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Abstract: Peroxyacetic acid (PAA)-based advanced oxidation processes (AOPs) have attracted much
attention in wastewater treatment by reason of high selectivity, long half-life reactive oxygen species
(ROS), and wider applicability. In this study, cobalt ferrite (CoFe2O4) was applied to activate PAA for
the removal of ofloxacin (OFX). The degradation of OFX could reach 83.0% via the CoFe2O4/PAA
system under neutral conditions. The low concentration of co-existing anions and organic matter
displayed negligible influence on OFX removal. The contributions of hydroxyl radicals (·OH), organic
radicals (R-O·), and other reactive species to OFX degradation in CoFe2O4/PAA were systematically
evaluated. Organic radicals (especially CH3C(O)OO·) and singlet oxygen (1O2) were verified to be
the main reactive species leading to OFX destruction. The Co(II)/Co(III) redox cycle occurring on
the surface of CoFe2O4 played a significant role in PAA activation. The catalytic performance of
CoFe2O4 remained above 80% after five cycles. Furthermore, the ecotoxicity of OFX was reduced after
treatment with the CoFe2O4/PAA system. This study will facilitate further research and development
of the CoFe2O4/PAA system as a new strategy for wastewater treatment.

Keywords: peroxyacetic acid; cobalt ferrite; organic radicals; singlet oxygen; fluoroquinolone antibiotics

1. Introduction

Fluoroquinolones (FQs) are synthetic medicines with a broad antibacterial spectrum
and potent antibacterial activity used in medicine and aquaculture. Only 30–70% of FQs are
digested and absorbed by organisms and excreted directly into the ecosystem as natural or
metabolites [1–3]. Currently, FQs have been widely detected in wastewater, surface water,
groundwater, and even drinking water with trace concentrations ranging from ng/L to
µg/L [4]. FQs have attracted widespread public attention as a new environmental pollutant
with the environmental risk of induced resistance genes [5]. Ofloxacin (OFX) is a typical
representative of FQs and is hard to degrade in the natural environment [6]. Additionally,
OFX could form chelates with some metal ions, resulting in more biotoxicity and resistance
to degradation [7]. Therefore, it is essential to efficiently remove OFX from the aqueous en-
vironment. Advanced oxidation processes (AOPs) are promising methods for antibiotics in
water due to the short reaction time and higher efficiency [8–11]. However, the availability
of conventional AOPs is dependent on ideal pH and less interfering substance.

Peroxyacetic acid (PAA) has been widely utilized as a disinfectant, bleaching agent,
sterilizer, oxidizing agent, and polymerization catalyst in the food processing, medical,
chemical, and paper industries [12,13]. Compared with conventional disinfectants, PAA
shows enhanced bactericidal ability, low pH dependence, flexible operation, and less
toxicity via by-products [14]. Aside from its disinfectant properties, PAA possesses a high
redox potential of 1.96 V, making it capable of degrading organic pollutants [13]. PAA
can also be activated by UV irradiation, heat, and transition metal activation, producing
reactive oxygen species (ROS) with high oxidation ability as a result, such as hydroxyl
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radicals (·OH) and organic radicals (CH3C(O)O·, CH3C(O)OO·), due to the fact that it
has an easily activated O-O bond that is also contained in hydrogen peroxide (H2O2),
peroxydisulfate (PDS), and peroxymonosulfate (PMS) [15,16]. The slight dependence on
pH, anti-interference, and less disinfection byproducts are the more interesting features of
PAA-based AOPs over conventional AOPs [17]. Moreover, transition metals are considered
to be the optimal activation method due to their natural abundance, lack of external energy,
and highly catalytic performance [18].

Co(II) is generally considered the most effective activator for PAA among the tran-
sition metals (e.g., Co(II), Fe(II), Mn(II), and Cu(II)) [16,19,20]. The mechanism of PAA
activation by metal ions is shown in Equations (1) and (2) [21]. However, the poor reusabil-
ity, secondary pollution, and toxicity of metal catalysts are the main hindrances to such
homogeneous activation methods [20,22–24]. For this, developing heterogeneous cobalt
catalysts for PAA activation is essential. Spinel ferrites are widely used as wave-absorbing
materials and nanocomposite films due to their excellent stability and fascinating magnetic
properties [25–27]. Additionally, they are also a good choice to serve as the catalytic ma-
terial in AOPs. Recently, cobalt ferrite (CoFe2O4) has been demonstrated as an excellent
PAA activator, owing to its strong structural stability, low metal ion leaching, bimetallic
components, and magnetic properties [28–32]. As such, the application of CoFe2O4 in PAA
activation might hold promise for the efficient degradation of FQs in wastewater. Even
though the CoFe2O4/PAA system has been studied for removing pollutants from water,
there is limited information on what active species are present in the system and how
CoFe2O4 activates PAA to specifically degrade contaminants.

Mn++CH3C(O)OOH→ M(n+1)++CH3C(O)O·+ OH− (1)

M(n+1)++CH3(O)OOH→ Mn++CH3(O)OO·+ H+ (2)

This study aimed to assess the roles of reactive species of CoFe2O4/PAA in degrading
OFX and further elucidate its catalytic mechanism. Firstly, the degradation efficiency of
OFX in the CoFe2O4/PAA system was explored according to the effects of CoFe2O4 dosages,
PAA concentration, initial pH, and water matrix (common anions and HA). Subsequently,
the stability and reusability of CoFe2O4 on PAA activation were evaluated. Furthermore,
the dominant reactive species in the CoFe2O4/PAA system for OFX removal was identified.
Finally, the degradation pathway of OFX and the toxicity of OFX before and after its
treatment in the CoFe2O4/PAA system were proposed.

2. Results and Discussion
2.1. Characterization of CoFe2O4

Figure 1a shows the XRD spectra of CoFe2O4 before and after the reaction. There
are seven well-defined peaks in the XRD spectra, which confirm the crystal structure and
excellent crystallinity of CoFe2O4, and the diffraction peaks correspond to the characteristic
peaks in the standard spectrum of CoFe2O4. Moreover, the positions of the characteristic
diffraction peaks of CoFe2O4 did not change before and after the reaction, indicating the
great structural stability of CoFe2O4. The FT-IR spectra of CoFe2O4 before and after the
reaction are presented in Figure 1b. The absorption peaks nearing 3421 cm−1 and 1625 cm−1

correspond to the stretching and bending vibration of hydroxyl groups, respectively, which
are mainly from surface-adsorbed water molecules [33]. Additionally, the peak nearing
580 cm−1 can be interpreted as a stretching vibration of metal–oxygen (M-O) and it could
further verify the formation of Co/Fe-O [34]. Additionally, it is obvious that CoFe2O4
exhibits irregular particles with a size of about 100 nm (Figure 1c), and the elemental
mapping image (Figure 1d) revealed that Co, Fe, and O were uniformly distributed on the
surface of CoFe2O4.
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Figure 1. XRD spectra (a) and FT-IR spectra (b) of CoFe2O4 before and after the reaction. SEM image
of CoFe2O4 (c) with the elemental mapping images of CoFe2O4 (d).

2.2. Performances of OFX Degradation by CoFe2O4-Activated PAA Oxidation
2.2.1. Degradation of OFX by the System of CoFe2O4/PAA

The degradation of OFX under different systems is shown in Figure 2a. OFX was
almost not degraded in the system of H2O2 and PAA alone, indicating that it was negligible
to oxidize OFX with H2O2 and PAA. Only 5.5% and 6.0% of OFX were removed by CoFe2O4
alone and the CoFe2O4/H2O2 system, respectively, suggesting that CoFe2O4 has weak
physical adsorption capability to OFX and trouble activating H2O2. Compared with other
systems, CoFe2O4 was able to degrade OFX effectively, and the removal rate reached 83.0%
after 45 min, which implies that CoFe2O4 is an effective catalyst for PAA activation. This is
due to the activation of PAA adsorption on the surface of CoFe2O4 and its decomposition to
produce highly reactive radicals, which leads to the degradation of organic pollutants [17].

In addition, the decomposition of PAA during the reaction is displayed in Figure S1.
Almost all of the PAA decomposed after 45 min. It is noteworthy that the catalytic de-
composition of PAA can be accompanied by the production of a large number of fine
carbon sources, including methanol (CH3OH), acetic acid (CH3COOH), and formalde-
hyde (HCHO) (Equations (3)–(6)) [16,17], and the PAA solution itself contains a certain
amount of acetic acid, which can be used in the biological treatment process. Therefore,
the CoFe2O4/PAA process in combination with biological treatment processes has great
potential for application in the field of water treatment.

CH3C(O)O· → CH3·+ CO2 (3)

CH3·+ O2 → CH3OO· (4)

2CH3OO· → CH3OH + HCHO + O2 (5)

CH3OO·+ CH3C(O)OO· → CH3C(O)OH + HCHO + O2 (6)
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Figure 2. Degradation of OFX in different systems (a); the effect of reaction factors on the degradation
of OFX in CoFe2O4/PAA system, the inset figures show the corresponding kinetic constants: CoFe2O4

dosage (b), PAA concentration (c), initial pH (d), and the effect of water matrix on the degradation
of OFX (Cl−, SO4

2−, NO3
−, HCO3

−, and HA) (e). Experimental conditions: [OFX] = 20 µM,
[PAA] = 0.4 mM, [H2O2] = 0.6 mM, CoFe2O4 = 0.10 g/L, pH = 7.0, T = 25 ◦C.

2.2.2. Influence of Reaction Factors

The effect of CoFe2O4 dosage on OFX degradation is shown in Figure 2b. The removal
rates of OFX were 76.2%, 80.4%, 81.9%, and 79.1% when the CoFe2O4 dose was 0.05, 0.10,
0.20, and 0.40 g/L, respectively. At the same time, the corresponding kobs increased from
0.039 to 0.073 min−1. An increase in surface active sites with increasing CoFe2O4 accelerates
the decomposition of PAA and promotes the generation of ROS. However, CoFe2O4 itself
scavenges ROS when added in excess [35] and causes agglomeration and precipitation,
which reduces active sites [21].
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The effect of PAA concentration on OFX degradation is shown in Figure 2c. The
removal rate of OFX increased from 44.6% to 85.9% when the PAA concentration was
raised from 0.1 mM to 0.8 mM, and the kobs also grew by 3.2 times. The increase in
PAA concentration can fully utilize the active sites of CoFe2O4 to produce more ROS.
Nevertheless, the formation of ROS is relatively slowed when active sites are saturated with
PAA because of the high PAA concentration. Furthermore, too much PAA has a quenching
impact on ROS [21,36].

The pH is a critical factor affecting OFX removal in the CoFe2O4/PAA system. The
effects of different initial pH on OFX degradation are shown in Figure 2d. In neutral
conditions, OFX degraded significantly better than in acidic or alkaline conditions. pH
determines the morphology of PAA in aqueous solutions. Since PAA has a pKa of 8.2, it
mostly resides in its neutral form (PAA0) when the pH is below 8.2, and in its deprotonated
form (PAA−) when the pH is above 8.2 [15]. In addition, pH also affects the surface charge
of CoFe2O4 whose isoelectric point is 6.5 (Figure S2). Therefore, PAA in solution mainly
exists in the form of PAA− under alkaline conditions, while the surface of CoFe2O4 is
negatively charged and electrically repulsive, which reduces the chance of contact between
PAA and CoFe2O4. Acidic conditions cause the surface of CoFe2O4 to become positively
charged, and the O-O bond of PAA can easily form a hydrogen bond with H+ to become
positively charged [37].

2.2.3. Influence of Water Matrix

The widespread presence of anions and dissolved organic matter (DOM) in the aque-
ous environment could affect OFX degradation by scavenging ROS and forming complexes
with metal ions. As shown in Figure 2e, Cl− and SO4

2− have a slight effect on OFX degra-
dation in the CoFe2O4/PAA system. As SO4

2− typically does not react with ROS (·OH,
R-O·), its presence in high quantities has no significant impact on OFX removal. According
to previous studies, Cl− generally plays two roles in the PAA system: (i) Cl− can react
directly with PAA to produce the secondary oxidant HOCl (Equation (7)) [38], and (ii) Cl−

also reacts with ROS to form chlorine-containing reactive species (Cl·, HOCl·−, Cl2·−)
(Equations (8)–(11)), which have different sensitivities to different pollutants [39].

Cl−+CH3C(O)OOH→ HOCl + CH3C(O)O− (7)

Cl−+CH3C(O)OO·+ H+ → Cl·+ CH3C(O)OOH (8)

Cl·+ H2O↔ HOCl·− + H+ (9)

HOCl·− ↔ OH·+ Cl− (10)

Cl·+ Cl− → Cl·−2 (11)

High concentrations of NO3
− significantly inhibited the degradation of OFX. It is pos-

sible that NO3
− reacts with reactive radicals to generate NO2

−, which also competes with
OFX for ROS [40]. Obviously, HCO3

− strongly suppressed the degradation of OFX. The
removal rates of OFX were only 69.3%, 15.7%, 10.5%, and 9.0% when the concentration of
HCO3

− in the system was 1, 5, 10, and 20 mM, respectively. HCO3
− is a common scavenger

of ·OH and hardly reacts with R-O·, therefore the inhibitory effect on OFX degradation is
not a competition for reactive radicals [16]. As previously reported, the CoFe2O4 surface
forms a Co-HCO3

− complex with HCO3
−, which blocks PAA activation [16,41]. Moreover,

HCO3
− is a buffer substance that affects the pH in the reaction system [18], and the weak

alkaline conditions are not favorable for OFX degradation by CoFe2O4/PAA. HA plays
a part in inhibiting the removal of OFX in the CoFe2O4/PAA system, especially at high
concentrations of HA. HA is a common radical scavenger [39] and can readily adsorb onto
the surface of CoFe2O4 to form unreactive complexes [30,42].
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2.3. Reusability and Stability of the CoFe2O4

The reusability of CoFe2O4 was evaluated with cycling experiments, which were
carried out under the same reaction system. As can be seen from Figure 3a, the removal
efficiency of OFX could still be kept over 80% after five cycles, which indicates that CoFe2O4
has a stable catalytic performance for PAA. Additionally, the highest leaching amount of
cobalt ions was only 0.055 mg/L in cycling experiments (Figure 3b), while iron ions were
not detected. Moreover, the XRD and FT-IR analyses of CoFe2O4 before and after the
reaction also further confirmed the structural stability of CoFe2O4 with regard to PAA
activation. The superior catalytic and structural stability of CoFe2O4 is of great benefit for
the application of the CoFe2O4/PAA system in practice.
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pH = 7.0, T = 25 ◦C.

2.4. Applicability of CoFe2O4/PAA System

The degradation effect of the CoFe2O4/PAA system on other three different FQs was
investigated and the results are shown in Figure 3c. Norfloxacin (NOR), Ciprofloxacin
(CIP), and Enrofloxacin (ENR) were degraded to a great extent after 45 min and the
removal rates could reach 77.0%, 75.5%, and 81.5%, respectively, suggesting that the
CoFe2O4/PAA system has the same great degradation performance as other FQs. In
addition, the performance of the CoFe2O4/PAA process for OFX degradation was evaluated
in both tap water and surface water. It was pleasantly surprising that the removal efficiency
of OFX in tap water and surface water was decreased by only 1.4% and 2.5%, respectively
(Figure 3d). The information about these two water types is listed in Table S2. The
reason for this slight inhibition may be that coexisting ions and organic matter in actual
water can consume ROS. Thereby, the CoFe2O4/PAA process has promising potential for
practical application.
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2.5. Identification and Analysis of Reactive Species

It has been reported that various reactive species might be involved in PAA-based
AOPs, such as ·OH, O2

·−, 1O2, R-O· (CH3C(O)O·, CH3C(O)OO·) and high-valent metal
species (Co (IV), Fe (IV)) [16,43]. Therefore, a quenching experiment was conducted to
identify ROS produced in the CoFe2O4/PAA system. Tertiary butyl alcohol (TBA) is a
typical ·OH scavenger at a high reaction rate with ·OH (k TBA/·OH = 6.0 × 108 M−1s−1) [44].
As shown in Figure 4a, the addition of excess TBA slightly inhibited the removal of OFX,
indicating the minor role of ·OH in the system. MeOH serves as a common scavenger for
both ·OH (k MeOH/·OH = 9.7 × 108 M−1s−1) and R-O· in the PAA system [32]. Hence, the
contributions of ·OH and R-O· to the degradation of OFX could be distinguished by the
use of TBA and MeOH. Obviously, too much MeOH could greatly reduce the removal rate
of OFX, which fell from 83.1% to 40.3% (Figure 4a). Thus, the inhibition induced by MeOH
was attributed to the scavenging effect of R-O· rather than ·OH. To further verify this, pCBA
(k pCBA/·OH = 5.0 × 109 M−1s−1) and NAP (k NAP/R-O·= 9.0 × 109 M−1s−1) were utilized as
specific probes for ·OH, R-O· to explore the contribution to OFX degradation [44,45]. As
presented in Figure S3, complete removal of NAP occurred within 10 min, whereas only
10% of pCBA was degraded after 45 min. This observation evidenced that a large number
of R-O· and less ·OH exist in the CoFe2O4/PAA system.
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CHCl3 can act as a scavenger of O2
·−, which rapidly reacts with O2

·− (k CHCl3/O2·−
= 2.3× 108 M−1s−1) [44]. The degradation of OFX was not affected by CHCl3, which
means O2

·− had little involvement. Additionally, FFA is widely used as a quencher of 1O2
(k FFA/1O2 = 1.2 × 108 M−1s−1) [16]. According to the results in Figure 4a, the inhibitory
effect of FFA on OFX degradation is significantly higher than that of other quenchers,
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indicating that 1O2 plays an important role in the degradation process. Meanwhile, the
addition of excess quenchers can consume a part of PAA (Figures 4b and S4).

The formation of high-valent metal species like Co(IV) and Fe(IV) in the system could
be probed by methyl phenyl sulfoxide (PMSO). PMSO was reported to be converted to
methyl phenyl sulfone (PMSO2) with high-valent metal species via an oxygen atom transfer
route [35,46], in contrast to free radicals, which form hydroxylated products [47]. It turned
out that PMSO2 occurred in the CoFe2O4/PAA system, but the conversion rate of PMSO to
PMSO2 was only 8.0% (Figure S5). Moreover, the removal rate of OFX was only decreased
by 2.5% when excess PMSO was introduced (Figure S6). The results demonstrated that
high-valent metal species (Co(IV), Fe(IV)) serve a minor role in OFX degradation.

EPR tests were performed to further verify the generation of ROS in the CoFe2O4/PAA
system. DMPO is the spin-trapping agent of ·OH and O2

·−, while DIPPMPO and TEMP
serve as the trapping agents for R-O· and 1O2, respectively [45,48]. As shown in Figure 4c,d,
the signals of DMPO-·OH (1:2:2:1), DIPPMPO-R-O· (12 lines), DMPO-O2

·−, and TEMP-1O2
(1:1:1) adducts were detected, demonstrating the existence of ·OH, R-O·, O2

·−, and 1O2 in
the CoFe2O4/PAA system.

Furthermore, CH3C(O)O· and CH3C(O)OO· are two critical R-O· species in PAA-
based AOPs that are crucial in pollutant degradation. Generally, CH3C(O)O· is extremely
unstable as a primary radical, susceptible to self-decay to form CH3· (k = 2.3 × 105 M−1s−1)
(Equation (12)) and is less reactive toward most organic compounds [20,49]. In contrast,
CH3C(O)OO· is capable of strong oxidation [19]. Thus, CH3C(O)OO· is the main R-O·
involved in OFX degradation. Based on the above analysis, it can be inferred that R-
O· (especially CH3C(O)OO·) and 1O2 are the major reactive species responsible for OFX
removal in the CoFe2O4/PAA system.

CH3C(O)O· → CH3·+ CO2 (12)

2.6. Activation Mechanism

To further illustrate the activation mechanism of CoFe2O4 on PAA, XPS analysis of
CoFe2O4 before and after the reaction was performed. The XPS full spectrum scans of
CoFe2O4 before and after the reaction are shown in Figure 5a, which reveals the presence
of Co, Fe, and O. Figure 5b displays the XPS peak-fitting spectra of Co 2p before and
after the reaction of CoFe2O4. The Co(III) exhibits distinctive peak positions at 778.9 eV
(Co 2p3/2) and 794.1 eV (Co 2p1/2), whereas Co(II) is associated with peak locations at
780.6 eV (Co 2p3/2) and 795.4 eV (Co 2p1/2). The proportion of Co(III) declined from
53.42% to 49.56%, whereas the Co(II) increased from 46.58% to 50.44%. These observations
indicate the presence of a redox cycle involving≡Co(II)/≡Co(III) on the surface of CoFe2O4
throughout the reaction [18,45].

Figure 5c shows the XPS peak-fitting spectra of Fe 2p before and after the CoFe2O4
reaction. The peaks of Fe(II) at Fe 2p3/2 and Fe 2p1/2 correspond to binding energies of
710.0 eV and 723.4 eV, respectively, while those for Fe(III) are 711.8 eV and 725.1 eV. The
proportion of Fe(II) declined from 58.68% to 55.88% and the corresponding increase in
Fe(III) from 41.32% to 44.12% suggests the presence of a redox cycle with ≡Fe(III)/≡Fe(II)
on the CoFe2O4. Nevertheless, the involvement of ≡Fe(III)/≡Fe(II) in the activation of
PAA is minimal in comparison to ≡Co(II)/≡Co(III) [42]. It should be noticed that the
presence of Fe in CoFe2O4 promotes the transformation of Co(III) to Co(II) (Equation (13)),
which improves the electron-transfer capacity of the catalyst [45].

Fe(II) + Co(III)→ Co(II)+Fe(III) (13)

≡ Fe3+ + H2O →≡ FeOH2+ + H+ (14)

≡ Co2+ + H2O → CoOH+ + H+ (slow) (15)
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≡ Co2++ ≡ FeOH2+ → CoOH+ + Fe3+ (fast) (16)
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As shown in Figure 5d, the peaks of lattice oxygen, surface hydroxyl oxygen, and
adsorbed oxygen are located at 529.7 eV, 531.5 eV, and 533.2 eV, respectively. The lat-
tice oxygen decreased from 75.75% to 70.83%, while surface hydroxyl oxygen increased
from 19.50% to 21.39%, and adsorbed oxygen rose from 4.75% to 7.78%. The decrease in
lattice oxygen can be attributed to the reduction of Co(III) to Co(II), while the increase
in surface hydroxyl oxygen can be explained by the formation of Co-OH and Fe-OH
(Equations (14)–(16)) [30,42].

Therefore, the degradation of OFX in the CoFe2O4/PAA system was attributed to the
generation of reactive species, especially R-O· and 1O2, and Co played an important role in
PAA activation. Based on the above discussion, the activation mechanism of CoFe2O4 on
PAA was proposed. Initially, the surface ≡Co(II) of CoFe2O4 donates an electron to PAA,
which results in the formation of CH3C(O)O· and the conversion of ≡Co(II) to ≡Co(III).
Subsequently, the generated ≡Co(III) would receive an electron from PAA and recover to
≡Co(II), accompanied by the formation of CH3C(O)OO·. Therefore, the ≡Co(II)/≡Co(III)
redox cycle is repeated on the catalyst surface to generate R-O· for the degradation of OFX
(Equations (17) and (18)). Additionally, the coexisting H2O2 reacts with R-O· (CH3C(O)O·,
CH3C(O)OO·) to produce HO2· (Equations (19) and (20)), which has a weak oxidizing
capacity and is prone to forming O2

·− by deprotonation (Equation (21)). Moreover, 1O2
could be obtained from the recombination of O2

·− (Equation (22)). Although the role of Fe
in the activation of PAA might be disregarded, the interaction of Fe with Co speeds up the
rate of electron transfer at the catalytic interface as well as the adsorption of PAA [42,45].

≡ Co(II)+CH3C(O)OOH →≡ Co(III)+CH3C(O)O·+ OH− (17)
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≡ Co(III)+CH3C(O)OOH →≡ Co(II)+CH3C(O)OO·+ H+ (18)

H2O2 + CH3C(O)O· → HO2· + CH3C(O)OH (19)

H2O2 + CH3C(O)OO· → HO2· + CH3C(O)OOH (20)

HO2· → O·−2 + H+ (21)

2O·−2 + H2O → 1O2 + H2O2 + OH− (22)

2.7. Degradation Pathway and Toxicity Assessment

Three-dimensional fluorescence spectroscopy (3D-EEM) was used to observe the
compositional changes of organic matter during OFX degradation and to perform a pre-
liminary analysis of the evolution of the molecular structure. As shown in Figure 6a,
OFX showed double fluorescence peaks. The two peaks were located in the ranges of
EX/Em = (275–300 nm)/(400–575 nm) and EX/Em = (300–375 nm)/(400–575 nm), which
belong to humic acid-like substances. Meanwhile, it further reflects the aromatic structure
of OFX and functional groups such as carboxyl groups (-COOH) and carbonyl groups
(-C=O) [50]. As the reaction went on, the intensity of the two fluorescence peaks gradually
weakened and the center of the peaks was slightly shifted to the left (Figure 6a–d), implying
that the conjugated structure of OFX was continuously destroyed to form intermediate
products and that the CoFe2O4/PAA system could degrade OFX effectively.

Molecules 2023, 28, x FOR PEER REVIEW  12  of  18 
 

 

 

Figure 6. Three-dimensional fluorescence spectra (3D-EEM) at different times during the degrada-

tion of OFX by CoFe2O4/PAA system: (a) 0 min, (b) 10 min, (c) 20 min, (d) 45 min. Experimental 

conditions: [OFX] = 20 µM, [PAA] = 0.4 mM, CoFe2O4 = 0.10 g/L, pH = 7.0, T = 25 °C. 

The degradation intermediates of OFX in the CoFe2O4/PAA system were detected by 

LC-TOF-MS (Figure S7) and summarized in Table S4. Four possible degradation pathways 

of OFX were proposed based on experimental results and related literature (Figure 7). In 

pathway I, opening of the oxazine ring and hydroxylation of the quinolone moiety in OFX 

occurred to form P1 (m/z = 354), followed by the generation of P2 (m/z = 314) via the cleav-

age of C=C and C-N bonds, and was further demethylated to produce P3 (m/z = 283) [51]. 

In pathway II, decarboxylation and hydroxylation of the quinolone moiety in OFX formed 

P4 (m/z = 334), and P4 was oxidized to produce P5 (m/z = 205), which was transformed to 

P6 (m/z = 194) via the cleavage of the C=C bond and hydroxylation [52,53]. In pathway III, 

P7 (m/z = 280) was obtained by the epoxidation and hydroxylation of piperazine from OFX 

and was then further converted to P8 (m/z = 224) via decarboxylation, deamination, and 

demethylation. As part of pathway IV, OFX was first defluorinated to form P9 (m/z = 344), 

followed by the generation of P10 (m/z = 327) and P11 (m/z = 300) via demethylation and 

decarboxylation, respectively, and P12 (m/z = 149) was obtained by the ring-opening of 

P11 [51,52]. Eventually, these intermediates are mineralized into inorganic molecules such 

as CO2, H2O, NO3−, and F−. As a whole, ring opening, decarboxylation, defluorination, hy-

droxylation, demethylation, and bond cleavage contribute to OFX degradation. 

Figure 6. Three-dimensional fluorescence spectra (3D-EEM) at different times during the degradation
of OFX by CoFe2O4/PAA system: (a) 0 min, (b) 10 min, (c) 20 min, (d) 45 min. Experimental
conditions: [OFX] = 20 µM, [PAA] = 0.4 mM, CoFe2O4 = 0.10 g/L, pH = 7.0, T = 25 ◦C.
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The degradation intermediates of OFX in the CoFe2O4/PAA system were detected by
LC-TOF-MS (Figure S7) and summarized in Table S4. Four possible degradation pathways
of OFX were proposed based on experimental results and related literature (Figure 7). In
pathway I, opening of the oxazine ring and hydroxylation of the quinolone moiety in OFX
occurred to form P1 (m/z = 354), followed by the generation of P2 (m/z = 314) via the cleav-
age of C=C and C-N bonds, and was further demethylated to produce P3 (m/z = 283) [51].
In pathway II, decarboxylation and hydroxylation of the quinolone moiety in OFX formed
P4 (m/z = 334), and P4 was oxidized to produce P5 (m/z = 205), which was transformed to
P6 (m/z = 194) via the cleavage of the C=C bond and hydroxylation [52,53]. In pathway III,
P7 (m/z = 280) was obtained by the epoxidation and hydroxylation of piperazine from OFX
and was then further converted to P8 (m/z = 224) via decarboxylation, deamination, and
demethylation. As part of pathway IV, OFX was first defluorinated to form P9 (m/z = 344),
followed by the generation of P10 (m/z = 327) and P11 (m/z = 300) via demethylation and
decarboxylation, respectively, and P12 (m/z = 149) was obtained by the ring-opening of
P11 [51,52]. Eventually, these intermediates are mineralized into inorganic molecules such
as CO2, H2O, NO3

−, and F−. As a whole, ring opening, decarboxylation, defluorination,
hydroxylation, demethylation, and bond cleavage contribute to OFX degradation.
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To evaluate the toxicity variation, toxicity software (T.E.S.T., Version 5.1.2) based on
quantitative structure–activity relationship (QSAR) was applied to predict the ecotoxicity of
OFX and its detected intermediates, which include acute toxicity, bioconcentration factors,
developmental toxicity, and mutagenicity. It is worth mentioning that OFX exhibited
toxicity, as seen by its 96 h Fathead minnow LC50 value of 1.24 mg/L (Figure 8a). This value
was lower than that of the intermediates, suggesting a significant reduction in acute toxicity
following degradation. As displayed in Figure 8b, the obtained bioaccumulation factor of
OFX and its intermediates indicated that all intermediates except P1, P2, P3, P7, and P10
were lower than OFX. Additionally, the developmental toxicity value of OFX was higher
than most of the intermediates (Figure 8c), proving a decrease in developmental toxicity
after degradation except for P4 and P9, and P12 even showed developmental non-toxicants.
OFX and most of the intermediates were classified as mutagenicity-positive, and P11 was
even considered mutagenicity-negative (Figure 8d). After the reaction, it was found that the
total toxicity of OFX was lower than before the reaction, indicating that the CoFe2O4/PAA
system offered a high-level potential for toxicity reduction.
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3. Materials and Methods
3.1. Chemicals

Ofloxacin (OFX), Norfloxacin (NOR), Ciprofloxacin (CIP), Enrofloxacin (ENR), Tert-
butanol (TBA), Methanol (MeOH), and Trichloromethane (CHCl3) were purchased
from Macklin Biochemical (Shanghai, China). Furfuryl alcohol (FFA), N, N-diethyl-p-
phenylenediamine (DPD), Humic acid (HA), p-chlorobenzoic acid (pCBA), Naproxen
(NAP), Methyl phenyl sulfoxide (PMSO), and Methyl phenyl sulfone (PMSO2) were pro-
vided by Aladdin Co., Ltd. (Shanghai, China). Acetonitrile (CH3CN) and Formic acid
(HCOOH) of HPLC grade were purchased from Sinopharm Chemical Reagent Co., Ltd.
(Shanghai, China). CoFe2O4, whose size was around 100 nm, was supplied by Aladdin Co.,
Ltd. (Shanghai, China). Commercial PAA stock solution was supplied by Kemiou Chemical
Reagent (Tianjin, China), and the molar ratio of PAA to H2O2 in the stock solution was
0.7. All other chemicals and reagents were provided by Sinopharm Chemical Reagent Co.,
Ltd. The CAS registry number of all chemicals is listed in Table S5. All chemicals were of
analytical grade and used without further purification.

3.2. Degradation Experiments

Degradation experiments were conducted in a 250 mL glass reactor with shock stirring
(Thermostatic shaker SYC-2A, Shanghai Bunting Instrument Co., Shanghai, China) at a
speed of 150 rpm. Firstly, 100 mL of 20 µM OFX solution was transferred to the reactor,
followed by the addition of a predetermined concentration of PAA, and then the solution’s
pH was adjusted with diluted H2SO4 and NaOH. The experiments were initiated with
the addition of CoFe2O4. All the experiments were maintained at 23 ± 2 ◦C. Samples
were collected within a predetermined time (0, 2, 5, 10, 20, 30, 45 min), and quenched by
Na2S2O3, then filtered with a 0.22 µm aqueous filter membrane for analysis.

Different concentrations of anions (Cl−, SO4
2−, NO3

−, HCO3
−) and HA were added

to the reaction solution to investigate the effect of water matrices on OFX degradation.
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ROS in the system were identified by radical scavengers (TBA, MeOH, CHCl3, FFA) and
verified by probe compounds (pCBA, NAP, PMSO). NOR, CIP, and ENR were used to
evaluate the applicability of CoFe2O4/PAA systems for FQs. In order to evaluate the
stability of the catalytic performance of CoFe2O4, the used catalyst was desorbed by alkali
and then washed with deionized water to neutral and dried at 60 ◦C. All experiments were
conducted at least twice, and the error bar shown in the figure represents the standard
deviation between replicates.

The stock solution of OFX (30 mg/L) was obtained by dissolving OFX in pure water
with stirring and was stored at 4 ◦C. The working solution of OFX was diluted from the
stock solution. Kinetic analysis of OFX degradation was depicted in Text S1.

3.3. Analytical Methods

The surface morphology and chemical composition of CoFe2O4 were characterized
using scanning electron microscopy (SEM, Scios 2 HiVac, FEI, Danville, CA, USA) equipped
with energy-dispersive X-ray spectroscopy (EDS). The crystal phase structure of CoFe2O4
before and after the reaction was determined through an X-ray diffractometer (XRD, Smart-
Lab SE, Rigaku, Japan) with Cu-Ka radiation over the range of 10◦ to 80◦, and Fourier
transform infrared spectroscopy (FT-IR, Nicolet iS20, Thermo Scientific, Waltham, MA,
USA) was used to determine functional groups. The surface elemental composition of
CoFe2O4 before and after the reaction were analyzed by X-ray photoelectron spectroscopy
(XPS, K-Alpha, Thermo Scientific, USA), and the zeta potential of CoFe2O4 was measured
using a Zeta potentiometer (Nano ZS90, Malvern, UK).

The PAA stock solution was calibrated weekly by titration, and the concentrations
of peroxide and hydrogen peroxide in the PAA stock solution were determined using
iodimetry and potassium permanganate titration, respectively, so as to calculate the con-
centration of PAA [39]. The residual PAA concentration was determined by N, N-diethyl-p-
phenylenediamine (DPD) spectrophotometry [15]. The concentration of OFX, NOR, CIP,
ENR, pCBA, NAP, PMSO, and PMSO2 were detected by high-performance liquid chro-
matography (HPLC, Agilent 1260, Santa Clara, CA, USA) coupled with an Agilent EC-C18
column and the details of the conditions are presented in Table S6. The concentrations of
cobalt and iron ions were analyzed using inductively coupled plasma–atomic emission
spectrometry (ICP-AES, ICP-5000, Focused Photonics Inc, Shanghai, China), and pH values
were measured by a pH meter (pH-FE28, METTLER TOLEDO, Greifensee, Switzerland).
Electron paramagnetic resonance (EPR) tests were carried out to verify the generated ROS
using 5,5-dimethyl-1-pyrroline N-oxide (DMPO), 5-Diisopropoxyphosphoryl-5-methyl-1-
pyrroline N-oxide (DIPPMPO), and 2,2,6,6-tetramethyl-4-piperidinyl (TEMP) as trapping
agents. The detection of three-dimensional fluorescence spectra (3D-EEM) was performed
on a fluorescence spectrophotometer (Lengguang F98, Shanghai, China). The intermediates
of OFX degradation were determined by LC-QTOF-MS (Agilent 1290-6550, USA) coupled
with electrospray ionization (ESI). Meanwhile, the biological toxicity of OFX and its oxida-
tion intermediates was evaluated by the Toxicity Estimation Software Tool (T.E.S.T., Version
5.1.2), which is based on the quantitative structure–activity relationship (QSAR) method.

4. Conclusions

In this study, CoFe2O4 displayed remarkable catalytic performance in the activation
of PAA for OFX degradation, and a removal efficiency of 83.0% OFX was achieved within
45 min under neutral conditions. The CoFe2O4/PAA system exhibited better resistance to
anions and HA at low concentrations in water, but NO3

−, HCO3
−, and HA could inhibit

OFX degradation at high concentrations. Additionally, CoFe2O4 showed excellent catalytic
performance in cycling experiments and great potential for practical wastewater treatment.
R-O· (CH3C(O)OO·) and 1O2 played a dominant role in the degradation of OFX, and the
≡Co(II)/≡Co(III) redox cycle occurring on the surface of CoFe2O4 during the reaction
promoted the decomposition of PAA to generate ROS. Finally, the possible degradation
pathways of OFX involved ring opening, bond cleavage, decarboxylation, defluorination,
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hydroxylation, and demethylation. Toxicity assessment indicated that the CoFe2O4/PAA
system could effectively reduce the biological toxicity of OFX. This study contributes to the
practical application of non-homogeneous PAA-based AOPs in wastewater treatment.

Supplementary Materials: The following supporting information can be downloaded at: https:
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tary Materials.
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