N2 atmosphere). The UV-Vis absorption
and diffuse reflectance patterns were monitored by a SHIMADZU UV-3600 spectrometer.
Energy-dispersive X-ray spectrum studies were performed on a Thermo Fisher GX4 scan-
ning electron microscope. A Thermo Scientific ESCLAB 250Xi spectrometer was used to
acquire X-ray photoelectron spectroscopy diagrams.

3.3. Preparation of Compound 1

117 mg of AgI (0.5 mmol), 166 mg of KI (1.0 mmol), and 34 mg of 4,4′-dpa (0.2 mmol)
were put in 0.5 mL HI, 2 mL H2O and 4 mL CH3CN. Afterward, the resulting solu-
tion was sealed in a 23 mL polytetrafluoroethylene-lined container and kept heating for
5 days at 140 ◦C. Through the filtration and the ethanol washing, yellow sheet-type crystals
were harvested by manual separation, with a yield of around 21% based on AgI. It is
emphasized that the mixed HI/H2O/CH3CN solvent may have a significant impact on
the crystallization of the title compound. Our extensive syntheses studies have shown that
other reaction medium (such as methanol, ethanol, acetone, DMF and DMSO) was found to
be unfavorable, often leading to a failure to obtain the targeted product. Elemental analysis
(EA) calculated for compound 1: C, 6.54%; H, 0.60%; N, 2.29%. Found: C, 6.72%; H, 0.65%;
N, 2.30%.

3.4. X-ray Crystallography

Single-crystal X-ray diffraction data collection of 1 was accomplished on an Xcalibur
E Oxford diffractometer using Mo-Kα radiation (λ = 0.71073 Å) at 298(2) K. Its structure
obtained by direct methods was then refined by the SHELXL-2018 program based on full
matrix least-squares routines against F2 [40]. During the refinement, all non-hydrogen
atoms were treated anisotropically, while the hydrogen atoms were positioned geomet-
rically with fixed thermal factors. In compound 1, the Ag atoms except Ag(6) behave
the disorder: Ag(1)/Ag(1B), Ag(3)/Ag(3B) and Ag(5)/Ag(5B) exist two statistical distri-
butions; while the Ag(2)/Ag(2B)/Ag(2C) and Ag(4)/Ag(4B)/Ag(4C) are three statistical
distributions. The empirical formula was further verified by the element analyses and
thermogravimetric results. More structural refinement parameters are listed in Table 3.
CCDC number 2,301,354 corresponds to compound 1, which was acquired free of charge
from the Cambridge Crystallographic Data Centre. Some important bond distances and
angles are supplied in Table S1.

Table 3. Crystallographic data and structural refinement details of compound 1.

Compound 1

CCDC 2,301,354
formula C10H11Ag6I8N3
weight 1835.64

temperature/K 298(2)
wavelength/Å 0.71073
crystal system monoclinic
space group P21/n

a/Å 11.3797(11)
b/Å 14.1621(13)
c/Å 18.8035(17)
β/◦ 104.387(4)

volume/Å3 2935.3(5)
Z 4

Dcalcd/g·cm−3 4.154
µ/mm−1 12.343

F(000) 3192
reflection collected 13,260
unique reflection 5184
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Table 3. Cont.

Compound 1

Rint 0.0249
R1 [I > 2s(I)], wR2 [I > 2s(I)] 0.0415, 0.0955
R1 [all data], wR2 [all data] 0.0551, 0.1030

3.5. Photoelectric Examinations

Utilizing a CHI660E electrochemical workstation (Chenhua, Shanghai, China) equipped
with the three-electrode configuration, we examined the photoelectric switching perfor-
mance of the title compound. The working electrode was prepared by a typical solution
coating method that stated as follows: 5 mg of microcrystalline powder 1 was added into a
mixed Nafion/ethanol solution, suffering from the ultrasonic treatment. After lasting for
30 min, the gained suspension was deposited on the clean surface of ITO glass and then
dried in the air. The effective area was 1.0 × 1.0 cm2. In this study, Ag/AgCl and platinum
wire served as the reference electrode and the counter electrode, respectively. A 300 W
Xenon lamp was used as the irradiation source, while the visible light was realized with
the help of a 420 nm cut-off filter. The supporting electrolyte is the 0.1 M KCl solution.

3.6. Computational Details

The electronic structure calculations of compound 1 were conducted by the den-
sity functional theory (DFT) framework implemented in the Vienna Ab initio Simulation
Package (VASP) [41]. The Perdew–Burke–Ernzerhof (PBE) form of generalized gradient
approximation (GGA) exchange-correlation functionals have been employed, utilizing pro-
jector augmented wave (PAW) potentials [42,43]. The H−1s, C−2s, C−2p, N−2s, N−2p,
Ag−4d, Ag−5s, I−5s and I−5p were treated as its valence states. In order to escape the
well-known bandgap underestimate of GGA, the Coulomb self-interaction potential was
considered. Within the GGA + U approximation, the onsite Coulomb term U value was
used for the Ag−4d states. The energy cut-off for the plane wave basis set was kept at
500 eV. The reciprocal space sampling was completed with k-point Monckhorst–Pack grids
of 5 × 5 × 3 for the title compound.

4. Conclusions

In summary, using the solvothermal method, we successfully fabricated a new iodoar-
gentate microporous material, which was subsequently structurally analyzed and char-
acterized by means of multiple techniques. The title compound featured a novel and
complicated 3D [Ag6I8]n

2n− anionic framework based on hexameric [Ag6I13] SBUs, con-
taining the peanut-shaped 1D channels where the [H2-4,4′-dpa]2+ template cations reside.
Further research showed that the obtained material exhibited semiconductive behavior,
rendering it with good photoelectric conversion properties upon alternate light illumina-
tion. Of note, its photocurrent density competed well with or even surpassed those of some
high-performance halide analogs, which was mainly attributed to the high mobility of
electrons as revealed by theoretical calculations. Future work will focus on the exploratory
syntheses of more new numbers and the deep investigation of their structure-property
relationships.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules28248033/s1, Table S1: Selected bond lengths (Å) and
bond angles (◦) for compound 1. Figure S1: (a) Two types of [Ag2I6] dimers. (b) The [Ag4I10] unit.
(c) The [Ag6I13] moiety formed by [Ag4I10] unit and two [AgI4] tetrahedra; Figure S2: A pair of
[H2-4,4′-dpa]2+ cations showing the C−H···π interactions; Figure S3: The anion···π interactions
existing in compound 1; Figure S4: (a) The 4,4′-dpa ligand in compound 1. (b) The N-Bz-Py ligand
in [N-Bz-Py]4Ag9I13; Figure S5: Fingerprint plots: resolved into I···C (a), H···C (b), I···I (c), I···N
(d), H···H (e) and Ag···C (f) for compound 1; Figure S6: Hirshfeld surfaces analyses mapped with
dnorm (a), di (b), de (c) and curvedness (d) for compound 1; Figure S7: Experimental and simulated

https://www.mdpi.com/article/10.3390/molecules28248033/s1
https://www.mdpi.com/article/10.3390/molecules28248033/s1
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PXRD patterns of compound 1; Figure S8: PXRD of pristine sample and the sample immersed in
aqueous solution for one day; Figure S9: PXRD of pristine sample and the sample after photocurrent
measurement; Figure S10: EDX spectrum of compound 1; Figure S11: High-resolution Ag−3d peaks
of compound 1; Figure S12: High-resolution I−3d peaks of compound 1; Figure S13: (a) Photocurrent-
time curves of 4,4′-dpa ligand. (b) Photocurrent-time curves of blank ITO; Figure S14: Illumination
lifetime of compound 1; Figure S15: Total density of states and partial density of states for compound
1. The Fermi level is set at 0 eV (dotted line).
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