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Abstract: Unsupervised machine learning (ML) techniques are applied to the characterization of the
adsorption of rare earth elements (REEs) by zeolites in continuous flow. The successful application of
principal component analysis (PCA) and K-Means algorithms from ML allowed for a wide range
assessment of the adsorption results. This global approach permits the evaluation of the different
stages of the sorption cycles and their optimization and improvement. The results from ML are also
used for the definition of a regression model to estimate other REEs’ recoveries based on the known
values of the tested REEs. Overall, it was possible to remove more than 70% of all REEs from aqueous
solutions during the adsorption assays and to recover over 80% of the REEs entrapped on the zeolites
using an optimized desorption cycle.
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1. Introduction

Continuous research and progress have resulted in a significant surge in available data,
motivating some sectors of our society to reposition themselves and harness the disruptive
potential of data analytics and machine learning [1]. Machine learning (ML) is an evolving
branch of computational algorithms, and its development has led to statistical models that
can make predictions and support decisions without being explicitly programmed [2–5].
ML can integrate multimodality multi-fidelity data to reveal correlations between different
features [6]. It has been applied successfully in diverse fields such as pattern recognition,
medicine, science, computer vision, spacecraft engineering, engineering, biomedicine, psy-
chology, catalysis, neurobiology, and many other disciplines [1,5,7]. This wide application
allows for a faster treatment of great amounts of data and, therefore, ML can be used to
analyze and correlate those data to achieve better interpretations and, therefore, to make
better decisions.

ML models and their importance have been recognized and appreciated in wastewater
treatment [8,9]. Some developments have been made to use ML algorithms or deep
learning neural networks for the optimization of the adsorption of antibiotics [10,11],
organic compounds [12,13], and metals [14–16].

The advantages of the ML techniques applied to the recovery of rare earth elements
(REE) from aqueous solutions using zeolites as adsorbents are described. REEs represent
19% of the metals used in the technology and precious metals sectors, which accounts for
0.05% of world metal production and the trend is upwards [17,18]. REEs have played a
crucial role in the materials industry across various domains such as phosphors, magnets,
metallurgy, catalysts, and glass since the 1950s. They are frequently employed as additives
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or dopants in materials formulations. REEs are particularly valuable due to their ability
to induce significant changes in material properties, even when used in small quantities.
Consequently, they have earned the reputation of being the “vitamins” of modern industry
and the design of materials doped with rare earths has emerged as indispensable for
technological advances [18].

Zeolites are porous aluminosilicate materials known for their highly structured crys-
talline network composed of alumina and silica tetrahedra (TO4, where T = Si or Al). The
presence of alumina induces a negative charge on the structure that is compensated for
by cations. The cation exchange capacity of the zeolites enhances their usage as adsor-
bents [19]. Within the zeolitic structures available in the commercial market, zeolites of
the LTA type and FAU type (faujasite, including zeolites X and Y) are commonly applied
in various fields [19–21]. The FAU structure exhibits a low Si/Al ratio, which results in a
high cation exchange capacity mainly for cations with high charge density [19], such as
rare earth elements (REE ions). A microporous framework characterizes the FAU structure
and to increase its mesoporosity, some modifications are required, which will result into an
improvement of the ion exchange capacity of the structure. The modification of zeolites can
be achieved by chemical or hydrothermal treatments, which normally lead to an improve-
ment in a zeolite’s porosity [22,23]. The chemical treatments can be performed by the use
of mineral salts, alkaline or acidic solutions, which can improve crystal size, morphology
and chemical composition to enhance their adsorption capacity [24,25]. The hydrothermal
treatment consists of a heat treatment through the contact between the zeolite and an
aqueous solution to improve the zeolite ion exchange capacity [26]. In the case of the zeolite
structures with a high silica content, such as MFI or BEA, their surface hydrophobicity can
be modified by chemical treatments to lead a better accessibility to the active acid sites due
to the introduction of a secondary mesoporous network of inter or intracrystalline nature,
which improve their adsorption capacities. Also, the MOR structure can be modified to
improve their adsorption behavior by desilication [27–29]. In this work, the NaX from FAU
was modified using the alkali treatment.

The application of ML algorithms has been applied to REE separation techniques [30]
and adsorption [31]. Therefore, the objective of this study is to optimize the removal of
REEs (La, Eu, Pr, Ce, Tb and Y) by adsorption on FAU structures in continuous flow assays,
employing ML techniques for evaluation and system development.

2. Results and Discussion

The overall and simultaneous analysis of the results for the adsorption and desorption
cycles (Figure S1) revealed the complexity of observing data without noticeable differences.
The solution pH was monitored and adjusted when required to avoid the eventual REE
precipitation. The same happened for the desorption assays (Figure S2). The sorbent
washing with NaOH 0.01 M was performed after cycles 1, 2, and 3 and not after the last
cycle. No REE leaching was detected during this procedure. During the analysis, removal
will refer to the adsorption results, while the recovery will refer to the desorption ones.

2.1. Machine Learning Analysis

The ML analysis of the continuous flow assays was used to evaluate and select the
best conditions among the tested ones, as previously described. Before applying the
unsupervised ML algorithms, performance of a data scaler is required, which consists of a
data normalization.

The significance of each principal component weight in principal component analysis
(PCA) was assessed (Figure S3A) and two features were selected to build the PCA as they
justified 86% of the variance. The two features’ selection was not confirmed by the Knee
Locator method [32]. The resulting PCA representation is shown in Figure 1A. The PCA
was too crowded with features for the evaluation, and it was hard to read the influence of
each one on the tested conditions. Nevertheless, the majority of the features seemed to have
a high impact on the controls Z13X_NW and Z13X_WW (zeolite 13X, without and with a
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NaOH 0.01 M washing after the desorption). The PCA analyses, Figure 1A, are represented
in a biplot where the bottom x and left y are references for the samples distribution, while
the top x and right y are for the features distribution.
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The division using the K-Means algorithm created two different groups, shown in
Figure S1. Similar to the PCA, the Knee Locator method did not identify any value for
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the best number of clusters. In Figure 1B, the four zeolite samples were divided into
two groups, one for the pristine zeolite (Z13X_NW and Z13X_WW) and another for the
modified Z13X with NaOH 0.1 M (ZNaOH_NW and ZNaOH_WW), without any other
division regarding the washing.

The ML classification algorithms were used to assess one of the four tested samples
(Table 1).

Table 1. Column designations for the continuous flow assays.

Column Designation Zeolite Used Modification Washing between
Sorption Assays

Z13X_NW

Z13X
Control

Without

Z13X_WW With

ZNaOH_NW
NaOH 0.1 M

Without

ZNaOH_WW With

Each sample must be classified using a binary system, where a value of 0 indicates
poor performance, whereas 1 is indicative of good performance. The binary classification
was performed according to Table 2.

Table 2. Binary classification used for each sample evaluated regarding the data from the adsorption
(removal) and the desorption (recovery) assays.

Removal (Rm) Recovery (Rc) Classification
Means

Binary
ClassificationInterval Classification Interval Classification

80 < Rm < 100 1 80 < Rc < 100 5
≥3.5 160 < Rm < 80 2 60 < Rc < 80 4

40 < Rm < 60 3 40 < Rc < 60 3

20 < Rm < 40 4 20 < Rc < 40 2
<3.5 0

00 < Rm < 20 5 00 < Rc < 20 1

The cut-off for satisfactory results was a classification mean equal to or above 3.5
and none of the 4 tested conditions were classified as 1. The classification means were
calculated following Table 2 and the results for the four conditions ranged between 2.00
and 2.50, and since each part (adsorption or desorption) has a possible total weight of
2.5 out of 5.0, it is very likely that one of them underperformed. From overall results
of the adsorption (Figure S1) and desorption (Figure S2), it can be concluded that the
desorption underperformed with recoveries below 30%, which may explain the obtained
results. Somehow this was unexpected as the zeolite 13 X with the NaOH 0.1 M treatment
performed much better REE removal and recovery than the Z13X itself. An incomplete
recovery may negatively affect subsequent adsorption due to previous occupation of the
different sites of the zeolite by the REEs retained during the first adsorption steps.

2.2. Sorption Analysis of the Continuous Flow Assays Cycles
2.2.1. Adsorption Analysis

The removal percentages are the results for specific time points of 24, 48, and 72 h and
the results are shown in Figure S1 for the different cycles. The results of the removal for the
first cycle are similar at each analyzed time point, with no significant differences observed.
As expected, the removal values increased over time, confirming REEs adsorption by the
zeolite samples. For the second cycle, the total removal shows similar results, with most of
the statistical tests having no significant difference.
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The same behavior would be expected for the subsequent cycles. The results of total
removal for the third and fourth cycles show that no significant differences were found.
These results indicate that the ion exchange capacity of the zeolite attains the equilibrium,
which is more visible for these cycles than the one obtained for the second cycle since it
was used at a higher concentration. The total removal of REEs for each tested condition
was calculated and the results are shown in Table 3.

Table 3. Total removal of each REEs for each zeolite tested after 4 cycles.

Removal
(%) La Ce Y Tb Pr Eu

Z13X_NW 81.6 ± 6.5 83.3 ± 5.8 80.4 ± 6.7 83.8 ± 6.0 84.7 ± 5.7 83.6 ± 5.5
Z13X_WW 71.9 ± 0.4 74.7 ± 0.2 71.4 ± 2.2 76.2 ± 1.8 76.4 ± 0.8 75.6 ± 2.0
ZNaOH_NW 73.0 ± 3.0 73.6 ± 2.6 83.0 ± 2.0 72.7 ± 2.3 73.2 ± 2.9 72.7 ± 2.5
ZNaOH_WW 68.2 ± 4.1 70.9 ± 4.8 75.1 ± 4.5 72.3 ± 2.4 70.9 ± 3.6 70.7 ± 3.3

Overall, between 65 and 90% of the total mass of REE present in the solutions to be
treated were removed and the zeolite retained similar selectivity between the different
tested REEs for each of the four conditions (Table 3). No significant difference was found
between the different tested conditions (Table S1), even between the control zeolite, Z13X,
and the ZX_NaOH, as foreseen by previous batch assays. This suggests that a pre-treatment
of the zeolite will not improve the sorbent behavior.

A difference between the NW and WW (without and with NaOH washing) was
expected for both zeolite samples. It was expected that the washed columns (Z13X_WW
and ZNaOH_WW) would reach higher removals as the hydroxyl (OH−) from the NaOH
could neutralize part of the protons (H+) from HNO3 used in the desorption step. The
NaOH concentration used, 0.01 M, was not enough for this purpose since its concentration
was 10 times lower than the acid.

2.2.2. Desorption Analysis

The desorption results for the four different cycles are shown in Figure S2. The
desorption results for the first cycle are shallow, below 30%, with no significant difference
found for the different comparisons evaluated. For the second cycle, the desorption
recovered below 11%, with no significant difference being observed. The same occurred for
the third cycle, with recoveries below 10%, and the fourth cycle, with recoveries below 14%.
No significant difference was found.

These results were not expected since the same concentration was used for the acid
chosen to be the best one in batch assay. The same study reported that the NaOH 0.1 M
zeolite had a very-high recovery from the tests performed in the batch assays. The low
recoveries of REE probably could be related to the saturation of the zeolite structure. Nev-
ertheless, it was not evident for the second cycle due to the lower initial REE concentration
of 10 mg/L, supported by the adsorption results (Figure S1). The third and fourth cycles
had higher initial REE concentrations of 60 and 25 mg/L, respectively, where the lower
removal was more evident, as supported by the adsorption results (Figure S1).

This shows the importance of the desorption step in a multiple-column cycle assay,
since good desorption might lead to a near-total removal of REEs from the zeolite. After
that and during the second adsorption cycle, the zeolite would be available to recover more
REEs from the solution. The total recovery was calculated and shown in Table 4.
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Table 4. Total recovery percentage of each REE for each zeolite sample tested after 4 cycles.

Recovery
(%) La Ce Y Tb Pr Eu

Z13X_NW 9.5 ± 0.1 9.2 ± 0.2 11.0 ± 0.7 10.9 ± 1.1 9.4 ± 0.1 11.5 ± 0.5
Z13X_WW 7.9 ± 1.1 8.4 ± 1.1 10.7 ± 0.6 10.1 ± 0.7 8.3 ± 1.0 11.2 ± 0.6
ZNaOH_NW 11.7 ± 1.7 12.1 ± 2.2 10.5 ± 4.5 13.6 ± 3.5 13.8 ± 2.1 15.8 ± 2.9
ZNaOH_WW 14.9 ± 1.6 13.9 ± 0.8 14.9 ± 1.8 17.5 ± 0.9 16.0 ± 1.3 18.9 ± 1.1

The overall desorption results were below 20% of the total adsorbed REE, with no
significant differences (Table S2). These results were meager and unexpected since higher
recoveries were achieved in batch assays. This raises a suspicion that a higher concentration
of the acid should be used in these assays, so the desorption may be improved.

After the desorption process, a purification step will be required to allow for the
re-use of the recovered REEs into new applications. The purification process may be the
precipitation of the REEs as carbonates [33,34] or oxalates [35–39].

2.2.3. ML Analysis of the Desorption Optimization

In the desorption batch assays, 0.35 g of loaded zeolite was used with 0.1 L of HNO3
at 0.1 M, which defined a ratio of 28.6 mmol of HNO3 per g of zeolite. In these continuous
flow assays, the ratio was 0.67 mmol of HNO3 per g of zeolite. The proportion between the
batch ratio and the column ratio was 43, which explains the reduced desorption efficiency
in continuous flow assays. So, it was decided to perform new desorption assays in the
continuous flow set-up with a ratio of 13.3 mmol of HNO3 per g of the zeolite (2 L of 1 M
of HNO3 during 3 h with the same flow rate in close loop). The results obtained with the
optimized acid/zeolite ratio are shown in Figure 2.
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The changes implemented for the desorption were definitive to improve the REE
recoveries as seen in Figure 2. After 1 h of assays, over 70% of La, Ce, and Pr were removed
from the zeolite, while the other REE had a lower recovery. This difference could be related
to the accessibility of the cations located in the zeolite structure. The structural framework
of zeolite Y or X (FAU) were distinguished by three main units: the hexagonal prism, the
sodalite cavity, and the supercage [40]. The recovery of these cations is facilitated if they are
primarily located in the sites of the supercage or sodalite cavities. The difference between
REE radii could justify the observations, since a smaller ion may easily enter deeper into
the smaller pores of the zeolite and, therefore, would require more time to desorb from it.

After a 3 h leaching, the recoveries of REE were similar between them and over 80%. It
is important to add that no significant differences were found between the tested conditions
and that the primary source of variation was the time for all tested REEs. Also, this recovery
refers to the total REEs still entrapped in the zeolites after the four cycles of adsorption and
desorption, which shows that this optimization could lead to an increase in REE adsorption
in following cycles.

The last time point results of all tested desorption cycles (the first four and the one with
higher acid concentration) were compared for the same tested conditions. A significant
difference, Table S3, was found for all REEs when any cycle was compared with cycle 5
(desorption with 1 M acid). This is validated by Figure 2, as the optimized cycle presented
recoveries up to four times higher than the ones from the previous cycles.

A new DataFrame was built just considering the desorption results in order to test the
eventual supervised ML analysis. This DataFrame consisted of the original four cycles and
the new desorption cycle, with a higher ratio of acid/zeolite, and it was used in a new ML
analysis to investigate the impact of the amount of acid on the desorption efficiency.

From the results in Figure S4A, four components were selected to build the PCA,
confirmed by the Knee Locator method [32], and the result is shown in Figure S5. The first
two features explain 64% of the variance in the samples, as shown in Figure 3A. The PCA
distribution results in two main groups, one on the right side, more influenced by cycle 5
and respective recoveries of the different REEs. The other group, on the left side, is more
affected by the first four cycles. This group can be divided into two smaller groups: the top
related to action of the ZX_NaOH zeolite and the bottom for Z13X. Each zeolite group can
be further divided into two groups depending on the washing after cycles, with NW in the
top and WW in the bottom.

The K-Means were made using three groups, as shown in Figure S4B, confirmed by
the Knee Locator method [32]. A clear group 1, in blue, which was from the ZX_NaOH
zeolite for both NW and WW, can be seen in Figure 3B. The group 2, in green, was affected
by the fifth cycle of desorption with the results of both ZX_NaOH and Z13X, and group 3,
in purple, is the Z13X zeolite. The other groups are mixed.

The ML classification algorithms were used to select the best desorption conditions,
using the binary classification (Table 2). For this case, four samples were considered good
according to Table 2. The four selected samples are the ones from the cycle 5, as expected,
since this cycle was the best one. With this, the classification was carried out using four
classifiers, KNN, Decision Tree, Random Forest, and Logistic Regression. The results of
the different classifiers are shown in Figure 4. The use of these classifiers is due to their
wide application as learning algorithms [41–43]. The KNN, Decision Tree, Random Forest,
and Logistic Regression classifiers are simple, easy to implement, and versatile [41]. At the
same time, these algorithms are more adequate for use with a relatively small number of
data and their hyperparameters can be more easily optimized [41–43].
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(B) decision tree and random forest. The 1 represents a good desorption, while the 0 is a bad
desorption according to the evaluation performed. The different colors, violet and orange, represent
the zone of a good or bad sorbent, respectively.

For the KNN, Figure 4A, three neighbors were selected according to the accuracy
values for both training and test sets (Figure S4C). The Decision Tree classifier, Figure 4B,
has only one parameter, random state, with a value of 20. For the Random Forest, Figure 4B,
the n estimator parameter was 10 and the random state was the same as for the Decision
Tree classifier. Finally, the same value for the random state parameter was used for the
Logic Regression, Figure 4A.

It is crucial to avoid overfitting of the training set for the classifiers, as happens often
with the model. A suitable generalization of the model from the training set can lead to a
good classification of new and unseen data, which is the test set. All the tested classifiers
could separate the two groups without any problem. Therefore, it is expected that the
respective accuracy scores of the values (x and y values of training and test data) would be
100%. The scores of the training and test using the four different classification algorithms
were 100% for all tested classifiers. Similar results were obtained using the classification
report, which summarizes percentages of precision, recall, and f1-scores. It is important
to know that precision is related to the accuracy of making good predictions, recall is the
value of the correctly identified positive predictions, and f1-score is the harmonic mean
of the precision and recall. This evaluation used the real classification from the binary
classification (y_real) and the predicted classification (y_pred) after training the model.
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All classifiers presented a 100% score for the precision, recall, and f1-scores of the
prediction the model, considering the real classification of 100% for each one. Another vital
metric to assess the classification used is the confusion matrix. All the classifiers evaluated
were very similar between them and the overall result is shown in Figure S6. It was verified
that there were only true positives (the model predicted it was a cycle with high desorption,
and it was in fact high) and true negatives (the model predicted it was a cycle with low
desorption, and it was actually low).

A heatmap showing the Pearson correlations of the tested features was made as before,
and the results are shown in Figure 5.

Molecules 2023, 28, x FOR PEER REVIEW 10 of 15 

 

 
Molecules 2023, 28, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/molecules 

desorption, and it was in fact high) and true negatives (the model predicted it was a cycle 
with low desorption, and it was actually low). 

A heatmap showing the Pearson correlations of the tested features was made as be-
fore, and the results are shown in Figure 5. 

 
Figure 5. Heatmap representation of the correlation of the features used for the desorption obtained 
in the different cycles. The results for the maximization of the desorption are referenced as cycle 5. 
The left scale represents the different correlation values and the respective colors. 

Overall, the correlation for the desorption cycles can be considered negligible, with 
three main exceptions. The first relates to the zeolites (Z13X and ZX_NaOH) and to the 
washing (NW and WW), which have a very high negative correlation, as shown in Figure 
5. In addition, the correlation of the recovery of each REE shows a very-high positive, 
which is expected since all REEs had a higher recovery. Finally, as expected, cycle 5 shows 
a very-high positive correlation with the REE recoveries since it was the cycle with higher 
REE recoveries. The same happens for the HNO3/zeolite ratio correlation with the REE 
recoveries for the same reason as stated before. Also, this ratio has a very high positive 

Figure 5. Heatmap representation of the correlation of the features used for the desorption obtained
in the different cycles. The results for the maximization of the desorption are referenced as cycle 5.
The left scale represents the different correlation values and the respective colors.

Overall, the correlation for the desorption cycles can be considered negligible, with
three main exceptions. The first relates to the zeolites (Z13X and ZX_NaOH) and to the
washing (NW and WW), which have a very high negative correlation, as shown in Figure 5.
In addition, the correlation of the recovery of each REE shows a very-high positive, which
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is expected since all REEs had a higher recovery. Finally, as expected, cycle 5 shows a
very-high positive correlation with the REE recoveries since it was the cycle with higher
REE recoveries. The same happens for the HNO3/zeolite ratio correlation with the REE
recoveries for the same reason as stated before. Also, this ratio has a very high positive
correlation with cycle 5 as expected, since the highest HNO3/zeolite ratio was used in
this cycle.

3. Materials and Methods
3.1. Materials

The REEs were used as salts: europium (EuCl3·6H2O; 99.9%, Acros Organics (Geel,
Belgium)), cerium (Ce(NO3)3·6H2O; 99.5%, Acros Organics), lanthanum (La(NO3)3·6H2O;
99.9%, Alfa Aesar (Kandel, Germany)), praseodymium (PrCl3·xH2O; 99.9%, Alfa Aesar),
terbium (TbCl3·6H2O; 99.9%, Alfa Aesar), and yttrium (YCl3·xH2O; 99.9%, Alfa Aesar).
These metal salts were used from previously prepared stock solution at 2000 mg/L. The
multi-element ICP quality control standard solution, with a concentration of 200 mg/L of
each element, was purchased from CPAchem (Stare Zagore, Bulgaria). The zeolite structure
FAU (Z13X), used in pellet form, was supplied from Acros Organics. The particle size for
Z13X beads ranged from 4 to 8 mesh with an average pore size of 7.4 Å and with a Si/Al
ratio of 1.50.

3.2. Analytical Quantification of REE

All liquid samples were analyzed at the Inductively Coupled Plasma-Optical Emission
Spectrometry, ICP-OES, (Optima 8000, PerkinElmer, Shelton, CT, USA). The procedure was
very similar to the one reported by Barros et al. [44], where the liquid sample was filtered
through a pore size of 0.22 µm and some drops of nitric acid, HNO3 (Fisher, Loughborough,
UK, 69%), were added to avoid a pKa value change. This analysis was performed with
slightly different operating conditions, namely, RF power at 1400 W, argon plasma flow
at 12 L/min, auxiliary gas flow at 0.2 L/min, and nebulizer gas flow at 0.70 L/min. The
wavelengths (nm) used for each element were: La—408.672, Ce—413.764, Eu—381.967,
Y—371.029, Tb—350.917, and Pr—390.844, with an axial plasma view for La, Ce, Tb, and Pr,
while for Y and Eu, a radial view was used.

3.3. Continuous Flow Assays

The continuous flow assays were carried out using 150 g of zeolite with and without
surface modifications as the bed of column (height of 30 cm and diameter of 4.2 cm) and
set-ups with up-flow feeding. Briefly, the zeolite modifications consisted of of a wash with
deionized water (dH2O) for 6 h with a flow rate of 23 mL/min followed by a wash with
NaOH 0.1 M for 22 h with a flow rate of 3 mL/min. The modified zeolite is identified as
ZX_NaOH, while the zeolite without modification as Z13X. The column designations are
listed in Table 1.

Each column was run in 4 cycles, which consisted of an adsorption and a desorption
step. Two of the four columns (ZX_WW and ZNaOH_WW, Table 1) had a washing step
between the desorption and the following adsorption, which was repeated 3 times. The
cycle steps description with concentrations, pump rate, and duration is presented in Table 5.

The adsorption assays were carried out using a solution with the six different REEs:
La, Eu, Pr, Ce, Y, and Tb. Cycles 1 and 3 were run with a 60 mg/L solution of each of
REE, while the initial concentration of each REE was 10 and 25 mg/L for cycles 2 and 4,
respectively. Samples from the feeding solution in the retention Erlenmeyer were also taken
at 0, 24, 48, and 72 h, and the measured concentrations were used to define the function
of the removal (%) versus time. At the end of the adsorption step, the REE solution was
drained from the columns and afterwards the desorption solution, HNO3 at 0.10 M, was
introduced. Samples were taken from the solution in the retention Erlenmeyer at 0, 1, 2,
4, and 6 h. Finally, in the last phase, NaOH 0.01 M was used for pH equilibration and
washing. This step was performed in just one column of each zeolite, namely Z13X_WW
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and ZNaOH_WW, with samples taken from the solution in the retention Erlenmeyer at 0 h
and after 2 h.

Table 5. Resume of the different steps carried out with the solutions initial concentration, flow rates,
and duration. Each column had 4 adsorption–desorption cycles, only two of them had a washing
in between.

Step Cycle Solution Pump Rate
(mL/min)

Duration
(h)

Adsorption

1 Ci = 60 mg/L for each
REE; Vi = 5 L

4 72
2 Ci = 10 mg/L for each

REE; Vi ≈ 5 L

3 Ci = 60 mg/L for each
REE; Vi = 5 L

4 Ci = 25 mg/L for each
REE; Vi ≈ 5 L

Desorption

1

1 L of HNO3 0.1 M for
each desorption step 8 6

2

3

4

Wash

1
1 L of NaOH 0.01 M for

each washing step 15 22

3

3.4. Machine Learning

The DataFrame, a table where the rows list the samples used while the columns are
the different parameters used to evaluate the samples, supported the machine learning
(ML) algorithms.

The first ML evaluation objective was the selection of the most suitable tested condition
(considering the zeolite and the washing option). For that, the 4 different conditions tested
(Table 1) were listed as rows, with 50 characteristics (24 adsorption and 24 desorption results:
considering 4 different samples and 6 REE, plus the zeolite used and the eventual washing
between adsorption and desorption), which were mainly the results of the adsorption
(removal) and of the desorption (recovery) for each REE tested in each cycle.

The second ML evaluation was meant to validate any good cycle regarding the removal
and recovery of the different REE. For that, 16 samples were used (the previous 4 samples
were divided according to the 4 cycles of adsorption and desorption for each REE) and
15 columns with the respective results (6 removals and 6 recoveries for each REE, the cycle
number, the zeolite used, and the eventual washing between adsorption and desorption)
were used to assist in the selection of the best cycles.

The DataFrame was processed under an unsupervised learner (principal component
analysis, K-Means analysis) and a supervised learner (classification). Briefly, the principal
component analysis (PCA) was used to reduce the dimensions of the DataFrame without
losing information and still maximizing the interpretation, while the K-Means made data
clusters according to the considered conditions.

The algorithms used for the classification were the K-nearest neighbors classifier
(KNN), Decision Tree classifier, Random Forest, and Logistic Regressor classifier. Clas-
sification algorithms are normally applied in a binary system and so they were used for
each result of the adsorption (removal) and desorption (recovery) steps. The classification
for the removal was performed according to the remaining REEs present in solution (the
lower remaining percentage, the higher the removal). For the recovery, it was the opposite
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(the higher the percentage of REE in solution, the higher the recovery). The classifications
for removal and for recovery were established for every REE, and then the mean value
was calculated. Next, the binary classification was assigned depending on the mean value
relative to the chosen cut-off value. The process is summarized in Table 2.

The data used for the classification were divided into two sets, a training set (70% of
the data), which contained the known output of the assays and was used to train the model.
The other set was the test set (30%), which was used to test the model prediction capacity.
The stratify option was also used, so both training and test sets had the same percentage of
positive cases, which for this analysis would represent high removals and recoveries.

3.5. Statistical Analysis

Two-way ANOVA was performed on the removal percentages for the adsorption
assays, in which the conditions were compared between each other for the same time
points. The desorption results were analyzed using a two-way ANOVA similar to the
removal percentage analysis. The conditions’ values were compared between each other at
the same time points. All these analyses were conducted using the software Graph Pad
Prism version 8.0.2 (Graph Pad Software, Inc., San Diego, CA, USA). A difference was only
considered significant when the probability (p-value) was lower than 0.05, assuming a 95%
confidence interval.

4. Conclusions

The column adsorption results confirmed that between 65 and 90% of the total amount
of REE was removed, decreasing with the number of cycles. The process included an
adsorption step, a desorption step, and an eventual washing before the next cycle. The 3 h
desorption steps reached 80% recovery of the entrapped REE after an increase in the initial
eluent concentration for all tested REEs. The ML algorithms were successfully applied to
the results obtained experimentally to select the best overall operational conditions. They
also allowed for the definition of a regression model that estimates any REE adsorption
and desorption efficiency, just by using the values of one of the tested REEs. The lack of
significant differences between the zeolites tested, Z13X and ZX_NaOH, suggests that the
chemical pre-treatment might not be justifiable. Adding to that, the eventual bed washing
with NaOH 0.01 M after adsorption–desorption and before another cycle also showed no
improvement in the overall efficiency of the process. The application of the optimized
conditions leads to an improvement in the desorption step and had an important influence
on the following adsorption cycles, improving the overall results obtained by this system
to recover REEs from wastewater.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules28247964/s1, Figure S1: Removal over time of the REE by
zeolites; Figure S2: Total recovery of the REE from zeolites; Figure S3: Elbow method for PCA and
K-Means for the sorption cycles; Figure S4: Elbow method for PCA and K-Means for the desorption
cycles; Figure S5: PCA maps; Figure S6: Confusion Matrix; Table S1: ANOVA results for the total
adsorption; Table S2: ANOVA results for the total desorption; Table S3: Statistical tests for the
desorption difference between each cycle for each tested condition.
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