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Abstract: A Ag@AuNP-functionalized capillary-based surface-enhanced Raman scattering (SERS)
sensing platform for the interference-free detection of glucose using SERS tags with a built-in nitrile
signal has been proposed in this work. Capillary-based SERS capture substrates were prepared by
connecting 4-mercaptophenylboronic acid (MBA) to the surface of the Ag@AuNP layer anchored on
the inner wall of the capillaries. The SERS tags with a built-in interference-free signal could then be
fixed onto the Ag@AuNP layer of the capillary-based capture substrate based on the distinguished
feature of glucose, which can form a bidentate glucose–boronic complex. Thus, many “hot spots”
were formed, which produced an improved SERS signal. The quantitative analysis of glucose levels
was realized using the interference-free SERS intensity of nitrile at 2222 cm−1, with a detection limit of
about 0.059 mM. Additionally, the capillary-based disposable SERS sensing platform was successfully
employed to detect glucose in artificial urine, and the new strategy has great potential to be further
applied in the diagnosis and control of diabetes.

Keywords: SERS sensing analysis; functionalized capillary; Ag@AuNPs; SERS tags; interference-free
signal; glucose

1. Introduction

Diabetes as a lethal diseases is caused by a deficiency of insulin production in the
pancreas, which induces abnormal high glucose levels in the body [1–4]. Glucose is an
indispensable nutrient for human metabolism. High glucose levels are closely related to
the progression of diabetes, while low glucose levels can cause hypoglycemia or insulin
shock [5–7]. To effectively control the disease, the glucose level in the blood needs to be
tested frequently, which causes an inconvenience to patients. Urine samples are not a
direct substitute for blood sample in monitoring glucose levels for diabetes but are rather
an alternative or complement that can provide valuable information when blood is not
accessible or using it is not desirable [8].

Among the existing detection methods, electrochemical and fluorescence detection
methods are the most successful methods for the clinical detection of glucose levels [9–13].
However, most of these methods require the use of biological enzymes with poor storage
stability and low biological activity, which affects the accuracy of analysis [14,15]. Thus, it
is an urgent need to develop a flexible detection method for the interference-free sensing of
glucose. The surface-enhanced Raman scattering (SERS) detection technique can exhibit
sensitivity at the single-molecule level, and has been widely used in biology, chemistry,
medicine, and other fields [16–18]. Van Duyne’s group presented the direct SERS detection
of glucose based on the partition of glucose into an alkanethiol monolayer adsorbed on
silver film [19,20]. Although these methods achieved good results, they were limited by

Molecules 2023, 28, 7939. https://doi.org/10.3390/molecules28247939 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules28247939
https://doi.org/10.3390/molecules28247939
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://doi.org/10.3390/molecules28247939
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules28247939?type=check_update&version=2


Molecules 2023, 28, 7939 2 of 12

the small Raman interface of glucose molecules, and the non-specific capture of glucose.
The Raman signals of molecules such as alkyne, nitrile, and cyanide ion in the silent region
(1800–2800 cm−1) did not overlap with background signals, avoiding interference from
those of regular molecules [21–24]. Thanks to the development of nanomaterials, many
new SERS substrates were prepared for SERS sensing detection, and satisfactory detection
results were obtained [25–27]. For example, Bandarenka’s group prepared gold-coated
porous silicon nanostructures for molecular analysis via SERS spectroscopy [26]. Notably,
molecules with Raman signals in the silent region could be embedded into nanomaterials
with core–shell structures to prepare SERS tags, which greatly expanded their application
in SERS detection technology [28–30]. Raman marker molecules were anchored in the
core–shell interface of the nanomaterial and were not exposed to the external environment,
avoiding displacement by other molecules. In addition, a completely free shell surface was
available to come in contact with the other molecule [31–33]. Moreover, this kind of SERS
tag with the built-in SERS signal did not affect the spatial distribution of target molecule
capture and recognition.

As is well-known, the recognition element is an important component of biosensors
for the detection of biologically related substances. Boric acid, as a versatile molecule, can
form five-membered ring complexes with 1, 2-diols or six-membered ring complexes with 1,
3-diols by forming reversible covalent bonds [34]. Based on this unique borate–diol interac-
tion, many colorimetric, fluorescent, and electrochemical sensors have been developed for
the determination of diol-containing substances [35–40]. Liu’s group established a magnetic
bead-based electrochemical and colorimetric strategy for sensing circulating tumor cells us-
ing boronic acid derivatives as the recognition elements and signal probes [36]. In addition,
this borate–diol interaction has been used in non-enzymatic glucose sensing [40]. However,
due to the affinity of boric acid to other monosaccharides such as fructose and galactose, the
selectivity of these detection methods for glucose are limited to some extent. Considering
that glucose can form a bidentate glucose–boronic complex, a series of selective detection
methods for glucose have been constructed [41]. For example, Bi’s group established a
SERS-based glucose sandwich assay using 4,4′-dimercaptoazobenzene as the actual Raman
reporter [42]. This method improved the selectivity of glucose detection, but the signal
molecules were exposed and easily replaceable, and the Raman signal was located in the
fingerprint region, which was susceptible to environmental interference. Based on this, if
SERS tags with a built-in non-interference signal can be combined with the unique property
of glucose, which is that it can form a bidentate glucose–boronic complex, the selectivity
and anti-interference performance of glucose sensing will be greatly improved. In addition,
the capillary-based SERS sensing platform has the characteristics of low cost, the possibility
of miniaturization, easy portability, and the ability to extract microsamples, making it an
ideal platform for portable microanalysis [43,44].

Herein, we propose a disposable Ag@AuNP-functionalized capillary-based SERS sens-
ing platform for the detection of glucose using SERS tags with a built-in interference-free sig-
nal (Scheme 1). Firstly, based on the synthesis of Ag@AuNPs, SERS tags (Ag@MBN@AuNPs)
with built-in Raman signals in the silent region and SERS-enhanced properties were pre-
pared by introducing the marker molecule 4-mercaptobenzonitrile (MBN). The Ag@AuNPs
were modified onto the inner wall of the capillary, and 4-mercaptophenylboronic acid
(MBA) was further modified on the surface of the Ag@AuNP layer to prepare a disposable
SERS capture substrate for the recognition of glucose. MBA was modified on the surface of
Ag@MBN@AuNPs to form SERS tags as the signal probe with SERS-enhanced performance.
In the presence of glucose, a bidentate glucose–boronic complex was formed [45–47], con-
necting the two boronic acid groups of the capillary-based capture substrate and the SERS
tag signal probe. Thus, the SERS tags with an undisturbed SERS signal (2222 cm−1) were
anchored onto the capillary-based capture substrate. In addition, “hot spots” were gener-
ated due to the interactions between the SERS tags and the Ag@AuNP layer on the inner
wall of the capillary, which ultimately produced a strong SERS signal that further improved
the detection sensitivity toward glucose.
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Scheme 1. Schematic illustration of (A) the preparation of SERS tags, (B) the fabrication of capillary-
based SERS capture substrate, (C) the capillary-based SERS sensing platform for the detection of
glucose by using SERS tags with a built-in interference-free signal.

2. Results and Discussion
2.1. Characterization of the Ag@AuNPs and Ag@MBN@AuNPs

TEM images of the AgNPs, Ag@AuNPs, and Ag@MBN@AuNPs are shown in
Figure 1A–C, respectively. As we can see, the spherical structure of AgNPs with uni-
form diameter distribution were obtained. The TEM images present the morphology
of the AgNPs with an average diameter of about 44 nm (Figure S1; details are in the
Supporting Information (SI)). In comparison, the morphology of the Ag@AuNPs and
Ag@MBN@AuNPs did not change significantly, while their average diameter increased
slightly to about 46 nm (Figures S2 and S3). Additionally, the results of elemental analysis
showed that there were obvious gold elements on the surfaces of the AgNPs, forming the
core–shell structure of the Ag@AuNPs (Figure 1D) and Ag@MBN@AuNPs (Figure 1E).
Moreover, the presence of Au in the energy spectrum analysis (Figure S4) and energy
spectrum quantification report (Table S1) further verified the successful preparation of
Ag@AuNPs and Ag@MBN@AuNPs.
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Figure 1. TEM images of (A) AgNPs. (B) Ag@AuNPs, and (C) Ag@MBN@AuNPs. (D) Elemental
analysis of Ag@AuNPs: (a) DF-STEM image, (b,c) EDX elemental maps of Ag and Au, and (d) overlay
of Ag and Au. (E) Elemental analysis of Ag@MBN@AuNPs: (a) DF-STEM image, (b,c) EDX elemental
maps of Ag and Au, and (d) overlay of Ag and Au. Notes: red color represent the Ag element and
green color represent the Au element in Figure (D,E). (F) UV−vis spectra of AgNPs, Ag@AuNPs,
and Ag@MBN@Au NPs. (G) Photographs of AgNP, Ag@AuNP, and Ag@MBN@AuNP solutions.

In addition, the three kinds of nanoparticles were compared using the UV–vis spectra
in Figure 1F. The absorption peaks of Ag@AuNPs (with maximum absorption wavelengths
at 430 nm) and Ag@MBN@AuNPs (with maximum absorption wavelengths at 434 nm)
showed an obvious red shift compared with the absorption peak of the AgNPs (with
maximum absorption wavelengths at 408 nm). The results are consistent with those
reported in the literature that say that the growth of the Au shell on the surface of AgNPs
could induce a red shift in the absorption peak [48]. The photographs in Figure 1G show
that the color of the Ag@AuNP solution was similar to that of the Ag@MBN@AuNP
solution, and the colors of both were darker than that of the AgNP solution. All these
phenomena indicated the successful preparation of the core–shell structure Ag@AuNPs
and Ag@MBN@AuNPs. As is well known, stability is an essential consideration in the
selection of an ideal SERS substrate. Therefore, the stability of three kinds of nanoparticles
was tested in H2O2 solution (Figure S5). The absorption peak of AgNPs disappeared after
2 h of etching. On the contrary, the UV−vis spectra of the core–shell structure Ag@AuNPs
and Ag@MBN@AuNPs remained at their original intensity after the same treatment. The
comparative results suggest that the Au shell greatly improved the stability of the AgNPs,
which may expand their potential use in many plasmon-based applications, especially
when corrosive reagents are involved.

2.2. Establishment of Ag@AuNP-Functionalized Capillary-Based SERS Capture Substrate

Before the construction of the capillary-based SERS sensing platform, the SERS prop-
erties of Ag@AuNPs and Ag@MBN@AuNPs were first investigated (Figure 2A). SERS
signals at 993, 1070, and 1582 cm−1 derived from the characteristic vibrational modes
of MBA were observed for Ag@AuNPs after modification with MBA (the SERS band
assignment was summarized and is shown in Table S2), indicating their successful im-
mobilization on the surface of Ag@AuNPs. For Ag@MBN@AuNPs, a strong SERS signal
derived from the nitrile group of MBN was observed at 2222 cm−1, suggesting that it
can be used as a SERS tag with a Raman signal that is not disturbed by a conventional
interfering component. Further examination revealed that Raman scattering peaks at
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993 cm−1 and at 2222 cm−1 could be observed simultaneously after the self-assembly of
MBA on the surface of the Ag@MBN@AuNPs. The results demonstrated the successful
preparation of Ag@MBN@AuNPs/MBA with an interference-free nitrile signal and the
ability for glucose recognition. In addition, in order to ensure the stability of Ag@AuNPs
and Ag@MBN@AuNPs during the MBA-modified process, UV–vis spectra before and
after MBA modification were recorded. As shown in Figure S6, the UV–vis spectra of both
Ag@AuNPs and Ag@MBN@AuNPs did not noticeably change after MBA modification,
suggesting that the agglomeration of nanoparticles did not occur. The results further indi-
cated that the process of MBA connecting to the particle surface did not affect the stability
of the nanoparticles.
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Figure 2. (A) SERS spectra of Ag@AuNPs, Ag@AuNPs/MBA, Ag@MBN@AuNPs, and
Ag@MBN@AuNPs/MBA. (B) SERS spectra of capillary (Ct), capillary/Ag@AuNPs (Ct/Ag@AuNPs),
and capillary/Ag@AuNPs/MBA (Ct/Ag@AuNPs/MBA).

After ensuring the SERS properties of the nanomaterials, the capillaries were gradually
treated and modified. The aminosilylated inner wall of the capillaries was further incubated
with the Ag@AuNPs. One can see from the photograph of the capillary that a significant
earthy yellow color can be observed for the Ag@AuNP-treated aminosilylated capillary
(Figure S7a). In contrast, no color change was found in the raw capillary (untreated
by APTES) after incubation with Ag@AuNPs (Figure S7b). Further SERS comparison
(Figure 2B) showed that there was no obvious SERS signal in the capillary alone (Ct) or in
the capillary after the modification of Ag@AuNPs (Ct/Ag@AuNPs). Only after further
modification with MBA (Ct/Ag@AuNPs/MBA) was an obvious characteristic SERS signal
derived from the MBA was observed. These comparative results all indicated the successful
construction of the capillary-based SERS capture substrate.

The signal homogeneity and reproducibility of the capillary-based SERS capture
substrate were crucial factors affecting the practical application of the SERS sensing analysis.
The SERS spectra of 22 random points selected from the same capillary-based SERS capture
substrate were recorded. Figure 3A showed that the SERS intensities at 1582 cm−1 of
22 SERS spectra were basically the same. According to the calculations, the relative standard
deviation (RSD) of the SERS signal intensity at 1582 cm−1 was 3.34%. Then, the SERS
intensities at 1582 cm−1 from 22 different parallelly prepared capillary-based SERS capture
substrates were compared. Figure 3B showed that the SERS signal intensity at 1582 cm−1

was similar for the 22 parallelly capturing substrates and the RSD was 3.79%. Therefore,
the capillary-based SERS capture substrate had satisfactory uniformity and reproducibility,
which ensured the reliability of the SERS sensing analysis during the glucose assay in
practical applications.
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2.3. Feasibility of Glucose Analysis by the Capillary-Based SERS Sensing Platform and
Optimization of Main Detection Conditions

The feasibility of the capillary-based SERS capture platform for the determination of
glucose levels was also evaluated (Figure 4A). There was no significant SERS signal in the
range of 1800–2500 cm−1 when SERS tags were incubated with the capillary-based SERS
capture substrate in the absence of glucose. In contrast, a distinct Raman scattering peak at
2222 cm−1, attributed to the nitrile group of the SERS tags, was observed on the capillary-
based SERS sensing platform in the presence of glucose and SERS tags. These contrasting
results demonstrated the unique feature of glucose, which is that it can form a bidentate
glucose–boronic complex between SERS tags and the capillary-based SERS capture sub-
strate. “Hot spots” are regions where surface plasmons are highly localized in a small
volume of the order of a few nm, giving rise to very large SERS enhancements [49,50]. The-
oretical simulations were conducted and verified the formation of “hot spots” when SERS
tags were bound to the Ag@AuNP layer through the bridging role of glucose (Figure S8).
These “hot spots” further enhanced the SERS signals, suggesting the feasibility of the
capillary-based SERS sensing platform for the sensitive analysis of glucose.
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The experimental conditions were optimized to produce a stronger SERS signal for
optimal glucose detection performance. The effect of the contacting time (2–80 min) of glu-
cose solution with the capillary-based SERS capture substrate was investigated (Figure 4B).
The SERS intensity at 2222 cm−1 increased sharply with the increasing time before 20 min
and then remained constant. Therefore, 20 min was selected as the optimal reaction time.
Similarly, the reaction time of the SERS tags was also considered (2–70 min), and 30 min
was used for subsequent detection (Figure 4C).
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2.4. SERS Determination of Glucose Levels Using the Capillary-Based SERS Sensing Platform

The capability of the capillary-based SERS sensing platform for the analysis of glucose
was evaluated in buffer solution (Figure 5A). The SERS intensity at 2222 cm−1, attributed
to the nitrile group of the SERS tags, increased with an increasing concentration of glu-
cose. Further investigation revealed that there was a good linear relationship between the
peak intensity at 2222 cm−1 and the concentration of glucose over the range 0.2–15 mM
(Figure 4B). Moreover, a detection limit of about 0.059 mM was estimated in accordance
with the 3σ rule. It is worth noting that the detection range met the requirements for the
clinical detection of glucose [42,51]. To examine the selectivity of the sensing platform
for glucose, its responses to other saccharides including fructose and galactose were also
tested. As can be seen in Figure 5C, only glucose could trigger a pronounced signal change
at 2222 cm−1. The weak SERS signal of fructose and galactose may have been due to
their lower tendency to form bidentate complexes and the small amount of non-specific
adsorption of SERS tags [45–47]. Although fructose and galactose have greater affinities for
monoboronic acids to form 1:1 complexes (the binding affinity of fructose to boronic acid is
1~2 orders higher than that of glucose), glucose has the ability of binding to double boronic
acids to form 1:2 bidentate complexes [41,42,51,52]. Therefore, the procedure avoided
signal interference from other sugars and improved the selectivity of the capillary-based
SERS sensing platform. Moreover, the concentration of glucose (~5 mM) in human blood
is almost two orders of magnitude higher than that of fructose (~0.05 mM) and galactose
(~0.05 mM) [42,52], which further ensured that the capillary-based SERS sensing platform
for glucose detection was not interfered with by fructose and galactose.
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SERS sensing platform incubated with glucose, galactose, and fructose at the same concentrations
(5 mM).
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2.5. Practical Analysis of Glucose in Artificial Urine

To further verify the feasibility of the proposed capillary-based SERS sensing strategy
for the detection of glucose in real samples, different amounts of glucose were added into
artificial urine samples, and the concentration of glucose in each sample was determined.
The recovery rate was calculated and is summarized in Table 1, and it was in the range of
98.17–108.55%, suggesting that the capillary-based SERS sensing platform proposed in this
work exhibits certain reliability for the determination of glucose in complex systems.

Table 1. Determination of glucose levels in artificial urine using the capillary-based SERS sensing
platform.

Sample Analyte Added (mM) Found (mM) Recovery (%)

Artificial urine Glucose 1 1.0855 ± 0.0421 108.55
2 2.0560 ± 0.2489 102.80
5 4.9086 ± 0.7176 98.17

10 10.7915 ± 1.4868 107.92

3. Experimental Section
3.1. Materials and Methods
3.1.1. Chemical Reagents

Auricchloridedihydrate (HAuCl4) and silver nitrate (AgNO3) were purchased from
Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China). Sodium borohydride (NaBH4), L-
ascorbic acid, and poly(vinylpyrrolidone) (PVP, Mw = 10,000) were obtained from
Sigma−Aldrich (Shanghai, China) Trading Co., Ltd. (Shanghai, China). Sodium sulfite
(Na2SO3), mercaptophenylboric acid (MBA), mercaptobenzonitrile (MBN), (3-aminopropyl)
triethoxysilane (APTES), ethanol, acetone, acetonitrile (CH3CN), glucose, fructose, galactose,
urea, and uric acid were supplied by J&K Scientific (Beijing, China). The ultrapure water
(>18 MΩ) used in all assays was obtained from an ultrapure water system (Wuhan Youpu
Instrument Equipment Co., Ltd., Wuhan, China).

3.1.2. Characterizations

Transmission electron microscopy (TEM) images were acquired with a transmission
electron microscope (JEOL, JEM-F200 (HR)). Absorption spectra were measured using a
Hitachi UH-5700 spectrophotometer (Kyoto, Japan). SERS spectra were recorded with a
portable Raman spectrometer (BWS415-532S, B&W Tek, Inc., Newark, DE, USA).

3.1.3. SERS Detection Parameters

The SERS spectra were acquired using a 532 nm excitation laser with an acquisition
time of 3 s. All of the spectra in this work were baseline-corrected.

3.2. Preparation of Ag@AuNPs
3.2.1. AgNPs

AgNPs were synthesized through the seed growth method [53]. Initially, a 5.0 mL
volume of PVP solution (w% = 5.0%) was mixed with a 5.0 mL volume of HAuCl4 solution
(0.50 mM), and then a 0.6 mL volume of NaBH4 solution (0.1 M) was added into the mixture.
The solution was then used as a seed solution after standing and aging for 6 h. The Ag
growth solution was prepared by adding 10 mL of PVP solution (5%), 5 mL of CH3CN
solution, 1 mL of L-ascorbic acid (0.1 M) solution, and 0.75 mL of AgNO3 solution (0.1 M)
into 10 mL of ultrapure water. Under intense agitation, 20 µL of the prepared seed solution
was quickly added to the Ag growth solution. After 30 min, AgNPs were collected via
centrifugation (10,000 rpm, 8 min) and re-dispersed with 10 mL of ultrapure water.



Molecules 2023, 28, 7939 9 of 12

3.2.2. Ag@AuNPs

Ag@AuNPs were synthesized through a modified synthetic procedure reported previ-
ously [53]. Under intense agitation, 4.72 mL of ultrapure water, 40 µL of HAuCl4 solution
(0.25 M), 240 µL of NaOH solution (0.2 M), and 3.0 mL of Na2SO3 solution (0.01 M) were
added to a 50 mL centrifuge tube. After 10 min of continuous stirring, the solution was
placed at 4 ◦C overnight and used as Au growth solution. An amount of 1 mL of AgNP
solution was centrifuged (at 10,000 rpm for 5 min) and dispersed with 1 mL of PVP solution
(w% = 5.0%). Then, 7 mL of PVP solution (w% = 5.0%) was added into the AgNP solution
and stirred to mix well. After that, 4 mL of Au growth solution, 200 µL of L-ascorbic
acid solution (0.5 M), 200 µL of NaOH solution (0.5 M), and 200 µL of Na2SO3 (0.1 M)
were added successively, and the reaction was maintained at 37 ◦C for 6 h. After that,
Ag@AuNPs were collected via centrifugation (at 10,000 rpm for 8 min), and re-dispersed
with 2 mL of PVP solution (w% = 5.0%).

3.3. Preparation of SERS Tags (Ag@MBN@AuNPs@MBA)

AgNPs were modified with MBN (0.1 mM) for 12 h. The MBN-modified AgNPs were
collected via centrifugation (10,000 rpm, 8 min), and then re-dispersed into PVP solution
(w% = 5.0%). The synthetic route for Ag@MBN@AuNPs was similar to that for Ag@AuNPs.
After centrifugation (at 12,000 rpm for 4 min), 1 mL of Ag@MBN@AuNPs was re-dispersed
into 0.9 mL of ultrapure water, and then 0.1 mL of MBA (1 mM) was added and incubated
for 3 h. Finally, the SERS tags were obtained via centrifugation (at 12,000 rpm for 4 min)
and re-dispersed into 1.0 mL of ultrapure water.

3.4. Fabrication of Capillary-Based SERS Capture Substrate

The functionalization of capillaries was carried out through a modified procedure
reported previously [43,44]. The capillaries were respectively immersed in acetone and
ethanol solution for 15 min, immersed in APTES solution (w% = 1.0%) overnight, and
then washed with ethanol. The treated capillaries were dried in a vacuum drying oven at
40 ◦C. After that, the Ag@AuNP solution was absorbed by an amino silanized capillary,
and after a reaction for 8 h, the solution was cleaned with ultrapure water three times to
obtain the capillary/Ag@AuNPs. The capillary/Ag@Au@MBA NPs were prepared by
further absorbing MBA solution (0.1 mM) with capillary/Ag@AuNPs, leaving it to react
for 3 h, and washing it with ultrapure water three times. The capillary/Ag@Au@MBA
NPs were used as the capillary-based SERS capture substrate for glucose detection in
subsequent experiments.

3.5. SERS Analysis of Glucose Using the Capillary-Based SERS Sensing Platform

Capillary-based SERS capture substrates were used to absorb different concentrations
of glucose in buffer solution, incubated for 20 min, and washed with ultrapure water three
times. After that, the capillaries were treated to absorb SERS tags and incubated for 30 min,
then washed with ultrapure water three times. Finally, SERS spectra of the capillary-based
SERS sensing platform were recorded with a portable Raman spectrometer.

The artificial urine (mainly containing about 97% water, 1.8% urea, 0.004% uric acid,
and 1.1% NaCl) was first prepared. Then, different concentrations of glucose were spiked
into the artificial urine and used as a glucose solution. The detection of glucose in artificial
urine was then performed as described above.

4. Conclusions

In summary, we successfully developed a disposable Ag@AuNP-functionalized
capillary-based SERS sensing platform for the detection of glucose levels using SERS
tags with a built-in interference-free signal. Ag@AuNPs with a thin gold shell structure
ensured the satisfactory SERS-enhanced properties of AgNPs, improved their chemical
stability, and provided the possibility of built-in Raman molecules. SERS tags with the
built-in nitrile group signal protected signal molecules from being replaced and avoided
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signal interference from other components. SERS hot spots were formed between the
Ag@AuNP layer and SERS tags based on the feature of glucose, which can form a bidentate
glucose–boronic complex, enhancing SERS intensity and improving detection sensitivity.
The use of disposable capillaries enabled the high flexibility and simplicity of the glucose
sensing strategy. This strategy for the glucose assay combined the portability of the cap-
illary, interference-free nature of SERS tags, the bridging role of target glucose, and the
high sensitivity of hot spot-based SERS detection, showing great potential in monitoring
glucose levels.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/molecules28247939/s1. Figure S1. TEM and size distribution
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tion of Ag@MBN@AuNPs; Figure S4. Energy spectrum of (A) Ag@AuNPs and (B) Ag@MBN@AuNPs;
Table S1. Energy spectrum quantification report; Figure S5. UV−vis spectra of (A) AgNPs,
(B) Ag@AuNPs and (C) Ag@MBN@AuNPs before and after treatment with H2O2. Table S2. SERS
bands assignment of SERS spectra observed in Figures 2 and 3; Figure S6. UV−vis spectra of
(A) Ag@AuNPs and (B) Ag@MBN@AuNPs before and after modified by MBA; Figure S7. Pho-
tographs of aminosilylated capillary treated with Ag@AuNPs (a) and raw capillary treated with
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